Tag Archives: University of California at Davis (UC Davis)

“transforming a plant is still an art” even with CRISPR

“Plus ça change, plus c’est la même chose (the more things change, the more things stay the same), is an old French expression that came to mind when I stumbled across two stories about genetic manipulation of food-producing plants.

The first story involves CRISPR (clustered regularly interspersed short palindromic repeats) gene editing and the second involves more ancient ways to manipulate plant genetics.

Getting ‘CRISPR’d’ plant cells to grow into plants

Plants often don’t grow from cells after researchers alter their genomes. Using a new technology, a team coaxed wheat (above) and other crops to more readily produce genome-edited healthy adult plants. Credit: Juan Debernardi

An October 13, 2020 news item on phys.org announces research about getting better results after a plant’s genome has been altered,

Researchers know how to make precise genetic changes within the genomes of crops, but the transformed cells often refuse to grow into plants. One team has devised a new solution.

Scientists who want to improve crops face a dilemma: it can be difficult to grow plants from cells after you’ve tweaked their genomes.

A new tool helps ease this process by coaxing the transformed cells, including those modified with the gene-editing system CRISPR-Cas9, to regenerate new plants. Howard Hughes Medical Institute Research Specialist Juan M. Debernardi and Investigator Jorge Dubcovsky, together with David Tricoli at the University of California, Davis [UC Davis] Plant Transformation Facility, Javier Palatnik from Argentina, and colleagues at the John Innes Center [UK], collaborated on the work. The team reports the technology, developed in wheat and tested in other crops, October 12, 2020, in the journal Nature Biotechnology.

An October 12, 2020 Howard Hughes Medical Institute (HHMI) news release, which originated the news item, provides more detail,

“The problem is that transforming a plant is still an art [emphasis mine],” Dubcovsky says. The success rate is often low – depending on the crop being modified, 100 attempts may yield only a handful of green shoots that can turn into full-grown plants. The rest fail to produce new plants and die. Now, however, “we have reduced this barrier,” says Dubcovsky, a plant geneticist at UC Davis. Using two genes that already control development in many plants, his team dramatically increased the formation of shoots in modified wheat, rice, citrus, and other crops.

Although UC Davis has a pending patent for commercial applications, Dubcovsky says the technique is available to any researcher who wants to use it for research, at no charge. A number of plant breeding companies have also expressed interested in licensing it. “Now people are trying it in multiple crops,” he says.

Humans have worked to improve plants since the dawn of agriculture, selecting wild grasses to produce cultivated maize and wheat, for example. Nowadays, though, CRISPR has given researchers the ability to make changes to the genome with surgical precision. They have used it to create wheat plants with larger grains, generate resistance to fungal infection, design novel tomato plant architectures, and engineer other traits in new plant varieties.

But the process isn’t easy. Scientists start out with plant cells or pieces of tissue, into which they introduce the CRISPR machinery and a small guide to the specific genes they’d like to edit. They must then entice the modified cells into forming a young plant. Most don’t sprout – a problem scientists are still working to understand.

They have tried to find work-arounds, including boosting the expression of certain genes that control early stages of plant development. While this approach has had some success, it can lead to twisted, stunted, sterile plants if not managed properly.Dubcovsky and his colleagues looked at two other growth-promoting genes, GRF and GIF, that work together in young tissues or organs of plants ranging from moss to fruit trees. The team put these genes side-by-side, like a couple holding hands, before adding them to plant cells. “If you go to a dance, you need to find your partner,” Dubcovsky says. “Here, you are tied with a rope to your partner.”

Dubcovsky’s team found that genetically altered wheat, rice, hybrid orange, and other crops produced many more shoots if those experiments included the linked GRF and GIF genes. In experiments with one variety of wheat, the appearance of shoots increased nearly eight-fold. The number of shoots in rice and the hybrid orange, meanwhile, more than doubled and quadrupled, respectively. What’s more, these shoots grew into healthy plants capable of reproducing on their own, with none of the defects that can result when scientists boost other development-controlling genes. That’s because one of the genes is naturally degraded in adult tissues, Dubcovsky says.

