Tag Archives: University of California at Merced

It’s a golden world

I have a number of stories concerning gold where researchers seemed to have had an extraordinarily rich set of findings within the last month. One of these is especially interesting in light of what I published yesterday (August 11, 2025 “Turning lead into gold (for approximately a microsecond“) about an event in May 2025.

I will be providing my usual citations and links but will not be tagging all the researchers (there are far too many) other than those mentioned in the news releases.

Two from SLAC (SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center in California)

While both projects took place at SLAC, there’s virtually no crossover between the team members and the findings are of an entirely different nature.

Defying the limits and surviving the entropy catastrophe

An August 11, 2025 news item on ScienceDaily announces that physics limits have been defied,

Scientists have simultaneously broken a temperature record, overturned a long-held theory and utilized a new laser spectroscopy method for dense plasmas in a groundbreaking article published on July 23 in the journal Nature.

In their research article, “Superheating gold beyond the predicted entropy catastrophe threshold,” physicists revealed they were able to heat gold to over 19,000 Kelvin (33,740 degrees Fahrenheit), over 14 times its melting point, without it losing its solid, crystalline structure.

A July 23, 2025 University of Nevada news release, which originated the news item, delves further into the topic,

“This is possibly the hottest crystalline material ever recorded,” Thomas White, lead author and Clemons-Magee Endowed Professor in Physics at the University of Nevada, Reno said.

This result overturns the long-held theoretical limit known as the entropy catastrophe. The entropy catastrophe theory states that solids cannot remain stable above approximately three times their melting temperature without spontaneously melting. The melting point of gold, 1,337 Kelvin (1,947 degrees Fahrenheit), was far more than tripled in this experiment utilizing an extremely powerful laser at Stanford University’s SLAC National Accelerator Laboratory.

“I was expecting the gold to heat quite significantly before melting, but I wasn’t expecting a fourteen-fold temperature increase,” White said.

To heat the gold, researchers at the University of Nevada, Reno, SLAC National Accelerator Laboratory, the University of Oxford, Queen’s University Belfast, the European XFEL and the University of Warwick designed an experiment to heat a thin gold foil using a laser fired for 50 quadrillionths of a second (one millionth of a billionth). The speed with which the gold was heated seems to be the reason the gold remained solid. The findings suggest that the limit of superheating solids may be far higher – or nonexistent – if heating occurs quickly enough. The new methods used in this study open the field of high energy density physics to more exploration, including in areas of planetary physics and fusion energy research.

White and his team expected that the gold would melt at its melting point, but to measure the temperature inside the gold foil, they would need a very special thermometer.

“We used the Linac Coherent Light Source, a 3-kilometer-long X-ray laser at SLAC, as essentially the world’s largest thermometer,” White said. “This allowed us to measure the temperature inside the dense plasma for the first time, something that hasn’t been possible before.”

“This development paves the way for temperature diagnostics across a broad range of high-energy-density environments,” Bob Nagler, staff scientist at SLAC and coauthor on the paper, said. “In particular, it offers the only direct method currently available for probing the temperature of warm dense states encountered during the implosion phase of inertial fusion energy experiments. As such, it is poised to make a transformative contribution to our understanding and control of fusion-relevant plasma conditions.”

Along with the experimental designers, the research article is the result of a decade of work and collaboration between Columbia University, Princeton University, the University of Padova and the University of California, Merced.

“It’s extremely exciting to have these results out in the world, and I’m really looking forward to seeing what strides we can make in the field with these new methods,” White said.

The research, funded by the National Nuclear Security Administration, will open new doors in studies of superheated materials.

“The National Nuclear Security Administrations’ Academics Program is a proud supporter of the groundbreaking innovation and continued learning that Dr. White and his team are leading for furthering future critical research areas beneficial to the Nuclear Security Enterprise,” Jahleel Hudson, director at the Techology and Partnerships Office of the NNSA said.

White and his colleagues returned to the Linac Coherent Light Source in July to measure the temperature inside hot compressed iron and are using those results to gain insights into the interiors of planets.

Several of White’s graduate students and one undergraduate student were coauthors on the study, including doctoral student Travis Griffin, undergraduate student Hunter Stramel, Daniel Haden, a former postdoctoral scholar in White’s lab, Jacob Molina, a former undergraduate student currently pursuing his doctoral degree at Princeton University and Landon Morrison, a former undergraduate student pursuing his master’s degree at the University of Oxford. Jeremy Iratcabal, research assistant professor in the Department of Physics, was also a coauthor on the paper.

“I’m incredibly grateful for the opportunity to contribute to such cutting-edge science using billion-dollar experimental platforms alongside world-class collaborators,” Griffin said. “This discovery highlights the power of this technique, and I’m excited by the possibilities it opens for the future of high-energy-density physics and fusion research. After graduation, I’ll be continuing this work as a staff scientist at the European XFEL.”

SLAC issued a July 23, 2025 news release (by Erin Woodward) of its own and UK’s University of Warwick also issued a July 23, 2025.

Here’s a link to and a citation for the paper,

Superheating gold beyond the predicted entropy catastrophe threshold by Thomas G. White, Travis D. Griffin, Daniel Haden, Hae Ja Lee, Eric Galtier, Eric Cunningham, Dimitri Khaghani, Adrien Descamps, Lennart Wollenweber, Ben Armentrout, Carson Convery, Karen Appel, Luke B. Fletcher, Sebastian Goede, J. B. Hastings, Jeremy Iratcabal, Emma E. McBride, Jacob Molina, Giulio Monaco, Landon Morrison, Hunter Stramel, Sameen Yunus, Ulf Zastrau, Siegfried H. Glenzer, Gianluca Gregori, Dirk O. Gericke & Bob Nagler. Nature volume 643, pages 950–954 (2025) DOI: https://doi.org/10.1038/s41586-025-09253-y Published: 23 July 2025 Issue Date: 24 July 2025

This paper is open access.

Gold’s secret chemistry

An August 11, 2025 news item on ScienceDaily announces how researchers at SLAC unexpectedly created gold hydride,

Scientists at SLAC unexpectedly created gold hydride, a compound of gold and hydrogen, while studying diamond formation under extreme pressure and heat. This discovery challenges gold’s reputation as a chemically unreactive metal and opens doors to studying dense hydrogen, which could help us understand planetary interiors and fusion processes. The results also suggest that extreme conditions can produce exotic, previously unknown compounds, offering exciting opportunities for future high-pressure chemistry research.

