Tag Archives: University of Auckland

Global gathering in Rwanda for 5th International Conference on Governmental Science Advice (INGSA2024): “The Transformation Imperative”

The 4th gathering was in Montréal, Québec, Canada (as per my August 31, 2021 posting). Unfortunately,this is one of those times where I’m late to the party. The 5th International Conference on Governmental Science Advice (INGSA2024) ran from May 1 – 2, 2024 bu there are some satellite events taking place over the next few days.

I’m featuring this somewhat stale news because it offers a more global perspective on science policy and government advisors, from the May 1, 2024 International Network for Government Science Advice (INGSA) news release (PDF and on EurekAlert),

What? 5th International Conference on Governmental Science Advice, INGSA2024, marking the 10th Anniversary of the creation of the International Network for Governmental Science Advice (INGSA) & first meeting held in the global south.

Where?   Kigali Convention Center, Rwanda: https://ingsa2024.squarespace.com/

When?    1 – 2 May, 2024.

Context: One of the largest independent gatherings of thought- and practice-leaders in governmental science advice, research funding, multi-lateral institutions, academia, science communication and diplomacy is taking place in Kigali, Rwanda. Organised by Prof Rémi Quirion, Chief Scientist of Québec and President of the International Network for Governmental Science Advice (INGSA), speakers from 39 countries[1] from Brazil to Burkina Faso and from Ireland to Indonesia, plus over 300 delegates from 65 countries, will spotlight what is really at stake in the relationship between science, societies and policy-making, during times of crisis and routine.

From the air we breathe, the cars we drive, and the Artificial Intelligence we use, to the medical treatments or the vaccines we take, and the education we provide to children, this relationship, and the decisions it can influence, matter immensely. In our post-Covid, climate-shifted, and digitally-evolving world, the importance of robust knowledge in policy-making is more pronounced than ever. This imperative is accompanied by growing complexities that demand attention. INGSA’s two-day gathering strives to both examine and empower inclusion and diversity as keystones in how we approach all-things Science Advice and Science Diplomacy to meet these local-to-global challenges.

Held previously in Auckland 2014, Brussels 2016, Tokyo 2018 and Montréal 2021, Kigali 2024 organisers have made it a priority to involve more diverse speakers from developing countries and to broaden the thematic scope. Examining the complex interactions between scientists, public policy and diplomatic relations at local, national, regional and international levels, especially in times of crisis, the overarching theme is: “The Transformation Imperative”.

The main conference programme (see link below)will scrutinise everything from case-studies outlining STI funding tips, successes and failures in our advisory systems, plus regional to global initiatives to better connect them, to how digital technologies and A.I. are reshaping the profession itself.

INGSA2024 is also initiating and hosting a range of independent side-events that, in themselves, act as major meeting and rallying points that partners and attending delegates are encouraged to maximise. These include, amongst others, events organised by the Foreign Ministries Science & Technology Advice Network (FMSTAN); the International Public Policy Observatory Roundtable (IPPO); the High-Level Dialogue on the Future of Science Diplomacy (co-organised by the American Association for the Advancement of Science (AAAS), the European Commission, the Geneva Science & Diplomacy Anticipator (GESDA), and The Royal Society); the Organisation of Southern Cooperation (OSC)meeting on ‘Bridging Worlds of Knowledge – Promoting Endogenous Knowledge Development;the Science for Africa Foundation, University of Oxford Pandemic Sciences Institute’s meeting on ‘Translating Research Into Policy and Practice’; and the African Institute of Mathematical Sciences (AIMS) ‘World Build Simulation Training on Quantum Technology’ with INGSA and GESDA. INGSA will also host its own internal strategy Global Chapter & Division Meetings.   

Prof Rémi Quirion, Conference Co-Chair, Chief Scientist of Québec and President of INGSA, has said that:

“For those of us who believe wholeheartedly in evidence and the integrity of science, recent years have been challenging. Mis- and disinformation can spread like a virus. So positive developments like our gathering here in Rwanda are even more critical. The importance of open science and access to data to better inform scientific integration and the collective action we now need, has never been more pressing. Our shared UN sustainable development goals play out at national and local levels. Cities and municipalities bear the brunt of climate change, but also can drive the solutions. I am excited to see and hear first-hand how the global south is increasingly at the forefront of these efforts, and to help catalyse new ways to support this. I have no doubt that INGSA’s efforts and the Kigali conference, which is co-led with the Rwandan Ministry of Education and the University of Rwanda, will act as a carrier-wave for greater engagement. I hope we will see new global collaborations and actions that will be remembered as having first taken root at INGSA2024”.

