Tag Archives: University of Alberta

Why don’t you CRISPR yourself?

It must have been quite the conference. Josiah Zayner plunged a needle into himself and claimed to have changed his DNA (deoxyribonucleic acid) while giving his talk. (*Segue: There is some Canadian content if you keep reading.*) From an Oct. 10, 2017 article by Adele Peters for Fast Company (Note: A link has been removed),

“What we’ve got here is some DNA, and this is a syringe,” Josiah Zayner tells a room full of synthetic biologists and other researchers. He fills the needle and plunges it into his skin. “This will modify my muscle genes and give me bigger muscles.”

Zayner, a biohacker–basically meaning he experiments with biology in a DIY lab rather than a traditional one–was giving a talk called “A Step-by-Step Guide to Genetically Modifying Yourself With CRISPR” at the SynBioBeta conference in San Francisco, where other presentations featured academics in suits and the young CEOs of typical biotech startups. Unlike the others, he started his workshop by handing out shots of scotch and a booklet explaining the basics of DIY [do-it-yourwelf] genome engineering.

If you want to genetically modify yourself, it turns out, it’s not necessarily complicated. As he offered samples in small baggies to the crowd, Zayner explained that it took him about five minutes to make the DNA that he brought to the presentation. The vial held Cas9, an enzyme that snips DNA at a particular location targeted by guide RNA, in the gene-editing system known as CRISPR. In this case, it was designed to knock out the myostatin gene, which produces a hormone that limits muscle growth and lets muscles atrophy. In a study in China, dogs with the edited gene had double the muscle mass of normal dogs. If anyone in the audience wanted to try it, they could take a vial home and inject it later. Even rubbing it on skin, Zayner said, would have some effect on cells, albeit limited.

Peters goes on to note that Zayner has a PhD in molecular biology and biophysics and worked for NASA (US National Aeronautics and Space Administration). Zayner’s Wikipedia entry fills in a few more details (Note: Links have been removed),

Zayner graduated from the University of Chicago with a Ph.D. in biophysics in 2013. He then spent two years as a researcher at NASA’s Ames Research Center,[2] where he worked on Martian colony habitat design. While at the agency, Zayner also analyzed speech patterns in online chat, Twitter, and books, and found that language on Twitter and online chat is closer to how people talk than to how they write.[3] Zayner found NASA’s scientific work less innovative than he expected, and upon leaving in January 2016, he launched a crowdfunding campaign to provide CRISPR kits to let the general public experiment with editing bacterial DNA. He also continued his grad school business, The ODIN, which sells kits to let the general public experiment at home. As of May 2016, The ODIN had four employees and operates out of Zayner’s garage.[2]

He refers to himself as a biohacker and believes in the importance in letting the general public participate in scientific experimentation, rather than leaving it segregated to labs.[2][4][1] Zayner found the biohacking community exclusive and hierarchical, particularly in the types of people who decide what is “safe”. He hopes that his projects can let even more people experiment in their homes. Other scientists responded that biohacking is inherently privileged, as it requires leisure time and money, and that deviance from the safety rules of concern would lead to even harsher regulations for all.[5] Zayner’s public CRISPR kit campaign coincided with wider scrutiny over genetic modification. Zayner maintained that these fears were based on misunderstandings of the product, as genetic experiments on yeast and bacteria cannot produce a viral epidemic.[6][7] In April 2015, Zayner ran a hoax on Craigslist to raise awareness about the future potential of forgery in forensics genetics testing.[8]

In February 2016, Zayner performed a full body microbiome transplant on himself, including a fecal transplant, to experiment with microbiome engineering and see if he could cure himself from gastrointestinal and other health issues. The microbiome from the donors feces successfully transplanted in Zayner’s gut according to DNA sequencing done on samples.[2] This experiment was documented by filmmakers Kate McLean and Mario Furloni and turned into the short documentary film Gut Hack.[9]

In December 2016, Zayner created a fluorescent beer by engineering yeast to contain the green fluorescent protein from jellyfish. Zayner’s company, The ODIN, released kits to allow people to create their own engineered fluorescent yeast and this was met with some controversy as the FDA declared the green fluorescent protein can be seen as a color additive.[10] Zayner, views the kit as a way that individual can use genetic engineering to create things in their everyday life.[11]

I found the video for Zayner’s now completed crowdfunding campaign,

I also found The ODIN website (mentioned in the Wikipedia essay) where they claim to be selling various gene editing and gene engineering kits including the CRISPR editing kits mentioned in Peters’ article,

In 2016, he [Zayner] sold $200,000 worth of products, including a kit for yeast that can be used to brew glowing bioluminescent beer, a kit to discover antibiotics at home, and a full home lab that’s roughly the cost of a MacBook Pro. In 2017, he expects to double sales. Many kits are simple, and most buyers probably aren’t using the supplies to attempt to engineer themselves (many kits go to classrooms). But Zayner also hopes that as people using the kits gain genetic literacy, they experiment in wilder ways.

Zayner sells a full home biohacking lab that’s roughly the cost of a MacBook Pro. [Photo: The ODIN]

He questions whether traditional research methods, like randomized controlled trials, are the only way to make discoveries, pointing out that in newer personalized medicine (such as immunotherapy for cancer, which is personalized for each patient), a sample size of one person makes sense. At his workshop, he argued that people should have the choice to self-experiment if they want to; we also change our DNA when we drink alcohol or smoke cigarettes or breathe in dirty city air. Other society-sanctioned activities are more dangerous. “We sacrifice maybe a million people a year to the car gods,” he said. “If you ask someone, ‘Would you get rid of cars?’–no.” …

US researchers both conventional and DIY types such as Zayner are not the only ones who are editing genes. The Chinese study mentioned in Peters’ article was written up in an Oct. 19, 2015 article by Antonio Regalado for the MIT [Massachusetts Institute of Technology] Technology Review (Note: Links have been removed),

Scientists in China say they are the first to use gene editing to produce customized dogs. They created a beagle with double the amount of muscle mass by deleting a gene called myostatin.

The dogs have “more muscles and are expected to have stronger running ability, which is good for hunting, police (military) applications,” Liangxue Lai, a researcher with the Key Laboratory of Regenerative Biology at the Guangzhou Institutes of Biomedicine and Health, said in an e-mail.

Lai and 28 colleagues reported their results last week in the Journal of Molecular Cell Biology, saying they intend to create dogs with other DNA mutations, including ones that mimic human diseases such as Parkinson’s and muscular dystrophy. “The goal of the research is to explore an approach to the generation of new disease dog models for biomedical research,” says Lai. “Dogs are very close to humans in terms of metabolic, physiological, and anatomical characteristics.”

Lai said his group had no plans breed to breed the extra-muscular beagles as pets. Other teams, however, could move quickly to commercialize gene-altered dogs, potentially editing their DNA to change their size, enhance their intelligence, or correct genetic illnesses. A different Chinese Institute, BGI, said in September it had begun selling miniature pigs, created via gene editing, for $1,600 each as novelty pets.