Serendipitously and for the first time, an international research team led by scientists at the U.S. Department of Energy’s SLAC National Accelerator Laboratory formed solid binary gold hydride, a compound made exclusively of gold and hydrogen atoms.

An August 4, 2025 SLAC news release by Chris Patrick, which originated the news release, provides more details, Note: Links have been removed,

The researchers were studying how long it takes hydrocarbons, compounds made of carbon and hydrogen, to form diamonds under extremely high pressure and heat. In their experiments at the European XFEL (X-ray Free-Electron Laser) in Germany, the team studied the effect of those extreme conditions in hydrocarbon samples with an embedded gold foil, which was meant to absorb the X-rays and heat the weakly absorbing hydrocarbons. To their surprise, they not only saw the formation of diamonds, but also discovered the formation of gold hydride. 

“It was unexpected because gold is typically chemically very boring and unreactive – that’s why we use it as an X-ray absorber in these experiments,” said Mungo Frost, staff scientist at SLAC who led the study. “These results suggest there’s potentially a lot of new chemistry to be discovered at extreme conditions where the effects of temperature and pressure start competing with conventional chemistry, and you can form these exotic compounds.”

The results, published in Angewandte Chemie International Edition, provide a glimpse of how the rules of chemistry change under extreme conditions like those found inside certain planets or hydrogen-fusing stars.

Studying dense hydrogen

In their experiment, the researchers first squeezed their hydrocarbon samples to pressures greater than those within Earth’s mantle using a diamond anvil cell. Then, they heated the samples to over 3,500 degrees Fahrenheit by hitting them repeatedly with X-ray pulses from the European XFEL. The team recorded and analyzed how the X-rays scattered off the samples, which allowed them to resolve the structural transformations within.

As expected, the recorded scattering patterns showed that the carbon atoms had formed a diamond structure. But the team also saw unexpected signals that were due to hydrogen atoms reacting with the gold foil to form gold hydride. 

Under the extreme conditions created in the study, the researchers found hydrogen to be in a dense, “superionic” state, where the hydrogen atoms flowed freely through the gold’s rigid atomic lattice, increasing the conductivity of the gold hydride. 

Hydrogen, which is the lightest element of the periodic table, is tricky to study with X-rays because it scatters X-rays only weakly. Here, however, the superionic hydrogen interacted with the much heavier gold atoms, and the team was able to observe hydrogen’s impact on how the gold lattice scattered X-rays. “We can use the gold lattice as a witness for what the hydrogen is doing,” Mungo said. 

The gold hydride offers a way to study dense atomic hydrogen under conditions that might also apply to other situations that are experimentally not directly accessible. For example, dense hydrogen makes up the interiors of certain planets, so studying it in the lab could teach us more about those foreign worlds. It could also provide new insights into nuclear fusion processes inside stars like our sun and help develop technology to harness fusion energy here on Earth.

Exploring new chemistry

In addition to paving the way for studies of dense hydrogen, the research also offers an avenue for exploring new chemistry. Gold, which is commonly regarded as an unreactive metal, was found to form a stable hydride at extremely high pressure and temperature. In fact, it appears to be only stable at those extreme conditions as when it cools down, the gold and hydrogen separate. The simulations also showed that more hydrogen could fit in the gold lattice at higher pressure.

The simulation framework could also be extended beyond gold hydride. “It’s important that we can experimentally produce and model these states under these extreme conditions,” said Siegfried Glenzer, High Energy Density Division director and professor for photon science at SLAC and the study’s principal investigator. “These simulation tools could be applied to model other exotic material properties in extreme conditions.” 

The team also included researchers from Rostock University, DESY, European XFEL, Helmholtz-Zentrum Dresden-Rossendorf, Frankfurt University and Bayreuth University, all in Germany; the University of Edinburgh, UK; the Carnegie Institution for Science, Stanford University and the Stanford Institute for Materials and Energy Sciences (SIMES). Parts of this work were supported by the DOE Office of Science.

Here’s a link to and a citation for the paper,

Synthesis of Gold Hydride at High Pressure and High Temperature by Mungo Frost, Kilian Abraham, Alexander F. Goncharov, R. Stewart McWilliams, Rachel J. Husband, Michal Andrzejewski, Karen Appel, Carsten Baehtz, Armin Bergermann, Danielle Brown, Elena Bykova, Anna Celeste, Eric Edmund, Nicholas J. Hartley, Konstantin Glazyrin, Heinz Graafsma, Nicolas Jaisle, Zuzana Konôpková, Torsten Laurus, Yu Lin, Bernhard Massani, Maximilian Schörner, Maximilian Schulze, Cornelius Strohm, Minxue Tang, Zena Younes, Gerd Steinle-Neumann, Ronald Redmer, Siegfried H. Glenzer. Angewandte Chemie International Edition DOI: https://doi.org/10.1002/anie.202505811 First published: 04 August 2025

This paper is behind a paywall.

Gold and a quantum revolution?

An August 11, 2025 news item on ScienceDaily announces joint research from Pennsylvania State University (Penn State) and Colorado State University,

The efficiency of quantum computers, sensors and other applications often relies on the properties of electrons, including how they are spinning. One of the most accurate systems for high performance quantum applications relies on tapping into the spin properties of electrons of atoms trapped in a gas, but these systems are difficult to scale up for use in larger quantum devices like quantum computers. Now, a team of researchers from Penn State and Colorado State has demonstrated how a gold cluster can mimic these gaseous, trapped atoms, allowing scientists to take advantage of these spin properties in a system that can be easily scaled up.

A July 22, 2025 Penn State news release (also on EurekAlert) by Gail McCormick, which originated the news item, reveals more about the work which resulted in two published papers, Note: Links have been removed,

“For the first time, we show that gold nanoclusters have the same key spin properties as the current state-of-the-art methods for quantum information systems,” said Ken Knappenberger, department head and professor of chemistry in the Penn State Eberly College of Science and leader of the research team. “Excitingly, we can also manipulate an important property called spin polarization in these clusters, which is usually fixed in a material. These clusters can be easily synthesized in relatively large quantities, making this work a promising proof-of-concept that gold clusters could be used to support a variety of quantum applications.”

Two papers describing the gold clusters and confirming their spin properties appeared in ACS Central Science, ACS Central Science and The Journal of Physical Chemistry Letters.

“An electron’s spin not only influences important chemical reactions, but also quantum applications like computation and sensing,” said Nate Smith, graduate student in chemistry in the Penn State Eberly College of Science and first author of one of the papers. “The direction an electron spins and its alignment with respect to other electrons in the system can directly impact the accuracy and longevity of quantum information systems.”