Hon. Gaspard Twagirayezu, Minister of Education of Rwanda has lent his support to the INGSA conference, saying:

“We are proud to see the INSGA conference come to Rwanda, as we are at a turning point in our management of longer-term challenges that affect us all. Issues that were considered marginal even five or ten years ago are today rightly seen as central to our social, environmental, and economic wellbeing. We are aware of how rapid scientific advances are generating enormous public interest, but we also must build the capabilities to absorb, generate and critically consider new knowledge and technologies. Overcoming current crisis and future challenges requires global coordination in science advice, and INGSA is well positioned to carry out this important work. It makes me particularly proud that INGSA’s Africa Chapter has chosen our capital Kigali as it’s pan-African base. Rwanda and Africa can benefit greatly from this collaboration.”

Ass. Prof.  Didas Kayihura Muganga, Vice-Chancellor, University of Rwanda, stated:

“What this conference shows is that grass-roots citizens in Rwanda, across Africa and Worldwide can no longer be treated as simple statistics or passive bystanders. Citizens and communities are rightfully demanding greater transparency and accountability especially about science and technology. Ensuring, and demonstrating, that decisions are informed by robust evidence is an important step.  But we must also ensure that the evidence is meaningful to our context and our population. Complex problems arise from a multiplicity of factors, so we need greater diversity of perspectives to help address them.   This is what is changing before our very eyes. For some it is climate, biodiversity or energy supply that matters most, for others it remains access to basic education and public health. Regardless, all exemplify humanity’s interdependence.”

Daan du Toit, acting Director-General of the Department of Science & Innovation of the Government of South Africa and Programme Committee Member commented:

INGSA has long helped build and elevate open and ongoing public and policy dialogue about the role of robust evidence in sound policy making. But now, the conversation is deepening to critically consider the scope and breadth of evidence, what evidence, whose evidence and who has access to the evidence? Operating on all continents, INGSA demonstrates the value of a well-networked community of emerging and experienced practitioners and academics working at the interfaces between science, societies and public policy. We were involved in its creation in Auckland in 2014, and have stayed close and applaud the decision to bring this 5th International Biennial Meeting to Africa. Learning from each other, we can help bring a wider variety of robust knowledge more centrally into policy-making. That is why in 2022 we supported a start-up initiative based in Pretoria called the Science Diplomacy Capital for Africa (SDCfA). The energy shown in the set-up of this meeting demonstrates our potential as Africans to do so much more together”.

INGSA-Africa’s Regional Chapter

INGSA2024 is very much ‘coming home’ and represents the first time that this biennial event is being co-hosted by a Regional Chapter. In February 2016, INGSA announced the creation of the INGSA-Africa Regional Chapter, which held its first workshop in Hermanus, South Africa. The Chapter has since made great strides in engaging francophone Africa, organising INGSA’s first French-language workshop in Dakar, Senegal in 2017 and a bi-lingual meeting as a side-event of the World Science Forum 2022, Cape Town.  The Chapter’s decentralised virtual governance structure means that it embraces the continent, but new initiatives, like the Kigali Training Hub are set to become a pivotal player in the development of evidence-to-policy ecosystems across Africa.

Dr M. Oladoyin Odubanjo, Conference Co-Chair and Chair of INGSA-Africa, outlined that:

“As a public health physician and current Executive Secretary of the Nigerian Academy of Sciences (NAS), responsible for providing scientific advice to policy-makers, I have learnt that science and politics share common features. Both operate at the boundaries of knowledge and uncertainty, but they approach problems differently. Scientists question and challenge our assumptions, constantly searching for empiric evidence to determine the best options. In contrast, politicians are most often guided by the needs or demands of voters and constituencies, and by ideology. Our INGSA-Africa Chapter is working at the nexus of both communities and we encourage everybody to get involved. Hosting this conference in Kigali is like a shot in the arm that can only lead us on to even bigger and brighter things.”