Caroline Roper, a plant pathologist at University of California, Riverside who was not involved in the work, plans to use the new technology to study citrus greening, a bacterial disease that kills trees and renders oranges hard and bitter.

To understand how citrus trees can protect themselves, she needs to see how removing certain genes alters their susceptibility to the bacterium — information that could lead to ways to fight the disease. With conventional techniques, it could take at least two years to generate the gene-edited plants she needs. She hopes Dubcovsky’s tool will shorten that timeline.  

“Time is of the essence. The growers, they wanted an answer yesterday, because they’re at the brink of having to abandon cultivating citrus,” she says.

For anyone who noticed the reference to citrus greening in the last paragraphs of this news release, I have more information aboutthe disease and efforts to it in an August 6, 2020 posting.

As for the latest in gene editing and regeneration, here’s a link to and a citation for the paper,

A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants by Juan M. Debernardi, David M. Tricoli, Maria F. Ercoli, Sadiye Hayta, Pamela Ronald, Javier F. Palatnik & Jorge Dubcovsky. Nature Biotechnology volume 38, pages 1274–1279(2020) DOI: https://doi.org/10.1038/s41587-020-0703-0 First Published Online: 12 October 2020 Journal Issue Date: November 2020

This paper is behind a paywall.

Ancient farming techniques for engineering crops

I stumbled on this story by Gabriela Serrato Marks for Massive Science almost three years late (it’s a Dec. 5, 2017 article),

There are more than 50 strains of maize, called landraces, grown in Mexico. A landrace is similar to a dog breed: Corgis and Huskies are both dogs, but they were bred to have different traits. Maize domestication worked the same way.

Some landraces of maize can grow in really dry conditions; others grow best in wetter soils. Early maize farmers selectively bred maize landraces that were well-adapted to the conditions on their land, a practice that still continues today in rural areas of Mexico.

If you think this sounds like an early version of genetic engineering, you’d be correct. But nowadays, modern agriculture is moving away from locally adapted strains and traditional farming techniques and toward active gene manipulation. The goal of both traditional landrace development and modern genetic modification has been to create productive, valuable crops, so these two techniques are not necessarily at odds.

But as more farmers converge on similar strains of (potentially genetically modified) seeds instead of developing locally adapted landraces, there are two potential risks: one is losing the cultural legacy of traditional agricultural techniques that have been passed on in families for centuries or even millennia, and another is decreasing crop resilience even as climate variability is increasing.

Mexico is the main importer of US-grown corn, but that imported corn is primarily used to feed livestock. The corn that people eat or use to make tortillas is grown almost entirely in Mexico, which is where landraces come in.

It is a common practice to grow multiple landraces with different traits as an insurance policy against poor growth conditions. The wide range of landraces contains a huge amount of genetic diversity, making it less likely that one adverse event, such as a drought or pest infestation, will wipe out an entire crop. If farmers only grow one type of corn, the whole crop is vulnerable to the same event.

Landraces are also different from most commercially available hybrid strains of corn because they are open pollinating, which means that farmers can save seeds and replant them the next year, saving money and preserving the strain. If a landrace is not grown anymore, its contribution to maize’s genetic diversity is permanently lost.

This diversity was cultivated over generations from maize’s wild cousin, teosinte, by 60 groups of indigenous people in Mexico. Teosinte looks like a skinny, hairier version of maize. It still grows wild in some parts of Central America, but its close relatives have been found, domesticated, at archaeological sites in the region over 9,000 years old. These early maize cobs could easily fit in the palm of your hand – not big enough to be a staple crop that early farmers could depend upon for sustenance. Genetically, they were more similar to wild teosinte than to modern maize.

[] archaeologists also found that the cobs in Honduras, which is outside the natural range of teosinte, were larger than cobs of the same age from the original domestication region in southern Mexico. The scientists think that people in Honduras were able to develop more productive maize landraces because their crops were isolated from wild teosinte.