Much like the Earth spins around its axis, which is tilted with respect to the sun, an electron can spin around its axis, which can be tilted with respect to its nucleus. But unlike Earth, an electron can spin clockwise or counterclockwise. When many electrons in a material are spinning in the same direction and their tilts are aligned, the electrons are considered correlated, and the material is said to have a high degree of spin polarization. 

“Materials with electrons that are highly correlated, with a high degree of spin polarization, can maintain this correlation for a much longer time, and thus remain accurate for much longer,” Smith said.

The current state-of-the-art system for high accuracy and low error in quantum information systems involve trapped atomic ions — atoms with an electric charge — in a gaseous state. This system allows electrons to be excited to different energy levels, called Rydberg states, which have very specific spin polarizations that can last for a long period of time. It also allows for the superposition of electrons, with electrons existing in multiple states simultaneously until they are measured, which is a key property for quantum systems. 

“These trapped gaseous ions are by nature dilute, which makes them very difficult to scale up,” Knappenberger said. “The condensed phase required for a solid material, by definition, packs atoms together, losing that dilute nature. So, scaling up provides all the right electronic ingredients, but these systems become very sensitive to interference from the environment. The environment basically scrambles all the information that you encoded into the system, so the rate of error becomes very high. In this study, we found that gold clusters can mimic all the best properties of the trapped gaseous ions with the benefit of scalability.”

Scientists have heavily studied gold nanostructures for their potential use in optical technology, sensing, therapeutics and to speed up chemical reactions, but less is known about their magnetic and spin-dependent properties. In the current studies, the researchers specifically explored monolayer-protected clusters, which have a core of gold and are surrounded by other molecules called ligands. The researchers can precisely control the construction of these clusters and can synthesize relatively large amounts at one time. 

“These clusters are referred to as super atoms, because their electronic character is like that of an atom, and now we know their spin properties are also similar,” Smith said. “We identified 19 distinguishable and unique Rydberg-like spin-polarized states that mimic the super-positions that we could do in the trapped, gas-phase dilute ions. This means the clusters have the key properties needed to carry out spin-based operations.”

The researchers determined the spin polarization of the gold clusters using a similar method used with traditional atoms. While one type of gold cluster had 7% spin polarization, a cluster with different a ligand approached 40% spin polarization, which Knappenberger said is competitive with some of the leading two-dimensional quantum materials.

“This tells us that the spin properties of the electron are intimately related to the vibrations of the ligands,” Knappenberger said. “Traditionally, quantum materials have a fixed value of spin polarization that cannot be significantly changed, but our results suggest we can modify the ligand of these gold clusters to tune this property widely.”

The research team plans to explore how different structures within the ligands impact spin polarization and how they could be manipulated to fine tune spin properties.

“The quantum field is generally dominated by researchers in physics and materials science, and here we see the opportunity for chemists to use our synthesis skills to design materials with tunable results,” Knappenberger said. “This is a new frontier in quantum information science.”

In addition to Smith and Knappenberger, the research team includes Juniper Foxley, graduate student in chemistry at Penn State; Patrick Herbert, who earned a doctoral degree in chemistry at Penn State in 2019; Jane Knappenberger, researcher in the Penn State Eberly College of Science; as well as Marcus Tofanelli and Christopher Ackerson at Colorado State

Funding from the Air Force Office of Scientific Research and the U.S. National Science Foundation supported this research.

At Penn State, researchers are solving real problems that impact the health, safety and quality of life of people across the commonwealth, the nation and around the world.

For decades, federal support for research has fueled innovation that makes our country safer, our industries more competitive and our economy stronger. Recent federal funding cuts threaten this progress.

Learn more about the implications of federal funding cuts to our future at Research or Regress. [Research or Regress can found here]

Here are links to and citation for the paper,

The Influence of Passivating Ligand Identity on Au25(SR)18 Spin-Polarized Emission by Nathanael L. Smith, Patrick J. Herbert, Marcus A. Tofanelli, Jane A. Knappenberger, Christopher J. Ackerson, Kenneth L. Knappenberger Jr. The Journal of Physical Chemistry Letters 2025, 16, 20, 5168–5172 DOI: https://doi.org/10.1021/acs.jpclett.5c00723 Published May 15, 2025 Copyright © 2025 American Chemical Society

This paper is behind a paywall.

Diverse Superatomic Magnetic and Spin Properties of Au144(SC8H9)60 Clusters by Juniper Foxley, Marcus Tofanelli, Jane A. Knappenberger, Christopher J. Ackerson, Kenneth L. Knappenberger Jr ACS Central Science 2025, XXXX, XXX, XXX-XXX DOI: https://doi.org/10.1021/acscentsci.5c00139
Published May 29, 2025 © 2025 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0 .

This paper is open access.

Lead into gold, the second time around

There are reasons why news releases are issued twice and/or months after a research paper was published. Whoever is scanning for news may have missed it or it was a big news day and science was not top of mind or e.g., a number of teams are publishing research in your field and are generating a lot of interest and you hope your institution will benefit from it.

This August 11, 2025 news item on ScienceDaily resuscitates a story from May 2025,

Nuclear physicists working at the Large Hadron Collider recently made headlines by achieving the centuries-old dream of alchemists (and nightmare of precious-metals investors): They transformed lead into gold.

At least for a fraction of a second. The scientists reported their results in Physical Reviews.

The accomplishment at the Large Hadron Collider, the 17-mile particle accelerator buried under the French-Swiss border, happened within a sophisticated and sensitive detector called ALICE, a scientific instrument roughly the size of a McMansion.

A July 30, 2025 University of Kansas news release (also on EurekAlert), which originated the August 11, 2025 news item, adds new details about the work, Note: A link has been removed,

It was scientists from the University of Kansas, working on the ALICE experiment, who developed the technique that tracked “ultra-peripheral” collisions between protons and ions that made gold in the LHC.

“Usually in collider experiments, we make the particles crash into each other to produce lots of debris,” said Daniel Tapia Takaki, professor of physics and leader of KU’s group at ALICE. “But in ultra-peripheral collisions, we’re interested in what happens when the particles don’t hit each other. These are near misses. The ions pass close enough to interact — but without touching. There’s no physical overlap.”

The ions racing around the LHC tunnel are heavy nuclei with many protons, each generating powerful electric fields. When accelerated, these charged ions emit photons — they shine light.

“When you accelerate an electric charge to near light speeds, it starts shining,” Tapia Takaki said. “One ion can shine light that essentially takes a picture of the other. When that light is energetic enough, it can probe deep inside the other nucleus, like a high-energy flashbulb.”