Sir Peter Gluckman, President of the International Science Council, and founding chair of INGSA mentioned: “Good science advice is critical to decision making at any level from local to global. It helps decision makers understand the evidence for or against, and the implications of any choice they make. In that way science advice makes it more likely that decision makers will make better decisions. INGSA as the global capacity building platform has a critical role to play in ensuring the quality of science policy interface.”

Strength in numbers

What makes the 5th edition of this biennial event stand out is the perhaps the novel range of speakers from all continents working at the boundary between science, society and policy willing to make their voices heard. More information on Parallel Sessions organisers as well as speakers can be found on the website.

About INGSA

Founded in 2014 with regional chapters in Africa, Asia and Latin America and the Caribbean, and key partnerships in Europe and North America, INGSA has quicky established an important reputation as a collaborative platform for policy exchange, capacity building and operational research across diverse global science advisory organisations and national systems. INGSA is a free community of peer support and practice with over 6,000 members globally. Science communicators and members of the media are warmly welcomed to join for free.

Through workshops, conferences and a growing catalogue of tools and guidance, the network aims to enhance the global science-policy interface to improve the potential for evidence-informed policy formation at sub-national, national and transnational levels. INGSA operates as an affiliated body of the International Science Council. INGSA’s secretariat is based at the University of Auckland in New Zealand, while the office of the President is hosted at the Fonds de Recherche de Quebec in Montreal, which has also launched the Réseau francophone international en conseil scientifique (RFICS), which mandate is towards capacity reinforcement in science advice in the Francophonie.

INGSA2024 Sponsors

As always, INGSA organized a highly accessible and inclusive conference by not charging a registration fee. Philanthropic support from many sponsors made the conference possible. Special recognition is made to the Fonds de recherche du Québec, the Rwanda Ministry of Education as well as the University of Rwanda. The full list of donors is available on the INGSA2024 website (link below).

[1] Australia, Belgium, Brazil, Cameroon, Canada, Chile, China, Costa Rica, Cote d’Ivoire, Denmark, Egypt, Ethiopia, Finland, France, Germany, Ghana, India, Ireland, Italy, Jamaica, Japan, Kenya, Lebanon, Malawi, Malaysia, Mauritius, Mexico, New Zealand, Nigeria, Portugal, Rwanda, Saudi Arabia, South Africa, Spain, Sri Lanka, Uganda, UK, USA, Zimbabwe

Satellite session are taking place today (May 3, 2024),

  • High-Level Dialogue on the Future of Science
  • Bridging Worlds of Knowledge
  • Translating Research into Policy and Practice
  • Quantum Technology in Africa

The last session on the list, “Quantum Technology …,” is a science diplomacy role-playing workshop. (It’s of particular interest to me as the Council of Canadian Academies (CCA) released a report, Quantum Potential, in Fall 2023 and about which I’m still hoping to write a commentary.)

Even though the sessions have already taken place,it’s worth taking a look at the conference programme and the satellite events just to get a sense of the global breadth of interest in this work. Here’s the INGSA2024 website.

Growing metallic snowflakes at the nanoscale

Caption: Nano-scale snowflake from Gallium solvent. Credit: Waipapa Taumata Rau, University of Auckland

’tis the season for snowflakes here in the Northern Hemisphere. Oddly, these metallic snowflakes (they look more like plant leaves to me) come from the Southern Hemisphere (New Zealand and Australia to be precise). From a December 10, 2022 news item on Nanowerk, which includes a brief definition of nanotechnology written in an approachable style,

Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes.

Why’s that significant? Because coaxing individual atoms to cooperate is leading to a revolution in engineering and technology via nanomaterials. (And creating snowflakes is cool.)

Nanoscale structures (a nanometre is one billionth of a metre) can aid electronic manufacturing, make materials stronger yet lighter, or aid environmental clean-ups by binding to toxins.

A December 9, 2022 University of Auckland press release (also on EurekAlert but published on December 8, 2022), which originated the news item, delves into the research,

To create metallic nanocrystals, New Zealand and Australian scientists have been experimenting with gallium, a soft, silvery metal which is used in semiconductors and, unusually, liquifies at just above room temperature. Their results were just reported in the journal Science.



The Australian team worked in the lab with nickel, copper, zinc, tin, platinum, bismuth, silver and aluminium, growing metal crystals in a liquid solvent of gallium. Metals were dissolved in gallium at high temperatures. Once cooled, the metallic crystals emerged while the gallium remained liquid. The New Zealand team, part of the MacDiarmid Institute for Advanced Materials and Nanotechnology, a national Centre of Research Excellence, carried out simulations of molecular dynamics to explain why differently shaped crystals emerge from different metals. (The government’s Marsden Fund supported the research.)