People have been influencing the genetics of dogs for millennia. By at least 36,000 years ago, early humans had already started to tame wolves and shape the companions we have today. Charles Darwin frequently cited dog breeding in The Origin of Species to demonstrate how evolution gradually occurs by a process of selection. With CRISPR, however, evolution is no longer gradual or subject to chance. It is immediate and under human control.

It is precisely that power that is stirring wide debate and concern over CRISPR. Yet at least some researchers think that gene-edited dogs could put a furry, friendly face on the technology. In an interview this month, George Church, a professor at Harvard University who leads a large effort to employ CRISPR editing, said he thinks it will be possible to augment dogs by using DNA edits to make them live longer or simply make them smarter.

Church said he also believed the alteration of dogs and other large animals could open a path to eventual gene editing of people. “Germline editing of pigs or dogs offers a line into it,” he said. “People might say, ‘Hey, it works.’ ”

In the meantime, Zayner’s ideas are certainly thought provoking. I’m not endorsing either his products or his ideas but it should be noted that early science pioneers such as Humphrey Davy and others experimented on themselves. For anyone unfamiliar with Davy, (from the Humphrey Davy Wikipedia entry; Note: Links have been removed),

Sir Humphry Davy, 1st Baronet PRS MRIA FGS (17 December 1778 – 29 May 1829) was a Cornish chemist and inventor,[1] who is best remembered today for isolating a series of substances for the first time: potassium and sodium in 1807 and calcium, strontium, barium, magnesium and boron the following year, as well as discovering the elemental nature of chlorine and iodine. He also studied the forces involved in these separations, inventing the new field of electrochemistry. Berzelius called Davy’s 1806 Bakerian Lecture On Some Chemical Agencies of Electricity[2] “one of the best memoirs which has ever enriched the theory of chemistry.”[3] He was a Baronet, President of the Royal Society (PRS), Member of the Royal Irish Academy (MRIA), and Fellow of the Geological Society (FGS). He also invented the Davy lamp and a very early form of incandescent light bulb.

Canadian content*

A Nov. 11, 2017 posting on the Canadian Broadcasting Corporation’s (CBC) Quirks and Quarks blog notes that self-experimentation has a long history and goes on to describe Zayner’s and others biohacking exploits before describing the legality of biohacking in Canada,

With biohackers entering into the space traditionally held by scientists and clinicians, it begs questions. Professor Timothy Caulfield, a Canada research chair in health, law and policy at the University of Alberta, says when he hears of somebody giving themselves biohacked gene therapy, he wonders: “Is this legal? Is this safe? And if it’s not safe, is there anything that we can do about regulating it? And to be honest with you that’s a tough question and I think it’s an open question.”

In Canada, Caulfield says, Health Canada focuses on products. “You have to have something that you are going to regulate or you have to have something that’s making health claims. So if there is a product that is saying I can cure X, Y, or Z, Health Canada can say, ‘Well let’s make sure the science really backs up that claim.’ The problem with these do-it-yourself approaches is there isn’t really a product. You know these people are experimenting on themselves with something that may or may not be designed for health purposes.”

According to Caufield, if you could buy a gene therapy kit that was being marketed to you to biohack yourself, that would be different. “Health Canada could jump in. But right here that’s not the case,” he says.

There are places in the world that do regulate biohacking, says Caulfield. “Germany, for example, they have specific laws for it. And here in Canada we do have a regulatory framework that says that you cannot do gene therapy that will alter the germ line. In other words, you can’t do gene therapy or any kind of genetic editing that will create a change that you will pass on to your offspring. So that would be illegal, but that’s not what’s happening here. And I don’t think there’s a regulatory framework that adequately captures it.”

Infectious disease and policy experts aren’t that concerned yet about the possibility of a biohacker unleashing a genetically modified super germ into the population.

“I think in the future that could be a problem,”says Caulfield, “but this isn’t something that would be easy to do in your garage. I think it’s complicated science. But having said that, the science is moving quickly. We need to think about how we are going to control the potential harms.”

You can find out more about the ‘wild’ people (mostly men) of early science in Richard Holmes’ 2008 book, The Age of Wonder: How the Romantic Generation Discovered the Beauty and Terror of Science.

Finally, should you be interested in connecting with synthetic biology enthusiasts, entrepreneurs, and others, SynBioBeta is more than a conference; it’s also an activity hub.

ETA January 25, 2018 (five minutes later): There are some CRISPR/CAS9 events taking place in Toronto, Canada on January 24 and 25, 2018. One is a workshop with Portuguese artist, Marta de Menezes, and the other is a panel discussion. See my January 10, 2018 posting for more details.

*’Segue: There is some Canadian content if you keep reading.’ and ‘Canadian content’ added January 25, 2018 six minutes after first publication.

ETA February 20, 2018: Sarah Zhang’s Feb. 20, 2018 article for The Atlantic revisits Josiah Zayner’s decision to inject himself with CRISPR,

When Josiah Zayner watched a biotech CEO drop his pants at a biohacking conference and inject himself with an untested herpes treatment, he realized things had gone off the rails.

Zayner is no stranger to stunts in biohacking—loosely defined as experiments, often on the self, that take place outside of traditional lab spaces. You might say he invented their latest incarnation: He’s sterilized his body to “transplant” his entire microbiome in front of a reporter. He’s squabbled with the FDA about selling a kit to make glow-in-the-dark beer. He’s extensively documented attempts to genetically engineer the color of his skin. And most notoriously, he injected his arm with DNA encoding for CRISPR that could theoretically enhance his muscles—in between taking swigs of Scotch at a live-streamed event during an October conference. (Experts say—and even Zayner himself in the live-stream conceded—it’s unlikely to work.)

So when Zayner saw Ascendance Biomedical’s CEO injecting himself on a live-stream earlier this month, you might say there was an uneasy flicker of recognition.

“Honestly, I kind of blame myself,” Zayner told me recently. He’s been in a soul-searching mood; he recently had a kid and the backlash to the CRISPR stunt in October [2017] had been getting to him. “There’s no doubt in my mind that somebody is going to end up hurt eventually,” he said.

Yup, it’s one of the reasons for rules; people take things too far. The trick is figuring out how to achieve balance between risk taking and recklessness.

Cosmopolitanism and the Local in Science and Nature (a three year Canadian project nearing its end date)

Working on a grant from Canada’s Social Sciences and Humanities Research Council (SSHRC), the  Cosmopolitanism and the Local in Science and Nature project has been establishing a ‘cosmopolitanism’ research network that critiques the eurocentric approach so beloved of Canadian academics and has set up nodes across Canada and in India and Southeast Asia.