The KU researcher said during these UPC “flashes” surprising interactions can occur, including the rate event that sparked worldwide attention.

“Sometimes, the photons from both ions interact with each other — what we call photon-photon collisions,” he said. “These events are incredibly clean, with almost nothing else produced. They contrast with typical collisions where we see sprays of particles flying everywhere.”

However, the ALICE detector and the LHC were designed to collect data on head-on collisions that result in messy sprays of particles.

“These clean interactions were hard to detect with earlier setups,” Tapia Takaki said. “Our group at KU pioneered new techniques to study them. We built up this expertise years ago when it was not a popular subject.”

These methods allowed for the news-making discovery that the LHC team transmuted lead into gold momentarily via ultra-peripheral collisions where lead ions lose three protons (turning the speck of lead into a gold speck) for a fraction of a second.

Tapia Takaki’s KU co-authors on the paper are graduate student Anna Binoy; graduate student Amrit Gautam; postdoctoral researcher Tommaso Isidori; postdoctoral research assistant Anisa Khatun; and research scientist Nicola Minafra.

The KU team at the LHC ALICE experiment plans to continue studying the ultra-peripheral collisions. Tapia Takaki said that while the creation of gold fascinated the public, the potential of understanding the interactions goes deeper.

“This light is so energetic, it can knock protons out of the nucleus,” he said. “Sometimes one, sometimes two, three or even four protons. We can see these ejected protons directly with our detectors.”

Each proton removed changes the elements: One gives thallium, two gives mercury, three gives gold.

“These new nuclei are very short-lived,” he said. “They decay quickly, but not always immediately. Sometimes they travel along the beamline and hit parts of the collider — triggering safety systems.”

That’s why this research matters beyond the headlines.

“With proposals for future colliders even larger than the LHC — some up to 100 kilometers in Europe and China — you need to understand these nuclear byproducts,” Tapia Takaki said. “This ‘alchemy’ may be crucial for designing the next generation of machines.”

This work was supported by the U.S. Department of Energy Office of Science, Office of Nuclear Physics.

Here’s a new link and citation, which includes each team member’s name, for the paper,