“What we are learning is that the structure of the liquid gallium is very important,” says Gaston. “That’s novel because we usually think of liquids as lacking structure or being only randomly structured.” Interactions between the atomistic structures of the different metals and the liquid gallium cause differently shaped crystals to emerge, the scientists showed.

The crystals included cubes, rods, hexagonal plates and the zinc snowflake shapes. The six-branched symmetry of zinc, with each atom surrounded by six neighbours at equivalent distances, accounts for the snowflake design. “In contrast to top-down approaches to forming nanostructure – by cutting away material – this bottom-up approaches relies on atoms self-assembling,” says Gaston. “This is how nature makes nanoparticles, and is both less wasteful and much more precise than top-down methods.” She says the research has opened up a new, unexplored pathway for metallic nanostructures. “There’s also something very cool in creating a metallic snowflake!”

Here’s a link to and a citation for the paper,

Liquid metal synthesis solvents for metallic crystals by Shuhada A. Idrus-Saidi, Jianbo Tang, Stephanie Lambie, Jialuo Han, Mohannad Mayyas, Mohammad B. Ghasemian, Francois-Marie Allioux, Shengxiang Cai, Pramod Koshy, Peyman Mostaghimi, Krista G. Steenbergen, Amanda S. Barnard, Torben Daeneke, Nicola Gaston, and Kourosh Kalantar-Zadeh. Science 8 Dec 2022 Vol 378, Issue 6624 pp. 1118-1124 DOI: 10.1126/science.abm2731

This paper is behind a paywall.

D-PLACE: an open access database of places, language, culture, and enviroment

In an attempt to be a bit more broad in my interpretation of the ‘society’ part of my commentary I’m including this July 8, 2016 news item on ScienceDaily (Note: A link has been removed),

An international team of researchers has developed a website at d-place.org to help answer long-standing questions about the forces that shaped human cultural diversity.

D-PLACE — the Database of Places, Language, Culture and Environment — is an expandable, open access database that brings together a dispersed body of information on the language, geography, culture and environment of more than 1,400 human societies. It comprises information mainly on pre-industrial societies that were described by ethnographers in the 19th and early 20th centuries.

A July 8, 2016 University of Toronto news release (also on EurekAlert), which originated the news item, expands on the theme,

“Human cultural diversity is expressed in numerous ways: from the foods we eat and the houses we build, to our religious practices and political organisation, to who we marry and the types of games we teach our children,” said Kathryn Kirby, a postdoctoral fellow in the Departments of Ecology & Evolutionary Biology and Geography at the University of Toronto and lead author of the study. “Cultural practices vary across space and time, but the factors and processes that drive cultural change and shape patterns of diversity remain largely unknown.

“D-PLACE will enable a whole new generation of scholars to answer these long-standing questions about the forces that have shaped human cultural diversity.”

Co-author Fiona Jordan, senior lecturer in anthropology at the University of Bristol and one of the project leads said, “Comparative research is critical for understanding the processes behind cultural diversity. Over a century of anthropological research around the globe has given us a rich resource for understanding the diversity of humanity – but bringing different resources and datasets together has been a huge challenge in the past.

“We’ve drawn on the emerging big data sets from ecology, and combined these with cultural and linguistic data so researchers can visualise diversity at a glance, and download data to analyse in their own projects.”

D-PLACE allows users to search by cultural practice (e.g., monogamy vs. polygamy), environmental variable (e.g. elevation, mean annual temperature), language family (e.g. Indo-European, Austronesian), or region (e.g. Siberia). The search results can be displayed on a map, a language tree or in a table, and can also be downloaded for further analysis.

It aims to enable researchers to investigate the extent to which patterns in cultural diversity are shaped by different forces, including shared history, demographics, migration/diffusion, cultural innovations, and environmental and ecological conditions.

D-PLACE was developed by an international team of scientists interested in cross-cultural research. It includes researchers from Max Planck Institute for the Science of Human history in Jena Germany, University of Auckland, Colorado State University, University of Toronto, University of Bristol, Yale, Human Relations Area Files, Washington University in Saint Louis, University of Michigan, American Museum of Natural History, and City University of New York.