I first wrote about the project in a Dec. 12, 2014 posting which also featured a job listing. It seems I was there for the beginning and now for the end. For one of the project’s blog postings in its final months, they’re profiling one of their researchers (Dr. Letitia Meynell, Sept. 6, 2017 posting),

1. What is your current place of research?

I am an associate professor in philosophy at Dalhousie University, cross appointed with gender and women studies.

2. Could you give us some details about your education background?

My 1st degree was in Theater, which I did at York University. I did, however, minor in Philosophy and I have always had a particular interest in philosophy of science. So, my minor was perhaps a little anomalous, comprising courses on philosophy of physics, philosophy of nature, and the philosophy of Karl Popper along with courses on aesthetics and existentialism. After taking a few more courses in philosophy at the University of Calgary, I enrolled there for a Master’s degree, writing a thesis on conceptualization, with a view to its role in aesthetics and epistemology. From there I moved to the University of Western Ontario where I brought these three interests together, writing a thesis on the epistemology of pictures in science. Throughout these studies I maintained a keen interest in feminist philosophy, especially the politics of knowledge, and I have always seen my work on pictures in science as fitting into broader feminist commitments.

3. What projects are you currently working on and what are some projects you’ve worked on in the past?

4. What’s one thing you particularly enjoy about working in your field?

5. How do you relate your work to the broader topic of ‘cosmopolitanism and the local’?

As feminist philosophers have long realized, having perspectives on a topic that are quite different to your own is incredibly powerful for critically assessing both your own views and those of others. So, for instance, if you want to address the exploitation of nonhuman animals in our society it is incredibly powerful to consider how people from, say, South Asian traditions have thought about the differences, similarities, and relationships between humans and other animals. Keeping non-western perspectives in mind, even as one works in a western philosophical tradition, helps one to be both more rigorous in one’s analyses and less dogmatic. Rigor and critical openness are, in my opinion, central virtues of philosophy and, indeed, science.

Dr. Maynell will be speaking at the ‘Bridging the Gap: Scientific Imagination Meets Aesthetic Imagination‘ conference Oct. 5-6, 2017 at the London School of Economics,

On 5–6 October, this 2-day conference aims to connect work on artistic and scientific imagination, and to advance our understanding of the epistemic and heuristic roles that imagination can play.

Why, how, and when do scientists imagine, and what epistemological roles does the imagination play in scientific progress? Over the past few years, many philosophical accounts have emerged that are relevant to these questions. Roman Frigg, Arnon Levy, and Adam Toon have developed theories of scientific models that place imagination at the heart of modelling practice. And James R. Brown, Tamar Gendler, James McAllister, Letitia Meynell, and Nancy Nersessian have developed theories that recognize the indispensable role of the imagination in the performance of thought experiments. On the other hand, philosophers like Michael Weisberg dismiss imagination-based views of scientific modelling as mere “folk ontology”, and John D. Norton seems to claim that thought experiments are arguments whose imaginary components are epistemologically irrelevant.

In this conference we turn to aesthetics for help in addressing issues concerning scientific imagination-use. Aesthetics is said to have begun in 1717 with an essay called “The Pleasures of the Imagination” by Joseph Addison, and ever since imagination has been what Michael Polyani called “the cornerstone of aesthetic theory”. In recent years Kendall Walton has fruitfully explored the fundamental relevance of imagination for understanding literary, visual and auditory fictions. And many others have been inspired to do the same, including Greg Currie, David Davies, Peter Lamarque, Stein Olsen, and Kathleen Stock.

This conference aims to connect work on artistic and scientific imagination, and to advance our understanding of the epistemic and heuristic roles that imagination can play. Specific topics may include:

  • What kinds of imagination are involved in science?
  • What is the relation between scientific imagination and aesthetic imagination?
  • What are the structure and limits of knowledge and understanding acquired through imagination?
  • From a methodological point of view, how can aesthetic considerations about imagination play a role in philosophical accounts of scientific reasoning?
  • What can considerations about scientific imagination contribute to our understanding of aesthetic imagination?

The conference will include eight invited talks and four contributed papers. Two of the four slots for contributed papers are being reserved for graduate students, each of whom will receive a travel bursary of £100.

Invited speakers

Margherita Arcangeli (Humboldt University, Berlin)

Andrej Bicanski (Institute of Cognitive Neuroscience, University College London)

Gregory Currie (University of York)

Jim Faeder (University of Pittsburgh School of Medicine)

Tim de Mey (Erasmus University of Rotterdam)

Laetitia Meynell (Dalhousie University, Canada)

Adam Toon (University of Exeter)

Margot Strohminger (Humboldt University, Berlin)

This event is organised by LSE’s Centre for Philosophy of Natural and Social Science and it is co-sponsored by the British Society of Aesthetics, the Mind Association, the Aristotelian Society and the Marie Skłodowska-Curie grant agreement No 654034.

I wonder if they’ll be rubbing shoulders with Angelina Jolie? She is slated to be teaching there in Fall 2017 according to a May 23, 2016 news item in the Guardian (Note: Links have been removed),

The Hollywood actor and director has been appointed a visiting professor at the London School of Economics, teaching a course on the impact of war on women.

From 2017, Jolie will join the former foreign secretary William Hague as a “professor in practice”, the university announced on Monday, as part of a new MSc course on women, peace and security, which LSE says is the first of its kind in the world.

The course, it says, is intended to “[develop] strategies to promote gender equality and enhance women’s economic, social and political participation and security”, with visiting professors playing an active part in giving lectures, participating in workshops and undertaking their own research.

Getting back to ‘Cosmopolitanism’, some of the principals organized a summer 2017 event (from a Sept. 6, 2017 posting titled: Summer Events – 25th International Congress of History of Science and Technology),

CosmoLocal partners Lesley Cormack (University of Alberta, Canada), Gordon McOuat (University of King’s College, Halifax, Canada), and Dhruv Raina (Jawaharlal Nehru University, India) organized a symposium “Cosmopolitanism and the Local in Science and Nature” as part of the 25th International Congress of History of Science and Technology.  The conference was held July 23-29, 2017, in Rio de Janeiro, Brazil.  The abstract of the CosmoLocal symposium is below, and a pdf version can be found here.

Science, and its associated technologies, is typically viewed as “universal”. At the same time we were also assured that science can trace its genealogy to Europe in a period of rising European intellectual and imperial global force, ‘going outwards’ towards the periphery. As such, it is strikingly parochial. In a kind of sad irony, the ‘subaltern’ was left to retell that tale as one of centre-universalism dominating a traditionalist periphery. Self-described ‘modernity’ and ‘the west’ (two intertwined concepts of recent and mutually self-supporting origin) have erased much of the local engagement and as such represent science as emerging sui generis, moving in one direction. This story is now being challenged within sociology, political theory and history.

… Significantly, scholars who study the history of science in Asia and India have been examining different trajectories for the origin and meaning of science. It is now time for a dialogue between these approaches. Grounding the dialogue is the notion of a “cosmopolitical” science. “Cosmopolitics” is a term borrowed from Kant’s notion of perpetual peace and modern civil society, imagining shared political, moral and economic spaces within which trade, politics and reason get conducted.  …

The abstract is a little ‘high falutin’ but I’m glad to see more efforts being made in  Canada to understand science and its history as a global affair.