Proton emission in ultraperipheral Pb-Pb collisions at sNN=5.02 TeV by S. Acharya, A. Agarwal, G. Aglieri Rinella, L. Aglietta, M. Agnello, N. Agrawal, Z. Ahammed, S. Ahmad, S. U. Ahn, I. Ahuja, A. Akindinov, V. Akishina, M. Al-Turany, D. Aleksandrov, B. Alessandro, H. M. Alfanda, R. Alfaro Molina, B. Ali, A. Alici, N. Alizadehvandchali, A. Alkin, J. Alme, G. Alocco, T. Alt, A. R. Altamura, I. Altsybeev, J. R. Alvarado, C. O. R. Alvarez, M. N. Anaam, C. Andrei, N. Andreou, A. Andronic, E. Andronov, V. Anguelov, F. Antinori, P. Antonioli, N. Apadula, L. Aphecetche, H. Appelshäuser, C. Arata, S. Arcelli, R. Arnaldi, J. G. M. C. A. Arneiro, I. C. Arsene, M. Arslandok, A. Augustinus, R. Averbeck, D. Averyanov, M. D. Azmi, H. Baba, A. Badalà, J. Bae, Y. Bae, Y. W. Baek, X. Bai, R. Bailhache, Y. Bailung, R. Bala, A. Baldisseri, B. Balis, Z. Banoo, V. Barbasova, F. Barile, L. Barioglio, M. Barlou, B. Barman, G. G. Barnaföldi, L. S. Barnby, E. Barreau, V. Barret, L. Barreto, C. Bartels, K. Barth, E. Bartsch, N. Bastid, S. Basu, G. Batigne, D. Battistini, B. Batyunya, D. Bauri, J. L. Bazo Alba, I. G. Bearden, C. Beattie, P. Becht, D. Behera, I. Belikov, A. D. C. Bell Hechavarria, F. Bellini, R. Bellwied, S. Belokurova, L. G. E. Beltran, Y. A. V. Beltran, G. Bencedi, A. Bensaoula, S. Beole, Y. Berdnikov, A. Berdnikova, L. Bergmann, M. G. Besoiu, L. Betev, P. P. Bhaduri, A. Bhasin, B. Bhattacharjee, L. Bianchi, J. Bielčík, J. Bielčíková, A. P. Bigot, A. Bilandzic, A. Binoy, G. Biro, S. Biswas, N. Bize, J. T. Blair, D. Blau, M. B. Blidaru, N. Bluhme, C. Blume, F. Bock, T. Bodova, J. Bok, L. Boldizsár, M. Bombara, P. M. Bond, G. Bonomi, H. Borel, A. Borissov, A. G. Borquez Carcamo, E. Botta, Y. E. M. Bouziani, D. C. Brandibur, L. Bratrud, P. Braun-Munzinger, M. Bregant, M. Broz, G. E. Bruno, V. D. Buchakchiev, M. D. Buckland, D. Budnikov, H. Buesching, S. Bufalino, P. Buhler, N. Burmasov, Z. Buthelezi, A. Bylinkin, S. A. Bysiak, J. C. Cabanillas Noris, M. F. T. Cabrera, H. Caines, A. Caliva, E. Calvo Villar, J. M. M. Camacho, P. Camerini, F. D. M. Canedo, S. L. Cantway, M. Carabas, A. A. Carballo, F. Carnesecchi, R. Caron, L. A. D. Carvalho, J. Castillo Castellanos, M. Castoldi, F. Catalano, S. Cattaruzzi, R. Cerri, I. Chakaberia, P. Chakraborty, S. Chandra, S. Chapeland, M. Chartier, S. Chattopadhay, M. Chen, T. Cheng, C. Cheshkov, D. Chiappara, V. Chibante Barroso, D. D. Chinellato, E. S. Chizzali, J. Cho, S. Cho, P. Chochula, Z. A. Chochulska, D. Choudhury, S. Choudhury, P. Christakoglou, C. H. Christensen, P. Christiansen, T. Chujo, M. Ciacco, C. Cicalo, F. Cindolo, M. R. Ciupek, G. Clai, F. Colamaria, J. S. Colburn, D. Colella, A. Colelli, M. Colocci, M. Concas, G. Conesa Balbastre, Z. Conesa del Valle, G. Contin, J. G. Contreras, M. L. Coquet, P. Cortese, M. R. Cosentino, F. Costa, S. Costanza, P. Crochet, M. M. Czarnynoga, A. Dainese, G. Dange, M. C. Danisch, A. Danu, P. Das, S. Das, A. R. Dash, S. Dash, A. De Caro, G. de Cataldo, J. de Cuveland, A. De Falco, D. De Gruttola, N. De Marco, C. De Martin, S. De Pasquale, R. Deb, R. Del Grande, L. Dello Stritto, W. Deng, K. C. Devereaux, G. G. A. de Souza, P. Dhankher, D. Di Bari, A. Di Mauro, B. Di Ruzza, B. Diab, R. A. Diaz, Y. Ding, J. Ditzel, R. Divià, Ø. Djuvsland, U. Dmitrieva, A. Dobrin, B. Dönigus, J. M. Dubinski, A. Dubla, P. Dupieux, N. Dzalaiova, T. M. Eder, R. J. Ehlers, F. Eisenhut, R. Ejima, D. Elia, B. Erazmus, F. Ercolessi, B. Espagnon, G. Eulisse, D. Evans, S. Evdokimov, L. Fabbietti, M. Faggin, J. Faivre, F. Fan, W. Fan, A. Fantoni, M. Fasel, G. Feofilov, A. Fernández Téllez, L. Ferrandi, M. B. Ferrer, A. Ferrero, C. Ferrero, A. Ferretti, V. J. G. Feuillard, V. Filova, D. Finogeev, F. M. Fionda, E. Flatland, F. Flor, A. N. Flores, S. Foertsch, I. Fokin, S. Fokin, U. Follo, E. Fragiacomo, E. Frajna, U. Fuchs, N. Funicello, C. Furget, A. Furs, T. Fusayasu, J. J. Gaardhøje, M. Gagliardi, A. M. Gago, T. Gahlaut, C. D. Galvan, S. Gami, D. R. Gangadharan, P. Ganoti, C. Garabatos, J. M. Garcia, T. García Chávez, E. Garcia-Solis, S. Garetti, C. Gargiulo, P. Gasik, H. M. Gaur, A. Gautam, M. B. Gay Ducati, M. Germain, R. A. Gernhaeuser, C. Ghosh, M. Giacalone, G. Gioachin, S. K. Giri, P. Giubellino, P. Giubilato, A. M. C. Glaenzer, P. Glässel, E. Glimos, D. J. Q. Goh, V. Gonzalez, P. Gordeev, M. Gorgon, K. Goswami, S. Gotovac, V. Grabski, L. K. Graczykowski, E. Grecka, A. Grelli, C. Grigoras, V. Grigoriev, S. Grigoryan, F. Grosa, J. F. Grosse-Oetringhaus, R. Grosso, D. Grund, N. A. Grunwald, G. G. Guardiano, R. Guernane, M. Guilbaud, K. Gulbrandsen, J. J. W. K. Gumprecht, T. Gündem, T. Gunji, W. Guo, A. Gupta, R. Gupta, R. Gupta, K. Gwizdziel, L. Gyulai, C. Hadjidakis, F. U. Haider, S. Haidlova, M. Haldar, H. Hamagaki, Y. Han, B. G. Hanley, R. Hannigan, J. Hansen, M. R. Haque, J. W. Harris, A. Harton, M. V. Hartung, H. Hassan, D. Hatzifotiadou, P. Hauer, L. B. Havener, E. Hellbär, H. Helstrup, M. Hemmer, T. Herman, S. G. Hernandez, G. Herrera Corral, S. Herrmann, K. F. Hetland, B. Heybeck, H. Hillemanns, B. Hippolyte, I. P. M. Hobus, F. W. Hoffmann, B. Hofman, M. Horst, A. Horzyk, Y. Hou, P. Hristov, P. Huhn, L. M. Huhta, T. J. Humanic, A. Hutson, D. Hutter, M. C. Hwang, R. Ilkaev, M. Inaba, G. M. Innocenti, M. Ippolitov, A. Isakov, T. Isidori, M. S. Islam, S. Iurchenko, M. Ivanov, M. Ivanov, V. Ivanov, K. E. Iversen, M. Jablonski, B. Jacak, N. Jacazio, P. M. Jacobs, S. Jadlovska, J. Jadlovsky, S. Jaelani, C. Jahnke, M. J. Jakubowska, M. A. Janik, T. Janson, S. Ji, S. Jia, T. Jiang, A. A. P. Jimenez, F. Jonas, D. M. Jones, J. M. Jowett, J. Jung, M. Jung, A. Junique, A. Jusko, J. Kaewjai, P. Kalinak, A. Kalweit, A. Karasu Uysal, D. Karatovic, N. Karatzenis, O. Karavichev, T. Karavicheva, E. Karpechev, M. J. Karwowska, U. Kebschull, M. Keil, B. Ketzer, J. Keul, S. S. Khade, A. M. Khan, S. Khan, A. Khanzadeev, Y. Kharlov, A. Khatun, A. Khuntia, Z. Khuranova, B. Kileng, B. Kim, C. Kim, D. J. Kim, D. Kim, E. J. Kim, J. Kim, J. Kim, J. Kim, M. Kim, S. Kim, T. Kim, K. Kimura, S. Kirsch, I. Kisel, S. Kiselev, A. Kisiel, J. L. Klay, J. Klein, S. Klein, C. Klein-Bösing, M. Kleiner, T. Klemenz, A. Kluge, C. Kobdaj, R. Kohara, T. Kollegger, A. Kondratyev, N. Kondratyeva, J. Konig, S. A. Konigstorfer, P. J. Konopka, G. Kornakov, M. Korwieser, S. D. Koryciak, C. Koster, A. Kotliarov, N. Kovacic, V. Kovalenko, M. Kowalski, V. Kozhuharov, G. Kozlov, I. Králik, A. Kravčáková, L. Krcal, M. Krivda, F. Krizek, K. Krizkova Gajdosova, C. Krug, M. Krüger, D. M. Krupova, E. Kryshen, V. Kučera, C. Kuhn, P. G. Kuijer, T. Kumaoka, D. Kumar, L. Kumar, N. Kumar, S. Kumar, S. Kundu, P. Kurashvili, A. B. Kurepin, A. Kuryakin, S. Kushpil, V. Kuskov, M. Kutyla, A. Kuznetsov, M. J. Kweon, Y. Kwon, S. L. La Pointe, P. La Rocca, A. Lakrathok, M. Lamanna, S. Lambert, A. R. Landou, R. Langoy, P. Larionov, E. Laudi, L. Lautner, R. A. N. Laveaga, R. Lavicka, R. Lea, H. Lee, I. Legrand, G. Legras, J. Lehrbach, A. M. Lejeune, T. M. Lelek, R. C. Lemmon, I. León