Tag Archives: University of Barcelona

Replicating brain’s neural networks with 3D nanoprinting

An announcement about European Union funding for a project to reproduce neural networks by 3D nanoprinting can be found in a June 10, 2016 news item on Nanowerk,

The MESO-BRAIN consortium has received a prestigious award of €3.3million in funding from the European Commission as part of its Future and Emerging Technology (FET) scheme. The project aims to develop three-dimensional (3D) human neural networks with specific biological architecture, and the inherent ability to interrogate the network’s brain-like activity both electrophysiologically and optically. It is expected that the MESO-BRAIN will facilitate a better understanding of human disease progression, neuronal growth and enable the development of large-scale human cell-based assays to test the modulatory effects of pharmacological and toxicological compounds on neural network activity. The use of more physiologically relevant human models will increase drug screening efficiency and reduce the need for animal testing.

A June 9, 2016 Institute of Photonic Sciences (ICFO) press release (also on EurekAlert), which originated the news item, provides more detail,

About the MESO-BRAIN project

The MESO-BRAIN project’s cornerstone will use human induced pluripotent stem cells (iPSCs) that have been differentiated into neurons upon a defined and reproducible 3D scaffold to support the development of human neural networks that emulate brain activity. The structure will be based on a brain cortical module and will be unique in that it will be designed and produced using nanoscale 3D-laser-printed structures incorporating nano-electrodes to enable downstream electrophysiological analysis of neural network function. Optical analysis will be conducted using cutting-edge light sheet-based, fast volumetric imaging technology to enable cellular resolution throughout the 3D network. The MESO-BRAIN project will allow for a comprehensive and detailed investigation of neural network development in health and disease.

Prof Edik Rafailov, Head of the MESO-BRAIN project (Aston University) said: “What we’re proposing to achieve with this project has, until recently, been the stuff of science fiction. Being able to extract and replicate neural networks from the brain through 3D nanoprinting promises to change this. The MESO-BRAIN project has the potential to revolutionise the way we are able to understand the onset and development of disease and discover treatments for those with dementia or brain injuries. We cannot wait to get started!”

The MESO-BRAIN project will launch in September 2016 and research will be conducted over three years.

About the MESO-BRAIN consortium

Each of the consortium partners have been chosen for the highly specific skills & knowledge that they bring to this project. These include technologies and expertise in stem cells, photonics, physics, 3D nanoprinting, electrophysiology, molecular biology, imaging and commercialisation.

Aston University (UK) Aston Institute of Photonic Technologies (School of Engineering and Applied Science) is one of the largest photonic groups in UK and an internationally recognised research centre in the fields of lasers, fibre-optics, high-speed optical communications, nonlinear and biomedical photonics. The Cell & Tissue Biomedical Research Group (Aston Research Centre for Healthy Ageing) combines collective expertise in genetic manipulation, tissue engineering and neuronal modelling with the electrophysiological and optical analysis of human iPSC-derived neural networks. Axol Bioscience Ltd. (UK) was founded to fulfil the unmet demand for high quality, clinically relevant human iPSC-derived cells for use in biomedical research and drug discovery. The Laser Zentrum Hannover (Germany) is a leading research organisation in the fields of laser development, material processing, laser medicine, and laser-based nanotechnologies. The Neurophysics Group (Physics Department) at University of Barcelona (Spain) are experts in combing experiments with theoretical and computational modelling to infer functional connectivity in neuronal circuits. The Institute of Photonic Sciences (ICFO) (Spain) is a world-leading research centre in photonics with expertise in several microscopy techniques including light sheet imaging. KITE Innovation (UK) helps to bridge the gap between the academic and business sectors in supporting collaboration, enterprise, and knowledge-based business development.

For anyone curious about the FET funding scheme, there’s this from the press release,

Horizon 2020 aims to ensure Europe produces world-class science by removing barriers to innovation through funding programmes such as the FET. The FET (Open) funds forward-looking collaborations between advanced multidisciplinary science and cutting-edge engineering for radically new future technologies. The published success rate is below 1.4%, making it amongst the toughest in the Horizon 2020 suite of funding schemes. The MESO-BRAIN proposal scored a perfect 5/5.