Canada: Happy 150th anniversary!

There’s a bit of fun in the title for Jennifer Pascoe’s June 27, 2017 University of Alberta news release, (assuming you’re familiar with the opening words for Canada’s national anthem: “O Canada!”),

Nan-Oh-Canada

At just 32 atoms and visible only through a million-dollar scanning tunneling microscope, a tiny maple leaf created by UAlberta PhD student Roshan Achal illustrates the next wave of green technology, all while showing patriotic pride.

Invisible to the naked eye, the little leaf is pulling triple duty: celebrating Canada’s 150th birthday, attempting a world record, and—with critical implications for our technology-driven information society—providing critical steps towards the next generation of smaller and faster computers.

“It’s super cool and super Canadian and demonstrates our strength and skill in this niche of nanotechnology,” said Achal. “Almost no one else in the world can do it this well.”

Unlike other ultra-small atomic creations, this maple leaf retains its structure at room temperature.

A tiny act of patriotism

At ten nanometres in width, the leaf is roughly 100 times smaller than the world’s smallest national flag—created at the University of Waterloo in September 2016—10,000 times smaller than a human hair, and 53 million times smaller than the world’s largest maple leaf.

The leaf demonstrates the technique of building structures atom by atom (via something called scanning tunneling microscopy), which is being used to create and study circuitry to make smaller computational components while simultaneously speeding them up. In this particular niche of nanotechnology, Canada rates high on the international stage, with the University of Alberta leading the way.

“It’s hard to imagine, because it’s so small, but picture a surface almost like bubble wrap,” explained Achal of the silicon crystal wafer on which the leaf is patterned. “The bubbles are actually hydrogen atoms bonded to the surface, and we are able to pop those bubbles to create patterns.”

Nano pioneers

Achal is working on perfecting that patterning process to make atomic structures which will help revolutionize the next generation of computing by consuming less power. He’s using an ultra-sharp tool, a tip just one atom in width, which was perfected by his supervisor, UAlberta physics professor Robert Wolkow, whom Achal calls a “visionary.”

A pioneer in scanning tunneling microscopy technology, Wolkow already has a Guinness World Record for the nano-tip, the world’s sharpest man-made object, which provides unparalleled precision for patterning electronic circuits.

Achal explained the team wanted to do something to demonstrate their technological capabilities, but also something fun and meaningful to mark the occasion of Canada 150.

While they wait to hear back from Guinness World Records with an official nod to their small sculpture, the scientists continue to perfect their technique, with significant implications for next generation computing. This capability is now being put to commercial use by local spin-off Quantum Silicon Incorporated to make revolutionary ultra-fast and efficient silicon electronic devices.

It’s nice to see the enthusiasm although calling Wolkow ‘a visionary’ seems a little over the top especially with all of the other exuberance (super Canadian?). In any event, there are very few visionaries, maybe Wolkow could have been described as amazing, groundbreaking, and/or extraordinary?

Getting back to the point: Happy 150th Canada Day July 1, 2017!

h/t June 27, 2017 news item on Nanowerk.

Vector Institute and Canada’s artificial intelligence sector

On the heels of the March 22, 2017 federal budget announcement of $125M for a Pan-Canadian Artificial Intelligence Strategy, the University of Toronto (U of T) has announced the inception of the Vector Institute for Artificial Intelligence in a March 28, 2017 news release by Jennifer Robinson (Note: Links have been removed),

A team of globally renowned researchers at the University of Toronto is driving the planning of a new institute staking Toronto’s and Canada’s claim as the global leader in AI.

Geoffrey Hinton, a University Professor Emeritus in computer science at U of T and vice-president engineering fellow at Google, will serve as the chief scientific adviser of the newly created Vector Institute based in downtown Toronto.

“The University of Toronto has long been considered a global leader in artificial intelligence research,” said U of T President Meric Gertler. “It’s wonderful to see that expertise act as an anchor to bring together researchers, government and private sector actors through the Vector Institute, enabling them to aim even higher in leading advancements in this fast-growing, critical field.”

As part of the Government of Canada’s Pan-Canadian Artificial Intelligence Strategy, Vector will share $125 million in federal funding with fellow institutes in Montreal and Edmonton. All three will conduct research and secure talent to cement Canada’s position as a world leader in AI.

In addition, Vector is expected to receive funding from the Province of Ontario and more than 30 top Canadian and global companies eager to tap this pool of talent to grow their businesses. The institute will also work closely with other Ontario universities with AI talent.

(See my March 24, 2017 posting; scroll down about 25% for the science part, including the Pan-Canadian Artificial Intelligence Strategy of the budget.)

Not obvious in last week’s coverage of the Pan-Canadian Artificial Intelligence Strategy is that the much lauded Hinton has been living in the US and working for Google. These latest announcements (Pan-Canadian AI Strategy and Vector Institute) mean that he’s moving back.

A March 28, 2017 article by Kate Allen for TorontoStar.com provides more details about the Vector Institute, Hinton, and the Canadian ‘brain drain’ as it applies to artificial intelligence, (Note:  A link has been removed)

Toronto will host a new institute devoted to artificial intelligence, a major gambit to bolster a field of research pioneered in Canada but consistently drained of talent by major U.S. technology companies like Google, Facebook and Microsoft.

The Vector Institute, an independent non-profit affiliated with the University of Toronto, will hire about 25 new faculty and research scientists. It will be backed by more than $150 million in public and corporate funding in an unusual hybridization of pure research and business-minded commercial goals.

The province will spend $50 million over five years, while the federal government, which announced a $125-million Pan-Canadian Artificial Intelligence Strategy in last week’s budget, is providing at least $40 million, backers say. More than two dozen companies have committed millions more over 10 years, including $5 million each from sponsors including Google, Air Canada, Loblaws, and Canada’s five biggest banks [Bank of Montreal (BMO). Canadian Imperial Bank of Commerce ({CIBC} President’s Choice Financial},  Royal Bank of Canada (RBC), Scotiabank (Tangerine), Toronto-Dominion Bank (TD Canada Trust)].

The mode of artificial intelligence that the Vector Institute will focus on, deep learning, has seen remarkable results in recent years, particularly in image and speech recognition. Geoffrey Hinton, considered the “godfather” of deep learning for the breakthroughs he made while a professor at U of T, has worked for Google since 2013 in California and Toronto.

Hinton will move back to Canada to lead a research team based at the tech giant’s Toronto offices and act as chief scientific adviser of the new institute.

Researchers trained in Canadian artificial intelligence labs fill the ranks of major technology companies, working on tools like instant language translation, facial recognition, and recommendation services. Academic institutions and startups in Toronto, Waterloo, Montreal and Edmonton boast leaders in the field, but other researchers have left for U.S. universities and corporate labs.