Monzón, M. M. Lesch, P. Lévai, M. Li, P. Li, X. Li, B. E. Liang-Gilman, J. Lien, R. Lietava, I. Likmeta, B. Lim, H. Lim, S. H. Lim, V. Lindenstruth, C. Lippmann, D. Liskova, D. H. Liu, J. Liu, G. S. S. Liveraro, I. M. Lofnes, C. Loizides, S. Lokos, J. Lömker, X. Lopez, E. López Torres, C. Lotteau, P. Lu, Z. Lu, F. V. Lugo, J. R. Luhder, G. Luparello, Y. G. Ma, M. Mager, A. Maire, E. M. Majerz, M. V. Makariev, M. Malaev, G. Malfattore, N. M. Malik, S. K. Malik, D. Mallick, N. Mallick, G. Mandaglio, S. K. Mandal, A. Manea, V. Manko, F. Manso, G. Mantzaridis, V. Manzari, Y. Mao, R. W. Marcjan, G. V. Margagliotti, A. Margotti, A. Marín, C. Markert, C. F. B. Marquez, P. Martinengo, M. I. Martínez, G. Martínez García, M. P. P. Martins, S. Masciocchi, M. Masera, A. Masoni, L. Massacrier, O. Massen, A. Mastroserio, S. Mattiazzo, A. Matyja, F. Mazzaschi, M. Mazzilli, Y. Melikyan, M. Melo, A. Menchaca-Rocha, J. E. M. Mendez, E. Meninno, A. S. Menon, M. W. Menzel, M. Meres, L. Micheletti, D. Mihai, D. L. Mihaylov, K. Mikhaylov, N. Minafra, D. Miśkowiec, A. Modak, B. Mohanty, M. Mohisin Khan, M. A. Molander, M. M. Mondal, S. Monira, C. Mordasini, D. A. Moreira De Godoy, I. Morozov, A. Morsch, T. Mrnjavac, V. Muccifora, S. Muhuri, J. D. Mulligan, A. Mulliri, M. G. Munhoz, R. H. Munzer, H. Murakami, S. Murray, L. Musa, J. Musinsky, J. W. Myrcha, B. Naik, A. I. Nambrath, B. K. Nandi, R. Nania, E. Nappi, A. F. Nassirpour, V. Nastase, A. Nath, S. Nath, C. Nattrass, M. N. Naydenov, A. Neagu, A. Negru, E. Nekrasova, L. Nellen, R. Nepeivoda, S. Nese, N. Nicassio, B. S. Nielsen, E. G. Nielsen, S. Nikolaev, V. Nikulin, F. Noferini, S. Noh, P. Nomokonov, J. Norman, N. Novitzky, A. Nyanin, J. Nystrand, M. R. Ockleton, S. Oh, A. Ohlson, V. A. Okorokov, J. Oleniacz, A. Onnerstad, C. Oppedisano, A. Ortiz Velasquez, J. Otwinowski, M. Oya, K. Oyama, S. Padhan, D. Pagano, G. Paić, S. Paisano-Guzmán, A. Palasciano, I. Panasenko, S. Panebianco, C. Pantouvakis, H. Park, J. Park, S. Park, J. E. Parkkila, Y. Patley, R. N. Patra, B. Paul, H. Pei, T. Peitzmann, X. Peng, M. Pennisi, S. Perciballi, D. Peresunko, G. M. Perez, Y. Pestov, M. T. Petersen, V. Petrov, M. Petrovici, S. Piano, M. Pikna, P. Pillot, O. Pinazza, L. Pinsky, C. Pinto, S. Pisano, M. Płoskoń, M. Planinic, D. K. Plociennik, M. G. Poghosyan, B. Polichtchouk, S. Politano, N. Poljak, A. Pop, S. Porteboeuf-Houssais, V. Pozdniakov, I. Y. Pozos, K. K. Pradhan, S. K. Prasad, S. Prasad, R. Preghenella, F. Prino, C. A. Pruneau, I. Pshenichnov, M. Puccio, S. Pucillo, S. Qiu, L. Quaglia, A. M. K. Radhakrishnan, S. Ragoni, A. Rai, A. Rakotozafindrabe, L. Ramello, M. Rasa, S. S. Räsänen, R. Rath, M. P. Rauch, I. Ravasenga, K. F. Read, C. Reckziegel, A. R. Redelbach, K. Redlich, C. A. Reetz, H. D. Regules-Medel, A. Rehman, F. Reidt, H. A. Reme-Ness, K. Reygers, A. Riabov, V. Riabov, R. Ricci, M. Richter, A. A. Riedel, W. Riegler, A. G. Riffero, M. Rignanese, C. Ripoli, C. Ristea, M. V. Rodriguez, M. Rodríguez Cahuantzi, S. A. Rodríguez Ramírez, K. Røed, R. Rogalev, E. Rogochaya, T. S. Rogoschinski, D. Rohr, D. Röhrich, S. Rojas Torres, P. S. Rokita, G. Romanenko, F. Ronchetti, E. D. Rosas, K. Roslon, A. Rossi, A. Roy, S. Roy, N. Rubini, J. A. Rudolph, D. Ruggiano, R. Rui, P. G. Russek, R. Russo, A. Rustamov, E. Ryabinkin, Y. Ryabov, A. Rybicki, J. Ryu, W. Rzesa, B. Sabiu, S. Sadovsky, J. Saetre, S. Saha, B. Sahoo, R. Sahoo, D. Sahu, P. K. Sahu, J. Saini, K. Sajdakova, S. Sakai, M. P. Salvan, S. Sambyal, D. Samitz, I. Sanna, T. B. Saramela, D. Sarkar, P. Sarma, V. Sarritzu, V. M. Sarti, M. H. P. Sas, S. Sawan, E. Scapparone, J. Schambach, H. S. Scheid, C. Schiaua, R. Schicker, F. Schlepper, A. Schmah, C. Schmidt, M. O. Schmidt, M. Schmidt, N. V. Schmidt, A. R. Schmier, J. Schoengarth, R. Schotter, A. Schröter, J. Schukraft, K. Schweda, G. Scioli, E. Scomparin, J. E. Seger, Y. Sekiguchi, D. Sekihata, M. Selina, I. Selyuzhenkov, S. Senyukov, J. J. Seo, D. Serebryakov, L. Serkin, L. Šerkšnytė, A. Sevcenco, T. J. Shaba, A. Shabetai, R. Shahoyan, A. Shangaraev, B. Sharma, D. Sharma, H. Sharma, M. Sharma, S. Sharma, S. Sharma, U. Sharma, A. Shatat, O. Sheibani, K. Shigaki, M. Shimomura, J. Shin, S. Shirinkin, Q. Shou, Y. Sibiriak, S. Siddhanta, T. Siemiarczuk, T. F. Silva, D. Silvermyr, T. Simantathammakul, R. Simeonov, B. Singh, B. Singh, K. Singh, R. Singh, R. Singh, S. Singh, V. K. Singh, V. Singhal, T. Sinha, B. Sitar, M. Sitta, T. B. Skaali, G. Skorodumovs, N. Smirnov, R. J. M. Snellings, E. H. Solheim, C. Sonnabend, J. M. Sonneveld, F. Soramel, A. B. Soto-Hernandez, R. Spijkers, I. Sputowska, J. Staa, J. Stachel, I. Stan, P. J. Steffanic, T. Stellhorn, S. F. Stiefelmaier, D. Stocco, I. Storehaug, N. J. Strangmann, P. Stratmann, S. Strazzi, A. Sturniolo, C. P. Stylianidis, A. A. P. Suaide, C. Suire, A. Suiu, M. Sukhanov, M. Suljic, R. Sultanov, V. Sumberia, S. Sumowidagdo, L. H. Tabares, S. F. Taghavi, J. Takahashi, G. J. Tambave, S. Tang, Z. Tang, J. D. Tapia Takaki, N. Tapus, L. A. Tarasovicova, M. G. Tarzila, A. Tauro, A. Tavira García, G. Tejeda Muñoz, L. Terlizzi, C. Terrevoli, S. Thakur, M. Thogersen, D. Thomas, A. Tikhonov, N. Tiltmann, A. R. Timmins, M. Tkacik, T. Tkacik, A. Toia, R. Tokumoto, S. Tomassini, K. Tomohiro, N. Topilskaya, M. Toppi, V. V. Torres, A. G. Torres Ramos, A. Trifiró, T. Triloki, A. S. Triolo, S. Tripathy, T. Tripathy, S. Trogolo, V. Trubnikov, W. H. Trzaska, T. P. Trzcinski, C. Tsolanta, R. Tu, A. Tumkin, R. Turrisi, T. S. Tveter, K. Ullaland, B. Ulukutlu, S. Upadhyaya, A. Uras, G. L. Usai, M. Vala, N. Valle, L. V. R. van Doremalen, M. van Leeuwen, C. A. van Veen, R. J. G. van Weelden, P. Vande Vyvre, D. Varga, Z. Varga, P. Vargas Torres, M. Vasileiou, A. Vasiliev, O. Vázquez Doce, O. Vazquez Rueda, V. Vechernin, P. Veen, E. Vercellin, R. Verma, R. Vértesi, M. Verweij, L. Vickovic, Z. Vilakazi, O. Villalobos Baillie, A. Villani, A. Vinogradov, T. Virgili, M. M. O. Virta, A. Vodopyanov, B. Volkel, M. A. Völkl, S. A. Voloshin, G. Volpe, B. von Haller, I. Vorobyev, N. Vozniuk, J. Vrláková, J. Wan, C. Wang, D. Wang, Y. Wang, Y. Wang, Z. Wang, A. Wegrzynek, F. T. Weiglhofer, S. C. Wenzel, J. P. Wessels, P. K. Wiacek, J. Wiechula, J. Wikne, G. Wilk, J. Wilkinson, G. A. Willems, B. Windelband, M. Winn, J. R. Wright, W. Wu, Y. Wu, Z. Xiong, R. Xu, A. Yadav, A. K. Yadav, Y. Yamaguchi, S. Yang, S. Yano, E. R. Yeats, Z. Yin, I.-K. Yoo, J. H. Yoon, H. Yu, S. Yuan, A. Yuncu, V. Zaccolo, C. Zampolli, F. Zanone, N. Zardoshti, A. Zarochentsev, P. Závada, N. Zaviyalov, M. Zhalov, B. Zhang, C. Zhang, L. Zhang, M. Zhang, M. Zhang, S. Zhang, X. Zhang, Y. Zhang, Z. Zhang, M. Zhao, V. Zherebchevskii, Y. Zhi, D. Zhou, Y. Zhou, J. Zhu, S. Zhu, Y. Zhu, S. C. Zugravel, N. Zurlo. Physical Review C, 2025; 111 (5) DOI: 10.1103/PhysRevC.111.054906