You can find out more about the MESO-BRAIN project on its ICFO webpage.

They don’t say anything about it but I can’t help wondering if the scientists aren’t also considering the possibility of creating an artificial brain.

INFERNOS: realizing Maxwell’s Demon

Before getting to the INFERNOS project and its relationship to Maxwell’s demon, I want to share a pretty good example of this ‘demon’ thought experiment which, as recently as Feb. 4, 2013, I featured in a piece about quantum dots,

James Clerk Maxwell, physicist,  has entered the history books for any number reasons but my personal favourite is Maxwell’s demon, a thought experiment he proposed in the 1800s to violate the 2nd law of thermodynamics. Lisa Zyga in her Feb. 1, 2013 article for phys.org provides an explanation,

When you open your door on a cold winter day, the warm air from your home and the cold air from outside begin to mix and evolve toward thermal equilibrium, a state of complete entropy where the temperatures outside and inside are the same. This situation is a rough example of the second law of thermodynamics, which says that entropy in a closed system never decreases. If you could control the air flow in a way that uses a sufficiently small amount of energy, so that the entropy of the system actually decreases overall, you would have a hypothetical mechanism called Maxwell’s demon.

An Oct. 9, 2013 news item on Nanowerk ties together INFERNOS and the ‘demon’,

Maxwell’s Demon is an imaginary creature that the mathematician James Clerk Maxwell created in 1897. The creature could turn heat into work without causing any other change, which violates the second law of thermodynamics. The primary goal of the European project INFERNOS (Information, fluctuations, and energy control in small systems) is to realize experimentally Maxwell’s Demon; in other words, to develop the electronic and biomolecular nanodevices that support this principle.

The Universitat de Barcelona (University of Barcelona) Oct. 7, 2013 news release, which originated the news item, provides more details about the project,

Although Maxwell’s Demon is one of the cornerstones of theoretical statistical mechanisms, little has been done about its definite experimental realization. Marco Ribezzi, researcher from the Department of Fundamental Physics, explains that “the principal novelty of INFERNOS is to bring a robust and rigorous experimental base for this field of knowledge. We aim at creating a device that can use information to supply/extract energy to/from a system”. In this sense, the UB group, in which researcher Fèlix Ritort from the former department also participates, focuses their activity on understanding how information and temperature changes are used in individual molecules manipulation.

From the theory side, researchers will work in order to develop a theory of the fluctuation processes in small systems, which would then facilitate efficient algorithms for the Maxwell’s Demon operation.

INFERNOS is a three-year European project of the programme Future and Emerging Technologies (FET). Besides the University of Barcelona, INFERNOS partners are: Aalto University (Finland), project coordinator, Lund University (Sweden), the University of Oslo (Norway), Delf University of Technology (Netherlands), the National Center for Scientific Research (France) and the Research Foundation of State University of New York.

I like the INFERNOS logo, demon and all,

Logo of the European project INFERNOS (Information, fluctuations, and energy control in small systems).

Logo of the European project INFERNOS (Information, fluctuations, and energy control in small systems).

The INFERNOS project website can be found here.

And for anyone who finds that music is the best way to learn, here are Flanders & Swann* performing ‘First and Second Law’ from a 1964 show,

Enjoy!

* ‘Swan’ corrected to ‘Swann’ on April 1, 2014.

Magic, science, and neuro

This latest news from the University of Leicester brings to mind Arthur C. Clarke’s famous (and overused) quote, “Any sufficiently advanced technology is indistinguishable from magic.” From the Mar. 12, 2013 news item on ScienceDaily,

A magician is using his knowledge of magic theory and practice to investigate the brain’s powers of observation.

Hugo Caffaratti, engineer and semi-professional magician from Barcelona, Spain, has embarked on a PhD with the University of Leicester’s Centre for Systems Neuroscience.

Hugo has 12 years of experience working with magic — specialising in card tricks — and is a member of the Spanish Society of Illusionism (SEI-ACAI).

The engineer also has a longstanding interest in neuroscience and bioengineering, having taken a Master’s degree in Biomedical Engineering at University of Barcelona.

He hopes to combine his two interests in his PhD thesis project, which covers a new field of Cognitive Neuroscience:Neuro-Magic.