The goals of the Vector Institute are to retain, repatriate and attract AI talent, to create more trained experts, and to feed that expertise into existing Canadian companies and startups.

Hospitals are expected to be a major partner, since health care is an intriguing application for AI. Last month, researchers from Stanford University announced they had trained a deep learning algorithm to identify potentially cancerous skin lesions with accuracy comparable to human dermatologists. The Toronto company Deep Genomics is using deep learning to read genomes and identify mutations that may lead to disease, among other things.

Intelligent algorithms can also be applied to tasks that might seem less virtuous, like reading private data to better target advertising. Zemel [Richard Zemel, the institute’s research director and a professor of computer science at U of T] says the centre is creating an ethics working group [emphasis mine] and maintaining ties with organizations that promote fairness and transparency in machine learning. As for privacy concerns, “that’s something we are well aware of. We don’t have a well-formed policy yet but we will fairly soon.”

The institute’s annual funding pales in comparison to the revenues of the American tech giants, which are measured in tens of billions. The risk the institute’s backers are taking is simply creating an even more robust machine learning PhD mill for the U.S.

“They obviously won’t all stay in Canada, but Toronto industry is very keen to get them,” Hinton said. “I think Trump might help there.” Two researchers on Hinton’s new Toronto-based team are Iranian, one of the countries targeted by U.S. President Donald Trump’s travel bans.

Ethics do seem to be a bit of an afterthought. Presumably the Vector Institute’s ‘ethics working group’ won’t include any regular folks. Is there any thought to what the rest of us think about these developments? As there will also be some collaboration with other proposed AI institutes including ones at the University of Montreal (Université de Montréal) and the University of Alberta (Kate McGillivray’s article coming up shortly mentions them), might the ethics group be centered in either Edmonton or Montreal? Interestingly, two Canadians (Timothy Caulfield at the University of Alberta and Eric Racine at Université de Montréa) testified at the US Commission for the Study of Bioethical Issues Feb. 10 – 11, 2014 meeting, the Brain research, ethics, and nanotechnology. Still speculating here but I imagine Caulfield and/or Racine could be persuaded to extend their expertise in ethics and the human brain to AI and its neural networks.

Getting back to the topic at hand the ‘AI sceneCanada’, Allen’s article is worth reading in its entirety if you have the time.

Kate McGillivray’s March 29, 2017 article for the Canadian Broadcasting Corporation’s (CBC) news online provides more details about the Canadian AI situation and the new strategies,

With artificial intelligence set to transform our world, a new institute is putting Toronto to the front of the line to lead the charge.

The Vector Institute for Artificial Intelligence, made possible by funding from the federal government revealed in the 2017 budget, will move into new digs in the MaRS Discovery District by the end of the year.

Vector’s funding comes partially from a $125 million investment announced in last Wednesday’s federal budget to launch a pan-Canadian artificial intelligence strategy, with similar institutes being established in Montreal and Edmonton.

“[A.I.] cuts across pretty well every sector of the economy,” said Dr. Alan Bernstein, CEO and president of the Canadian Institute for Advanced Research, the organization tasked with administering the federal program.

“Silicon Valley and England and other places really jumped on it, so we kind of lost the lead a little bit. I think the Canadian federal government has now realized that,” he said.

Stopping up the brain drain

Critical to the strategy’s success is building a homegrown base of A.I. experts and innovators — a problem in the last decade, despite pioneering work on so-called “Deep Learning” by Canadian scholars such as Yoshua Bengio and Geoffrey Hinton, a former University of Toronto professor who will now serve as Vector’s chief scientific advisor.

With few university faculty positions in Canada and with many innovative companies headquartered elsewhere, it has been tough to keep the few graduates specializing in A.I. in town.

“We were paying to educate people and shipping them south,” explained Ed Clark, chair of the Vector Institute and business advisor to Ontario Premier Kathleen Wynne.

The existence of that “fantastic science” will lean heavily on how much buy-in Vector and Canada’s other two A.I. centres get.

Toronto’s portion of the $125 million is a “great start,” said Bernstein, but taken alone, “it’s not enough money.”

“My estimate of the right amount of money to make a difference is a half a billion or so, and I think we will get there,” he said.

Jessica Murphy’s March 29, 2017 article for the British Broadcasting Corporation’s (BBC) news online offers some intriguing detail about the Canadian AI scene,

Canadian researchers have been behind some recent major breakthroughs in artificial intelligence. Now, the country is betting on becoming a big player in one of the hottest fields in technology, with help from the likes of Google and RBC [Royal Bank of Canada].

In an unassuming building on the University of Toronto’s downtown campus, Geoff Hinton laboured for years on the “lunatic fringe” of academia and artificial intelligence, pursuing research in an area of AI called neural networks.

Also known as “deep learning”, neural networks are computer programs that learn in similar way to human brains. The field showed early promise in the 1980s, but the tech sector turned its attention to other AI methods after that promise seemed slow to develop.

“The approaches that I thought were silly were in the ascendancy and the approach that I thought was the right approach was regarded as silly,” says the British-born [emphasis mine] professor, who splits his time between the university and Google, where he is a vice-president of engineering fellow.

Neural networks are used by the likes of Netflix to recommend what you should binge watch and smartphones with voice assistance tools. Google DeepMind’s AlphaGo AI used them to win against a human in the ancient game of Go in 2016.

Foteini Agrafioti, who heads up the new RBC Research in Machine Learning lab at the University of Toronto, said those recent innovations made AI attractive to researchers and the tech industry.

“Anything that’s powering Google’s engines right now is powered by deep learning,” she says.

Developments in the field helped jumpstart innovation and paved the way for the technology’s commercialisation. They also captured the attention of Google, IBM and Microsoft, and kicked off a hiring race in the field.

The renewed focus on neural networks has boosted the careers of early Canadian AI machine learning pioneers like Hinton, the University of Montreal’s Yoshua Bengio, and University of Alberta’s Richard Sutton.

Money from big tech is coming north, along with investments by domestic corporations like banking multinational RBC and auto parts giant Magna, and millions of dollars in government funding.

Former banking executive Ed Clark will head the institute, and says the goal is to make Toronto, which has the largest concentration of AI-related industries in Canada, one of the top five places in the world for AI innovation and business.

The founders also want it to serve as a magnet and retention tool for top talent aggressively head-hunted by US firms.

Clark says they want to “wake up” Canadian industry to the possibilities of AI, which is expected to have a massive impact on fields like healthcare, banking, manufacturing and transportation.

Google invested C$4.5m (US$3.4m/£2.7m) last November [2016] in the University of Montreal’s Montreal Institute for Learning Algorithms.

Microsoft is funding a Montreal startup, Element AI. The Seattle-based company also announced it would acquire Montreal-based Maluuba and help fund AI research at the University of Montreal and McGill University.