The diverse team included: linguists; anthropologists; biogeographers; data scientists; ethnobiologists; and evolutionary ecologists, who employ a variety of research methods including field-based primary data collection; compilation of cross-cultural data sources; and analyses of existing cross-cultural datasets.

“The team’s diversity is reflected in D-PLACE, which is designed to appeal to a broad user base,” said Kirby. “Envisioned users range from members of the public world-wide interested in comparing their cultural practices with those of other groups, to cross-cultural researchers interested in pushing the boundaries of existing research into the drivers of cultural change.”

Here’s a link to and a citation for the paper,

D-PLACE: A Global Database of Cultural, Linguistic and Environmental Diversity by Kathryn R. Kirby, Russell D. Gray, Simon J. Greenhill, Fiona M. Jordan, Stephanie Gomes-Ng, Hans-Jörg Bibiko, Damián E. Blasi, Carlos A. Botero, Claire Bowern, Carol R. Ember, Dan Leehr, Bobbi S. Low, Joe McCarter, William Divale, Michael C. Gavin.  PLOS ONE, 2016; 11 (7): e0158391 DOI: 10.1371/journal.pone.0158391 Published July 8, 2016.

This paper is open access.

You can find D-PLACE here.

While it might not seem like that there would be a close link between anthropology and physics in the 19th and early 20th centuries, that information can be mined for more contemporary applications. For example, someone who wants to make a case for a more diverse scientific community may want to develop a social science approach to the discussion. The situation in my June 16, 2016 post titled: Science literacy, science advice, the US Supreme Court, and Britain’s House of Commons, could  be extended into a discussion and educational process using data from D-Place and other sources to make the point,

Science literacy may not be just for the public, it would seem that US Supreme Court judges may not have a basic understanding of how science works. David Bruggeman’s March 24, 2016 posting (on his Pasco Phronesis blog) describes a then current case before the Supreme Court (Justice Antonin Scalia has since died), Note: Links have been removed,

It’s a case concerning aspects of the University of Texas admissions process for undergraduates and the case is seen as a possible means of restricting race-based considerations for admission.  While I think the arguments in the case will likely revolve around factors far removed from science and or technology, there were comments raised by two Justices that struck a nerve with many scientists and engineers.

Both Justice Antonin Scalia and Chief Justice John Roberts raised questions about the validity of having diversity where science and scientists are concerned [emphasis mine].  Justice Scalia seemed to imply that diversity wasn’t esential for the University of Texas as most African-American scientists didn’t come from schools at the level of the University of Texas (considered the best university in Texas).  Chief Justice Roberts was a bit more plain about not understanding the benefits of diversity.  He stated, “What unique perspective does a black student bring to a class in physics?”

To that end, Dr. S. James Gates, theoretical physicist at the University of Maryland, and member of the President’s Council of Advisers on Science and Technology (and commercial actor) has an editorial in the March 25 [2016] issue of Science explaining that the value of having diversity in science does not accrue *just* to those who are underrepresented.

Dr. Gates relates his personal experience as a researcher and teacher of how people’s background inform their practice of science, and that two different people may use the same scientific method, but think about the problem differently.

I’m guessing that both Scalia and Roberts and possibly others believe that science is the discovery and accumulation of facts. In this worldview science facts such as gravity are waiting for discovery and formulation into a ‘law’. They do not recognize that most science is a collection of beliefs and may be influenced by personal beliefs. For example, we believe we’ve proved the existence of the Higgs boson but no one associated with the research has ever stated unequivocally that it exists.

More generally, with D-PLACE and the recently announced Trans-Atlantic Platform (see my July 15, 2016 post about it), it seems Canada’s humanities and social sciences communities are taking strides toward greater international collaboration and a more profound investment in digital scholarship.

Cardiac pacemakers: Korea’s in vivo demonstration of a self-powered one* and UK’s breath-based approach

As i best I can determine ,the last mention of a self-powered pacemaker and the like on this blog was in a Nov. 5, 2012 posting (Developing self-powered batteries for pacemakers). This latest news from The Korea Advanced Institute of Science and Technology (KAIST) is, I believe, the first time that such a device has been successfully tested in vivo. From a June 23, 2014 news item on ScienceDaily,

As the number of pacemakers implanted each year reaches into the millions worldwide, improving the lifespan of pacemaker batteries has been of great concern for developers and manufacturers. Currently, pacemaker batteries last seven years on average, requiring frequent replacements, which may pose patients to a potential risk involved in medical procedures.