This paper is open access. A PDF version is available here. h/t to ScienceDaily for the complete list of names

What human speech, jazz, and whale song have in common

Credit: iStock/Velvetfish

Seeing connections between what seem to be unrelated activities such as human speech, jazz, and whale song is fascinating to me and I’m not alone. Scientists at the University of California at Merced (UC Merced) have delivered handily on that premise according to an Oct. 13, 2017 news item on phys.org,

Jazz musicians riffing with each other, humans talking to each other and pods of killer whales all have interactive conversations that are remarkably similar to each other, new research reveals.

Cognitive science researchers at UC Merced have developed a new method for analyzing and comparing the sounds of speech, music and complex animal vocalizations like whale song and bird song. The paper detailing their findings is being published today [Oct. 12, 2017] in the Journal of the Royal Society Interface.

Their method is based on the idea that these sounds are complex because they have multiple layers of structure. Every language, for instance, has individuals sounds, roughly corresponding to letters, that combine to form syllables, words, phrases, sentences and so on. It’s a hierarchy that everyone understands intuitively. Musical compositions have their own temporal hierarchies, but until now there hasn’t been a way to directly compare the hierarchies of speech and music, or test whether similar hierarchies might exist in bird song and whale song.

An Oct. 12, 2017 UC Merced news release by Lorena Anderson, which originated the news item, provides more details about the investigation (Note: Links have been removed),

“Playing jazz music has been likened to a conversation among musicians, and killer whales are highly social creatures who vocalize as if they are talking to each other. But does jazz music really sound like a conversation, and do killer whales really sound like they are talking?” asked lead researcher and UC Merced professor Chris Kello. “We know killer whales are highly social and intelligent, but it’s hard to tell that they are interacting when you listen to recordings of them. Our method shows how much their sound patterns are like people talking, but not like other, less social whales or birds.”