Thomson Reuters and General Motors both recently moved AI labs to Toronto.

RBC is also investing in the future of AI in Canada, including opening a machine learning lab headed by Agrafioti, co-funding a program to bring global AI talent and entrepreneurs to Toronto, and collaborating with Sutton and the University of Alberta’s Machine Intelligence Institute.

Canadian tech also sees the travel uncertainty created by the Trump administration in the US as making Canada more attractive to foreign talent. (One of Clark’s the selling points is that Toronto as an “open and diverse” city).

This may reverse the ‘brain drain’ but it appears Canada’s role as a ‘branch plant economy’ for foreign (usually US) companies could become an important discussion once more. From the ‘Foreign ownership of companies of Canada’ Wikipedia entry (Note: Links have been removed),

Historically, foreign ownership was a political issue in Canada in the late 1960s and early 1970s, when it was believed by some that U.S. investment had reached new heights (though its levels had actually remained stable for decades), and then in the 1980s, during debates over the Free Trade Agreement.

But the situation has changed, since in the interim period Canada itself became a major investor and owner of foreign corporations. Since the 1980s, Canada’s levels of investment and ownership in foreign companies have been larger than foreign investment and ownership in Canada. In some smaller countries, such as Montenegro, Canadian investment is sizable enough to make up a major portion of the economy. In Northern Ireland, for example, Canada is the largest foreign investor. By becoming foreign owners themselves, Canadians have become far less politically concerned about investment within Canada.

Of note is that Canada’s largest companies by value, and largest employers, tend to be foreign-owned in a way that is more typical of a developing nation than a G8 member. The best example is the automotive sector, one of Canada’s most important industries. It is dominated by American, German, and Japanese giants. Although this situation is not unique to Canada in the global context, it is unique among G-8 nations, and many other relatively small nations also have national automotive companies.

It’s interesting to note that sometimes Canadian companies are the big investors but that doesn’t change our basic position. And, as I’ve noted in other postings (including the March 24, 2017 posting), these government investments in science and technology won’t necessarily lead to a move away from our ‘branch plant economy’ towards an innovative Canada.

You can find out more about the Vector Institute for Artificial Intelligence here.

BTW, I noted that reference to Hinton as ‘British-born’ in the BBC article. He was educated in the UK and subsidized by UK taxpayers (from his Wikipedia entry; Note: Links have been removed),

Hinton was educated at King’s College, Cambridge graduating in 1970, with a Bachelor of Arts in experimental psychology.[1] He continued his study at the University of Edinburgh where he was awarded a PhD in artificial intelligence in 1977 for research supervised by H. Christopher Longuet-Higgins.[3][12]

It seems Canadians are not the only ones to experience  ‘brain drains’.

Finally, I wrote at length about a recent initiative taking place between the University of British Columbia (Vancouver, Canada) and the University of Washington (Seattle, Washington), the Cascadia Urban Analytics Cooperative in a Feb. 28, 2017 posting noting that the initiative is being funded by Microsoft to the tune $1M and is part of a larger cooperative effort between the province of British Columbia and the state of Washington. Artificial intelligence is not the only area where US technology companies are hedging their bets (against Trump’s administration which seems determined to terrify people from crossing US borders) by investing in Canada.

For anyone interested in a little more information about AI in the US and China, there’s today’s (March 31, 2017)earlier posting: China, US, and the race for artificial intelligence research domination.

University of Alberta scientists use ultra fast (terahertz) microscopy to see ultra small (electron dynamics)

This is exciting news for Canadian science and the second time there has been a breakthrough development from the province of Alberta within the last five months (see Sept. 21, 2016 posting on quantum teleportation). From a Feb. 21, 2017 news item on ScienceDaily,

For the first time ever, scientists have captured images of terahertz electron dynamics of a semiconductor surface on the atomic scale. The successful experiment indicates a bright future for the new and quickly growing sub-field called terahertz scanning tunneling microscopy (THz-STM), pioneered by the University of Alberta in Canada. THz-STM allows researchers to image electron behaviour at extremely fast timescales and explore how that behaviour changes between different atoms.

From a Feb. 21, 2017 University of Alberta news release on EurekAlert, which originated the news item, expands on the theme,

“We can essentially zoom in to observe very fast processes with atomic precision and over super fast time scales,” says Vedran Jelic, PhD student at the University of Alberta and lead author on the new study. “THz-STM provides us with a new window into the nanoworld, allowing us to explore ultrafast processes on the atomic scale. We’re talking a picosecond, or a millionth millionth of a second. It’s something that’s never been done before.”

Jelic and his collaborators used their scanning tunneling microscope (STM) to capture images of silicon atoms by raster scanning a very sharp tip across the surface and recording the tip height as it follows the atomic corrugations of the surface. While the original STM can measure and manipulate single atoms–for which its creators earned a Nobel Prize in 1986–it does so using wired electronics and is ultimately limited in speed and thus time resolution.

Modern lasers produce very short light pulses that can measure a whole range of ultra-fast processes, but typically over length scales limited by the wavelength of light at hundreds of nanometers. Much effort has been expended to overcome the challenges of combining ultra-fast lasers with ultra-small microscopy. The University of Alberta scientists addressed these challenges by working in a unique terahertz frequency range of the electromagnetic spectrum that allows wireless implementation. Normally the STM needs an applied voltage in order to operate, but Jelic and his collaborators are able to drive their microscope using pulses of light instead. These pulses occur over really fast timescales, which means the microscope is able to see really fast events.

By incorporating the THz-STM into an ultrahigh vacuum chamber, free from any external contamination or vibration, they are able to accurately position their tip and maintain a perfectly clean surface while imaging ultrafast dynamics of atoms on surfaces. Their next step is to collaborate with fellow material scientists and image a variety of new surfaces on the nanoscale that may one day revolutionize the speed and efficiency of current technology, ranging from solar cells to computer processing.

“Terahertz scanning tunneling microscopy is opening the door to an unexplored regime in physics,” concludes Jelic, who is studying in the Ultrafast Nanotools Lab with University of Alberta professor Frank Hegmann, a world expert in ultra-fast terahertz science and nanophysics.

Here’s are links to and citations for the team’s 2013 paper and their latest,

An ultrafast terahertz scanning tunnelling microscope by Tyler L. Cocker, Vedran Jelic, Manisha Gupta, Sean J. Molesky, Jacob A. J. Burgess, Glenda De Los Reyes, Lyubov V. Titova, Ying Y. Tsui, Mark R. Freeman, & Frank A. Hegmann. Nature Photonics 7, 620–625 (2013) doi:10.1038/nphoton.2013.151 Published online 07 July 2013

Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface by Vedran Jelic, Krzysztof Iwaszczuk, Peter H. Nguyen, Christopher Rathje, Graham J. Hornig, Haille M. Sharum, James R. Hoffman, Mark R. Freeman, & Frank A. Hegmann. Nature Physics (2017)  doi:10.1038/nphys4047 Published online 20 February 2017

Both papers are behind a paywall.