A research team from the Korea Advanced Institute of Science and Technology (KAIST), headed by Professor Keon Jae Lee of the Department of Materials Science and Engineering at KAIST and Professor Boyoung Joung, M.D. of the Division of Cardiology at Severance Hospital of Yonsei University, has developed a self-powered artificial cardiac pacemaker that is operated semi-permanently by a flexible piezoelectric nanogenerator.

A June 23, 2014 KAIST news release on EurekAlert, which originated the news item, provides more details,

The artificial cardiac pacemaker is widely acknowledged as medical equipment that is integrated into the human body to regulate the heartbeats through electrical stimulation to contract the cardiac muscles of people who suffer from arrhythmia. However, repeated surgeries to replace pacemaker batteries have exposed elderly patients to health risks such as infections or severe bleeding during operations.

The team’s newly designed flexible piezoelectric nanogenerator directly stimulated a living rat’s heart using electrical energy converted from the small body movements of the rat. This technology could facilitate the use of self-powered flexible energy harvesters, not only prolonging the lifetime of cardiac pacemakers but also realizing real-time heart monitoring.

The research team fabricated high-performance flexible nanogenerators utilizing a bulk single-crystal PMN-PT thin film (iBULe Photonics). The harvested energy reached up to 8.2 V and 0.22 mA by bending and pushing motions, which were high enough values to directly stimulate the rat’s heart.

Professor Keon Jae Lee said:

“For clinical purposes, the current achievement will benefit the development of self-powered cardiac pacemakers as well as prevent heart attacks via the real-time diagnosis of heart arrhythmia. In addition, the flexible piezoelectric nanogenerator could also be utilized as an electrical source for various implantable medical devices.”

This image illustrating a self-powered nanogenerator for a cardiac pacemaker has been provided by KAIST,

This picture shows that a self-powered cardiac pacemaker is enabled by a flexible piezoelectric energy harvester. Credit: KAIST

This picture shows that a self-powered cardiac pacemaker is enabled by a flexible piezoelectric energy harvester.
Credit: KAIST

Here’s a link to and a citation for the paper,

Self-Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN-PT Piezoelectric Energy Harvester by Geon-Tae Hwang, Hyewon Park, Jeong-Ho Lee, SeKwon Oh, Kwi-Il Park, Myunghwan Byun, Hyelim Park, Gun Ahn, Chang Kyu Jeong, Kwangsoo No, HyukSang Kwon, Sang-Goo Lee, Boyoung Joung, and Keon Jae Lee. Advanced Materials DOI: 10.1002/adma.201400562
Article first published online: 17 APR 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

There was a May 15, 2014 KAIST news release on EurekAlert announcing this same piece of research but from a technical perspective,

The energy efficiency of KAIST’s piezoelectric nanogenerator has increased by almost 40 times, one step closer toward the commercialization of flexible energy harvesters that can supply power infinitely to wearable, implantable electronic devices

NANOGENERATORS are innovative self-powered energy harvesters that convert kinetic energy created from vibrational and mechanical sources into electrical power, removing the need of external circuits or batteries for electronic devices. This innovation is vital in realizing sustainable energy generation in isolated, inaccessible, or indoor environments and even in the human body.

Nanogenerators, a flexible and lightweight energy harvester on a plastic substrate, can scavenge energy from the extremely tiny movements of natural resources and human body such as wind, water flow, heartbeats, and diaphragm and respiration activities to generate electrical signals. The generators are not only self-powered, flexible devices but also can provide permanent power sources to implantable biomedical devices, including cardiac pacemakers and deep brain stimulators.

However, poor energy efficiency and a complex fabrication process have posed challenges to the commercialization of nanogenerators. Keon Jae Lee, Associate Professor of Materials Science and Engineering at KAIST, and his colleagues have recently proposed a solution by developing a robust technique to transfer a high-quality piezoelectric thin film from bulk sapphire substrates to plastic substrates using laser lift-off (LLO).

Applying the inorganic-based laser lift-off (LLO) process, the research team produced a large-area PZT thin film nanogenerators on flexible substrates (2 cm x 2 cm).