The size and shape of the ancient cobs from Honduras show that early farmers engineered the maize crop [emphasis mine] to make it more productive. They developed unique landraces that were well adapted to local conditions and successfully cultivated enough maize to support their communities. In many ways, they were early geneticists. [emphasis mine] …

We have a lot to learn from the indigenous farmers who were growing maize 4,000 years ago. Their history provides examples of both environmentally sound genetic modification and effective adaptation to climate variability. [emphases mine] …

Plus ça change …, eh?

The Broad Institute gives us another reason to love CRISPR

More and more, this resembles a public relations campaign. First, CRISPR (clustered regularly interspersed short palindromic repeats) gene editing is going to be helpful with COVID-19 and now it can help us to deal with conservation issues. (See my May 26, 2020 posting about the latest CRISPR doings as of May 7, 2020; included is a brief description of the patent dispute between Broad Institute and UC Berkeley and musings about a public relations campaign.)

A May 21, 2020 news item on ScienceDaily announces how CRISPR could be useful for conservation,

The gene-editing technology CRISPR has been used for a variety of agricultural and public health purposes — from growing disease-resistant crops to, more recently, a diagnostic test for the virus that causes COVID-19. Now a study involving fish that look nearly identical to the endangered Delta smelt finds that CRISPR can be a conservation and resource management tool, as well. The researchers think its ability to rapidly detect and differentiate among species could revolutionize environmental monitoring.

Caption: Longfin smelt can be difficult to differentiate from endangered Delta smelt. Here, a longfin smelt is swabbed for genetic identification through a CRISPR tool called SHERLOCK. Credit: Alisha Goodbla/UC Davis

A May 21, 2020 University of California at Davis (UC Davis) news release (also on EurekAlert) by Kat Kerlin, which originated the news item, provides more detail (Note: A link has been removed),

The study, published in the journal Molecular Ecology Resources, was led by scientists at the University of California, Davis, and the California Department of Water Resources in collaboration with MIT Broad Institute [emphasis mine].

As a proof of concept, it found that the CRISPR-based detection platform SHERLOCK (Specific High-sensitivity Enzymatic Reporter Unlocking) [emphasis mine] was able to genetically distinguish threatened fish species from similar-looking nonnative species in nearly real time, with no need to extract DNA.

“CRISPR can do a lot more than edit genomes,” said co-author Andrea Schreier, an adjunct assistant professor in the UC Davis animal science department. “It can be used for some really cool ecological applications, and we’re just now exploring that.”


The scientists focused on three fish species of management concern in the San Francisco Estuary: the U.S. threatened and California endangered Delta smelt, the California threatened longfin smelt and the nonnative wakasagi. These three species are notoriously difficult to visually identify, particularly in their younger stages.

Hundreds of thousands of Delta smelt once lived in the Sacramento-San Joaquin Delta before the population crashed in the 1980s. Only a few thousand are estimated to remain in the wild.

“When you’re trying to identify an endangered species, getting it wrong is a big deal,” said lead author Melinda Baerwald, a project scientist at UC Davis at the time the study was conceived and currently an environmental program manager with California Department of Water Resources.

For example, state and federal water pumping projects have to reduce water exports if enough endangered species, like Delta smelt or winter-run chinook salmon, get sucked into the pumps. Rapid identification makes real-time decision making about water operations feasible.


Typically to accurately identify the species, researchers rub a swab over the fish to collect a mucus sample or take a fin clip for a tissue sample. Then they drive or ship it to a lab for a genetic identification test and await the results. Not counting travel time, that can take, at best, about four hours.

SHERLOCK shortens this process from hours to minutes. Researchers can identify the species within about 20 minutes, at remote locations, noninvasively, with no specialized lab equipment. Instead, they use either a handheld fluorescence reader or a flow strip that works much like a pregnancy test — a band on the strip shows if the target species is present.

“Anyone working anywhere could use this tool to quickly come up with a species identification,” Schreier said.