Switching of a single-atom channel

An Oct. 28, 2016 news item on phys.org announces a single-atom switch,

Robert Wolkow is no stranger to mastering the ultra-small and the ultra-fast. A pioneer in atomic-scale science with a Guinness World Record to boot (for a needle with a single atom at the point), Wolkow’s team, together with collaborators at the Max Plank Institute in Hamburg, have just released findings that detail how to create atomic switches for electricity, many times smaller than what is currently used.

What does it all mean? With applications for practical systems like silicon semi-conductor electronics, it means smaller, more efficient, more energy-conserving computers, as just one example of the technology revolution that is unfolding right before our very eyes (if you can squint that hard).

“This is the first time anyone’s seen a switching of a single-atom channel,” explains Wolkow, a physics professor at the University of Alberta and the Principal Research Officer at Canada’s National Institute for Nanotechnology. “You’ve heard of a transistor—a switch for electricity—well, our switches are almost a hundred times smaller than the smallest on the market today.”

An Oct. 28, 2016 University of Alberta news release by Jennifer Pascoe, which originated the news item, describes the research in more detail,

Today’s tiniest transistors operate at the 14 nanometer level, which still represents thousands of atoms. Wolkow’s and his team at the University of Alberta, NINT, and his spinoff QSi, have worked the technology down to just a few atoms. Since computers are simply a composition of many on/off switches, the findings point the way not only to ultra-efficient general purpose computing but also to a new path to quantum computing.

Green technology for the digital economy

“We’re using this technology to make ultra-green, energy-conserving general purpose computers but also to further the development of quantum computers. We are building the most energy conserving electronics ever, consuming about a thousand times less power than today’s electronics.”

While the new tech is small, the potential societal, economic, and environmental impact of Wolkow’s discovery is very large. Today, our electronics consume several percent of the world’s electricity.  As the size of the energy footprint of the digital economy increases, material and energy conservation is becoming increasingly important.

Wolkow says there are surprising benefits to being smaller, both for normal computers, and, for quantum computers too. “Quantum systems are characterized by their delicate hold on information. They’re ever so easily perturbed. Interestingly though, the smaller the system gets, the fewer upsets.” Therefore, Wolkow explains, you can create a system that is simultaneously amazingly small, using less material and churning through less energy, while holding onto information just right.

Smaller systems equal smaller environmental footprint

When the new technology is fully developed, it will lead to not only a smaller energy footprint but also more affordable systems for consumers. “It’s kind of amazing when everything comes together,” says Wolkow.

Wolkow is one of the few people in the world talking about atom-scale manufacturing and believes we are witnessing the beginning of the revolution to come. He and his team have been working with large-scale industry leader Lockheed Martin as the entry point to the market.

“It’s something you don’t even hear about yet, but atom-scale manufacturing is going to be world-changing. People think it’s not quite doable but, but we’re already making things out of atoms routinely. We aren’t doing it just because. We are doing it because the things we can make have ever more desirable properties. They’re not just smaller. They’re different and better. This is just the beginning of what will be at least a century of developments in atom-scale manufacturing, and it will be transformational.”

Bill Mah in a Nov. 1, 2016 article for the Edmonton Journal delves a little further into issues around making transistors smaller and the implications of a single-atom switch,

Current computers use transistors, which are essentially valves for flowing streams of electrons around a circuit. In recent years, engineers have found ways to make these devices smaller, but pushing electrons through narrow spaces raises the danger of the machines overheating and failing.

“The transistors get too hot so you have to run them slower and more gently, so we’re getting more power in modern computers because there are more transistors, but we can’t run them very quickly because they make a lot of heat and they actually just shut down and fail.”

The smallest transistors are currently about 14 nanometres. A nanometre is one-billionth of a metre and contains groupings of 1,000 or more atoms. The switches detailed by Wolkow and his colleagues will shrink them down to just a few atoms.

Potential benefits from the advance could lead to much more energy-efficient and smaller computers, an increasingly important consideration as the power consumption of digital devices keeps growing.

“The world is using about three per cent of our energy today on digital communications and computers,” Wolkow said. “Various reports I’ve seen say that it could easily go up to 10 or 15 per cent in a couple of decades, so it’s crucial that we get that under control.”

Wolkow’s team has received funding from companies such as Lockheed Martin and local investors.

The advances could also open a path to quantum computing. “It turns out these same building blocks … enable a quantum computer, so we’re kind of feverishly working on that at the same time.”

There is an animation illustrating a single-atom switch,

This animation represents an electrical current being switched on and off. Remarkably, the current is confined to a channel that is just one atom wide. Also, the switch is made of just one atom. When the atom in the centre feels an electric field tugging at it, it loses its electron. Once that electron is lost, the many electrons in the body of the silicon (to the left) have a clear passage to flow through. When the electric field is removed, an electron gets trapped in the central atom, switching the current off.  Courtesy: University of Alberta

Here’s a link to and a citation for the research paper,

Time-resolved single dopant charge dynamics in silicon by Mohammad Rashidi, Jacob A. J. Burgess, Marco Taucer, Roshan Achal, Jason L. Pitters, Sebastian Loth, & Robert A. Wolkow. Nature Communications 7, Article number: 13258 (2016)  doi:10.1038/ncomms13258 Published online: 26 October 2016

This paper is open access.

Nanotechnology at the University of McGill (Montréal, Canada) and other Canadian universities

On the occasion of the McGill University’s new minor program in nanotechnology, I decided to find other Canadian university nanotechnology programs.

First, here’s more about the McGill program from an Oct. 25, 2016 article by Miguel Principe for The McGill Tribune (Note: Links have been removed),

McGill’s Faculty of Engineering launched a new minor program this year that explores into the world of nanotechnology. It’s a relatively young field that focuses on nanomaterials—materials that have one dimension measuring 100 nanometres or less. …

“Nanomaterials are going to be very prominent in our everyday lives,” Assistant Professor Nathalie Tufenkji, of McGill’s Department of Chemical Engineering, said.  “We’re incorporating these materials into our everyday consumer products […] we’re putting these materials on our skin, […] in our paints, and electronics that we are contacting everyday.”

The new engineering minor program aims to introduce undergraduates to techniques in nanomaterial characterization and detection, as well as nanomaterial synthesis and processing. These concepts will be covered in courses such as Nanoscience and Nanotechnology, Supramolecular Chemistry, and Design and Manufacture of Microdevices.

Tufenkji, along with Professor Peter Grutter in the Department of Physics were instrumental in organizing this program. The minor is interdepartmental and includes courses in physics and engineering.

“Of course there’s a flipside on how do we best develop nanotechnology to […] take advantage of its promise,” Tufenkji said. “One of the questions […] is what are the potential impacts on our health and environment of nanomaterials?”