“We were able to convert a high-output performance of ~250 V from the slight mechanical deformation of a single thin plastic substrate. Such output power is just enough to turn on 100 LED lights,” Keon Jae Lee explained.

The self-powered nanogenerators can also work with finger and foot motions. For example, under the irregular and slight bending motions of a human finger, the measured current signals had a high electric power of ~8.7 μA. In addition, the piezoelectric nanogenerator has world-record power conversion efficiency, almost 40 times higher than previously reported similar research results, solving the drawbacks related to the fabrication complexity and low energy efficiency.

Lee further commented,

“Building on this concept, it is highly expected that tiny mechanical motions, including human body movements of muscle contraction and relaxation, can be readily converted into electrical energy and, furthermore, acted as eternal power sources.”

The research team is currently studying a method to build three-dimensional stacking of flexible piezoelectric thin films to enhance output power, as well as conducting a clinical experiment with a flexible nanogenerator.

In addition to the 2012 posting I mentioned earlier, there was also this July 12, 2010 posting which described research on harvesting biomechanical movement ( heart beat, blood flow, muscle stretching, or even irregular vibration) at the Georgia (US) Institute of Technology where the lead researcher observed,

…  Wang [Professor Zhong Lin Wang at Georgia Tech] tells Nanowerk. “However, the applications of the nanogenerators under in vivo and in vitro environments are distinct. Some crucial problems need to be addressed before using these devices in the human body, such as biocompatibility and toxicity.”

Bravo to the KAIST researchers for getting this research to the in vivo testing stage.

Meanwhile at the University of Bristol and at the University of Bath, researchers have received funding for a new approach to cardiac pacemakers, designed them with the breath in mind. From a June 24, 2014 news item on Azonano,

Pacemaker research from the Universities of Bath and Bristol could revolutionise the lives of over 750,000 people who live with heart failure in the UK.

The British Heart Foundation (BHF) is awarding funding to researchers developing a new type of heart pacemaker that modulates its pulses to match breathing rates.

A June 23, 2014 University of Bristol press release, which originated the news item, provides some context,

During 2012-13 in England, more than 40,000 patients had a pacemaker fitted.

Currently, the pulses from pacemakers are set at a constant rate when fitted which doesn’t replicate the natural beating of the human heart.

The normal healthy variation in heart rate during breathing is lost in cardiovascular disease and is an indicator for sleep apnoea, cardiac arrhythmia, hypertension, heart failure and sudden cardiac death.

The device is then briefly described (from the press release),

The novel device being developed by scientists at the Universities of Bath and Bristol uses synthetic neural technology to restore this natural variation of heart rate with lung inflation, and is targeted towards patients with heart failure.

The device works by saving the heart energy, improving its pumping efficiency and enhancing blood flow to the heart muscle itself.  Pre-clinical trials suggest the device gives a 25 per cent increase in the pumping ability, which is expected to extend the life of patients with heart failure.

One aim of the project is to miniaturise the pacemaker device to the size of a postage stamp and to develop an implant that could be used in humans within five years.

Dr Alain Nogaret, Senior Lecturer in Physics at the University of Bath, explained“This is a multidisciplinary project with strong translational value.  By combining fundamental science and nanotechnology we will be able to deliver a unique treatment for heart failure which is not currently addressed by mainstream cardiac rhythm management devices.”

The research team has already patented the technology and is working with NHS consultants at the Bristol Heart Institute, the University of California at San Diego and the University of Auckland. [emphasis mine]

Professor Julian Paton, from the University of Bristol, added: “We’ve known for almost 80 years that the heart beat is modulated by breathing but we have never fully understood the benefits this brings. The generous new funding from the BHF will allow us to reinstate this natural occurring synchrony between heart rate and breathing and understand how it brings therapy to hearts that are failing.”

Professor Jeremy Pearson, Associate Medical Director at the BHF, said: “This study is a novel and exciting first step towards a new generation of smarter pacemakers. More and more people are living with heart failure so our funding in this area is crucial. The work from this innovative research team could have a real impact on heart failure patients’ lives in the future.”

Given some current events (‘Tesla opens up its patents’, Mike Masnick’s June 12, 2014 posting on Techdirt), I wonder what the situation will be vis à vis patents by the time this device gets to market.

* ‘one’ added to title on Aug. 13, 2014.