The researchers figured out a way to measure and compare sound recordings by converting them into “barcodes” that capture clusters of sound energy, and clusters of clusters, across levels of a hierarchy. These barcodes allowed the researchers to directly compare temporal hierarchies in more than 200 recordings of different kinds of speech in six different languages, different kinds of popular and classical music, four different species of birds and whales singing their songs, and even thunderstorms.

Kello and his colleagues have been using the barcode method for several years. They first developed it in studies of conversations. The study published today is the first time that they applied the method to music and animal vocalizations.

“The method allows us to ask questions about language and music and animal songs that we couldn’t ask without a way to see and compare patterns in all these recordings,” Kello said.

A common song

The researchers compared barcode-style visualizations of recorded sounds.
Credit: UC Merced

Kello, fellow UC Merced cognitive science professor Ramesh Balasubramaniam, graduate student Butovens Me´de´ [or Médé] and collaborator professor Simone Dalla Bella also discovered that the haunting songs of huge humpback whales are remarkably similar to the beautiful songs of tiny nightingales and hermit thrushes in terms of their temporal hierarchies.

“Humpbacks, nightingales and hermit thrushes are solitary singers,” Kello said. “The barcodes show that their songs have similar layers of structure, but we don’t know what it means — yet.”

The idea for this project came from Kello’s sabbatical at the University of Montpellier in France, where he worked and discussed ideas with Dalla Bella. Balasubramaniam, who studies how music is perceived, is in the School of Social Sciences, Humanities and Arts with Kello, who studies speech and language processing. The project was a natural collaboration and is part of a growing research focus at UC Merced that was enabled by the National Science Foundation-funded CHASE summer school on Music and Language in 2014, and a Google Faculty Award to Kello.

Balasubramaniam is interested in continuing the work to better understand how brains distinguish between music and speech, while Kello said there are many different avenues to pursue.

For instance, the researchers found nearly identical temporal hierarchies for six different languages, which may suggest something universal about human speech. However, because this result was based on recordings of TED Talks — which have a common style and progression — Kello said it will be important to keep looking at other forms of speech and language.

One of his graduate students, Sara Schneider, is using the method to study the convergence of Spanish and English barcodes in bilingual conversations. Another graduate student, Adolfo Ramirez-Aristizabal, is working with Kello and Balasubramaniam to study whether the barcode method may shed light on how brains process speech and other complex sounds.

“Listening to music and speech, we can hear some of what we see in the barcodes, and the information may be useful for automatic classification of audio recordings. But that doesn’t mean that our brains process music and speech using these barcodes,” Kello said. “It’s intriguing, but we need to keep asking questions and go where the data lead us.”

Here’s a link to and a citation for the paper,

Hierarchical temporal structure in music, speech and animal vocalizations: jazz is like a conversation, humpbacks sing like hermit thrushes by Christopher T. Kello, Simone Dalla Bella, Butovens Médé, Ramesh Balasubramaniam. Journal of the Royal Society Interface DOI: 10.1098/rsif.2017.0231 Published 11 October 2017

This paper appears to be open access.*

*”This paper is behind a paywall” was changed to “… appears to be open access.” at 1700 hours on January 23, 2018.

Dr. Frankenstein and competitive exclusion

A promotional photo of Boris Karloff as Frankenstein's monster, using Jack Pierce's makeup design. Credit:: Universal Studios

A promotional photo of Boris Karloff as Frankenstein’s monster, using Jack Pierce’s makeup design. Credit:: Universal Studios

An Oct. 28, 2016 news item on phys.org provides some new insight into the ‘Frankenstein story’ and its perspective on science,

Frankenstein as we know him, the grotesque monster that was created through a weird science experiment, is actually a nameless Creature created by scientist Victor Frankenstein in Mary Shelley’s 1818 novel, “Frankenstein.” Widely considered the first work of science fiction for exploring the destructive consequences of scientific and moral transgressions, a new study published in BioScience argues that the horror of Mary Shelley’s gothic novel is rooted in a fundamental principle of biology.

The co-authors point to a pivotal scene when the Creature encounters Victor Frankenstein and requests a female companion to mitigate his loneliness. The Creature distinguishes his dietary needs from those of humans and expresses a willingness to inhabit the “wilds of South America,” suggesting distinct ecological requirements. Frankenstein concedes to this reasoning given that humans would have few competitive interactions with a pair of isolated creatures, but he then reverses his decision after considering the creatures’ reproductive potential and the probability of human extinction, a concept termed competitive exclusion. In essence, Frankenstein was saving humankind.

An Oct. 28, 2016 Dartmouth College news release (also on EurekAlert) by Amy Olson, which originated the news item, describes the co-authors and the research in more detail (Note: Links have been removed),

A study co-authored by Dartmouth’s Nathaniel Dominy casts a new light on the story of Frankenstein’s monster, who lives on in the public imagination in stories, in movies, and of course, on Halloween.

Mary Shelley’s gothic novel is rooted in a fundamental principle of biology, and its horror lies in the specter of the extinction of the human race, say Dominy, a professor of anthropology, and his coauthor, Justin Yeakel.

“The principle of competitive exclusion was not formally defined until the 1930s,” says Dominy. “Given Shelley’s early command of this foundational concept, we used computational tools developed by ecologists to explore if, and how quickly, an expanding population of creatures would drive humans to extinction.”

The authors developed a mathematical model based on human population densities in 1816, finding that the competitive advantages of creatures varied under different circumstances. The worst-case scenario for humans was a growing population of creatures in South America, as it was a region with fewer humans and therefore less competition for resources.

“We calculated that a founding population of two creatures could drive us to extinction in as little as 4,000 years,” says Dominy. Although the study is merely a thought experiment, it casts new light on the underlying horror of the novel: the extinction of the human race. It also has real-word implications for how we understand the biology of invasive species.

“To date, most scholars have focused on Mary Shelley’s knowledge of then-prevailing views on alchemy, physiology, and resurrection; however, the genius of Mary Shelley lies in how she combined and repackaged existing scientific debates to invent the genre of science fiction,” says Justin D. Yeakel, an Omidyar fellow at the Santa Fe Institute and an assistant professor in the School of Natural Sciences at the University of California, Merced.

“Our study adds to Mary Shelley’s legacy, by showing that her science fiction accurately anticipated fundamental concepts in ecology and evolution by many decades,” he says.

Here’s a link to and a citation for the paper,

Frankenstein and the Horrors of Competitive Exclusion by Nathaniel J. Dominy and Justin D. Yeakel.  BioScience (2016) doi: 10.1093/biosci/biw133 First published online: October 28, 2016

This paper is behind a paywall.