Tufenkji believes it is important that Canada has scientists and engineers that are educated in emerging scientific concepts and cutting-edge technology. Giving undergraduate students exposure to nanotechnology research early in their studies is a good stepping stone for further investigation into the evolving field.

The most comprehensive list of nanotechnology degree programs in Canada (16 programs) is at Nanowerk (Note: Links have been removed and you may find some repetition),

Carleton University – BSc Chemistry with a concentration in Nanotechnology
This concentration allows students to study atoms and molecules used to create computer chips and other devices that are the size of a few nanometres – thousands of times smaller than current technology permits. Such discoveries will be useful in a number of fields, including aerospace, medicine, and electronics.

Carleton University – BSc Nanoscience
At Carleton, you will examine nanoscience through the disciplines of physical chemistry and electrical engineering to understand the physical, chemical and electronic characteristics of matter in this size regime. The combination of these two areas of study will equip you to fully understand nanoscience in photonic, electronic, energy and communication technologies. The focus of the program will be on materials – their use in electronic devices, their scalability and control of their properties.

McGill University – Bachelor of Engineering, Minor Nanotechnology
Through courses already offered in the Faculties of Science, Engineering, and Medicine, depending on the courses completed, undergraduate students will acquire knowledge in areas related to nanotechnology.

Northern Alberta Institute of Technology – Nanotechnology Systems Diploma Program
The two year program will provide graduates with the skills to operate systems and equipment associated with Canada’s emerging nanotechnology industry and lead to a Diploma in Nanotechnology Systems.

University of Alberta – BSc Computer Engineering with Nanoscale System Design Option
This options provides an introduction to the processes involved in the fabrication of nanoscale integrated circuits and to the computer aided design (CAD) tools necessary for the engineering of large scale system on a chip. By selecting this option, students will learn about fault tolerance in nanoscale systems and gain an understanding of quantum phenomena in systems design.

University of Alberta – BSc Electrical Engineering with Nanoengineering Option
This option provides an introduction to the principles of electronics, electromagnetics and photonics as they apply at the nanoscale level. By selecting this option, students will learn about the process involved in the fabrication of nanoscale structures and become familiar with the computer aided design (CAD) tools necessary for analyzing phenomena at these very high levels of miniaturization.

University of Alberta – BSc Engineering Physics with Nanoengineering Option
The Nanoengineering Option provides broad skills suitable for entry to the nanotechnology professions, combining core Electrical Engineering and Physics courses with additional instruction in biochemistry and chemistry, and specialized instruction in nanoelectronics, nanobioengineering, and nanofabrication.

University of Alberta – BSc Materials Engineering with Nano and Functional Materials Option
Students entering this option will be exposed to the exciting and emerging field of nano and functional materials. Subject areas covered include electronic, optical and magnetic materials, nanomaterials and their applications, nanostructured molecular sieves, nano and functional materials processing and fabrication. Employment opportunities exist in several sectors of Canadian industry, such as microelectronic/optoelectronic device fabrication, MEMS processing and fuel cell development.

University of Calgary – B.Sc. Concentration in Nanoscience
Starting Fall 2008/Winter 2009, students can enroll in the only process learning driven Nanoscience program in North America. Courses offered are a B.Sc. Minor in Nanoscience and a B.Sc. Concentration in Nanoscience.

University of Calgary – B.Sc. Minor in Nanoscience
Starting Fall 2008/Winter 2009, students can enroll in the only process learning driven Nanoscience program in North America. Courses offered are a B.Sc. Minor in Nanoscience and a B.Sc. Concentration in Nanoscience.

University of Guelph – Nanoscience B.Sc. Program
At Guelph we have created a unique approach to nanoscience studies. Fundamental science course are combined with specially designed courses in nanoscience covering material that would previously only be found in graduate programs.

University of Toronto – BASc in Engineering Science (Nanoengineering Option)
This option transcends the traditional boundaries between physics, chemistry, and biology. Starting with a foundation in materials engineering and augmented by research from the leading-edge of nanoengineering, students receive an education that is at the forefront of this constantly evolving area.

University of Waterloo – Bachelor of Applied Science Nanotechnology Engineering
The Nanotechnology Engineering honours degree program is designed to provide a practical education in key areas of nanotechnology, including the fundamental chemistry, physics, and engineering of nanostructures or nanosystems, as well as the theories and techniques used to model, design, fabricate, or characterize them. Great emphasis is placed on training with modern instrumentation techniques as used in the research and development of these emerging technologies.

University of Waterloo – Master of Applied Science Nanotechnology
The interdisciplinary research programs, jointly offered by three departments in the Faculty of Science and four in the Faculty of Engineering, provide students with a stimulating educational environment that spans from basic research through to application. The goal of the collaborative programs is to allow students to gain perspectives on nanotechnology from a wide community of scholars within and outside their disciplines in both course and thesis work. The MASc and MSc degree collaborative programs provide a strong foundation in the emerging areas of nano-science or nano-engineering in preparation for the workforce or for further graduate study and research leading to a doctoral degree.

University of Waterloo – Master of Science Nanotechnology
The interdisciplinary research programs, jointly offered by three departments in the Faculty of Science and four in the Faculty of Engineering, provide students with a stimulating educational environment that spans from basic research through to application. The goal of the collaborative programs is to allow students to gain perspectives on nanotechnology from a wide community of scholars within and outside their disciplines in both course and thesis work. The MASc and MSc degree collaborative programs provide a strong foundation in the emerging areas of nano-science or nano-engineering in preparation for the workforce or for further graduate study and research leading to a doctoral degree.

University of Waterloo – Ph.D. Program in Nanotechnology
The objective of the PhD program is to prepare students for careers in academia, industrial R&D and government research labs. Students from Science and Engineering will work side-by-side in world class laboratory facilities namely, the Giga-to-Nano Electronics Lab (G2N), Waterloo Advanced Technology Lab (WatLAB) and the new 225,000 gross sq. ft. Quantum-Nano Center expected to be completed in early 2011.

The Wikipedia entry for Nanotechnology education lists a few Canadian university programs that seem to have been missed, as well as a few previously seen in the Nanowerk list (Note: Links have been removed),

  • University of Alberta – B.Sc in Engineering Physics with Nanoengineering option
  • University of Toronto – B.A.Sc in Engineering Science with Nanoengineering option
  • University of Waterloo – B.A.Sc in Nanotechnology Engineering
    • Waterloo Institute for Nanotechnology -B.Sc, B.A.Sc, master’s, Ph.D, Post Doctorate
  • McMaster University – B.Sc in Engineering Physics with Nanotechnology option
  • University of British Columbia – B.A.Sc in Electrical Engineering with Nanotechnology & Microsystems option
  • Carleton University – B.Sc in Chemistry with Concentration in Nanotechnology
  • University of Calgary – B.Sc Minor in Nanoscience, B.Sc Concentration in Nanoscience
  • University of Guelph – B.Sc in Nanoscience

So, there you have it.