The University of Leicester Mar. 11, 2013 press release, which originated the news item, goes on to reveal that Caffaratti’s study is about observation and choice,

As part of his work, he will investigate how our brains perceive what actually happens before our eyes – and how our attention can be drawn away from important details.

He also plans to study “forced choice” – a tool often used by magicians where we are fooled into thinking we have made a free choice.

Among other experiments, Hugo will ask participants to watch videos of card trick performances, while sitting in front of an eye-tracker device.

This will allow him to monitor where our attention is focused during illusions – and how our brain can be deceived when our eyes miss the whole picture.

Hugo said: “I have always been interested in the study of the brain. It is amazing to be involved in the process of combining the disciplines of neuroscience and magic.

“I am really interested in the fields of decision making and forced-choice. It is incredible that many times a day we make a decision and feel free. We do not realise that we have been forced to make that decision.

“I am constructing an experiment to study what happens when we make forced decisions – to try and find the reasons for it. I am thinking about which kinds of tricks I know could be useful to give more insights about brain function.”

He will work under the tutelage of Professor Rodrigo Quian Quiroga, director of the Centre for Systems Neuroscience.

I am intrigued by Quian Quiroga’s perspective on this work,

Professor Rodrigo Quian Quiroga said: “I am very interested in connections between science and the arts. Last year, for example, we organized an art and science exhibition as a result of a 1-year rotation in my lab of visual artist Mariano Molina. Hugo’s PhD will look at decision-making and attention – and although he is doing his first steps in neuroscience, I think he already has a lot of expertise in this area based on his training as a magician.

“Magic theory has thousands of years of experience. Magicians have been answering similar questions that we have in the lab, and they have an intuitive knowledge of how the mind works. Hugo will likely bring a fresh new view on how to address questions we deal with in neuroscience.”

Happily, Caffaratti plans to continue as a magician while he studies,

Hugo is also keen to carry on with his work in magic while studying for his PhD, and is hoping to perform in bars in Leicester while staying here.

He has also applied for membership with The Magic Circle – a prestigious magic society of London. He will have to sit exams to prove his magical mettle in order to join the exclusive club.

Hopefully one of these days I’ll get to Leicester and have a chance to Caffaratti in action at a bar. Perhaps I’ll be able to recognize him from this image,

L-R: Professor Quian Quiroga, Director of the Centre for Systems Neuroscience, with PhD student and semi-professional magician Hugo Caffaratti. [downloaded from http://www2.le.ac.uk/offices/press/press-releases/2013/march/neuro-magic-magician-uses-magic-tricks-to-study-the-brain2019s-powers-of-perception-and-memory]

L-R: Professor Quian Quiroga, Director of the Centre for Systems Neuroscience, with PhD student and semi-professional magician Hugo Caffaratti. [downloaded from http://www2.le.ac.uk/offices/press/press-releases/2013/march/neuro-magic-magician-uses-magic-tricks-to-study-the-brain2019s-powers-of-perception-and-memory]

For anyone who’s intrigued by Clarke’s quote and its overuse, there’s a good May 9, 2011 essay by Kyle Munkittrick about the movie Thor, magic, and science on the Science not Fiction Discover magazine blog,

If you haven’t seen it yet, Thor is a ridiculous and entertaining superhero spectacle. All the leads did a great job, particularly Hopkins as Odin. If you can take a man seriously when he’s standing on a rainbow bridge wearing a gold-plate eyepatch, he’s doing something right. Kenneth Branagh’s interpretation of Asgard was visually overwhelming, but weirdly believable.

The reason? Branagh leans heavily on the magi-tech rule of Arthur C. Clarke, which Natalie Portman’s character quotes in the film, “Any sufficiently advanced technology is indistinguishable from magic.” So what is the difference between really-really advanced technology and actual magic? Sean Carroll, who did some science advising for the film, clears the idea up a bit: …

… Clarke’s rule of magical tech helps create some of that consistency. I both love and loathe Clarke for that statement. Love because it strikes at the heart of what technology is: a way for humans to do things previously believed not just implausible, but impossible. Loathe because it creates an infinite caveat for lazy authors and screenwriters.

So there you have it: two approaches to science and magic.