While the three fish species were the only animals tested for this study, the researchers expect the method could be used for other species, though more research is needed to confirm. If so, this sort of onsite, real-time capability may be useful for confirming species at crime scenes, in the animal trade at border crossings, for monitoring poaching, and for other animal and human health applications.

“There are a lot of cryptic species we can’t accurately identify with our naked eye,” Baerwald said. “Our partners at MIT are really interested in pathogen detection for humans. We’re interested in pathogen detection for animals as well as using the tool for other conservation issues.”

Here’s a link to and a citation for the paper,

Rapid and accurate species identification for ecological studies and monitoring using CRISPR‐based SHERLOCK by Melinda R. Baerwald, Alisha M. Goodbla, Raman P. Nagarajan, Jonathan S. Gootenberg, Omar O. Abudayyeh, Feng Zhang, Andrea D. Schreier. Molecular Ecology Resources https://doi.org/10.1111/1755-0998.13186 First published: 12 May 2020

This paper is behind a paywall.

The business of CRISPR

SHERLOCK™, is a trademark for what Sherlock Biosciences calls one of its engineering biology platforms. From the Sherlock Biosciences Technology webpage,

What is SHERLOCK™?

SHERLOCK is an evolution of CRISPR technology, which others use to make precise edits in genetic code. SHERLOCK can detect the unique genetic fingerprints of virtually any DNA or RNA sequence in any organism or pathogen. Developed by our founders and licensed exclusively from the Broad Institute, SHERLOCK is a method for single molecule detection of nucleic acid targets and stands for Specific High Sensitivity Enzymatic Reporter unLOCKing. It works by amplifying genetic sequences and programming a CRISPR molecule to detect the presence of a specific genetic signature in a sample, which can also be quantified. When it finds those signatures, the CRISPR enzyme is activated and releases a robust signal. This signal can be adapted to work on a simple paper strip test, in laboratory equipment, or to provide an electrochemical readout that can be read with a mobile phone.

However, things get a little more confusing when you look at the Broad Institute’s Developing Diagnostics and Treatments webpage,

Ensuring the SHERLOCK diagnostic platform is easily accessible, especially in the developing world, where the need for inexpensive, reliable, field-based diagnostics is the most urgent

SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) is a CRISPR-based diagnostic tool that is rapid, inexpensive, and highly sensitive, with the potential to have a transformative effect on research and global public health. The SHERLOCK platform can detect viruses, bacteria, or other targets in clinical samples such as urine or blood, and reveal results on a paper strip — without the need for extensive specialized equipment. This technology could potentially be used to aid the response to infectious disease outbreaks, monitor antibiotic resistance, detect cancer, and more. SHERLOCK tools are freely available [emphasis mine] for academic research worldwide, and the Broad Institute’s licensing framework [emphasis mine] ensures that the SHERLOCK diagnostic platform is easily accessible in the developing world, where inexpensive, reliable, field-based diagnostics are urgently needed.

Here’s what I suspect. as stated, the Broad Institute has free SHERLOCK licenses for academic institutions and not-for-profit organizations but Sherlock Biosciences, a Broad Institute spinoff company, is for-profit and has trademarked SHERLOCK for commercial purposes.

Final thoughts

This looks like a relatively subtle campaign to influence public perceptions. Genetic modification or genetic engineering as exemplified by the CRISPR gene editing technique is a force for the good of all. It will help us in our hour of need (COVID-19 pandemic) and it can help us save various species and better manage our resources.

This contrasts greatly with the publicity generated by the CRISPR twins situation where a scientist claimed to have successfully edited the germline for twins, Lulu and Nana. This was done despite a voluntary, worldwide moratorium on germline editing of viable embryos. (Search the terms [either here or on a standard search engine] ‘CRISPR twins’, ‘Lulu and Nana’, and/or ‘He Jiankui’ for details about the scandal.

In addition to presenting CRISPR as beneficial in the short term rather than the distant future, this publicity also subtly positions the Broad Institute as CRISPR’s owner.

Or, maybe I’m wrong. Regardless, I’m watching.