Tag Archives: University of California at Riverside

Copper nanoparticles, toxicity research, colons, zebrafish, and septic tanks

Alicia Taylor, a graduate student at UC Riverside, surrounded by buckets of effluent from the septic tank system she used for her research. Courtesy: University of California at Riverside

Alicia Taylor, a graduate student at UC Riverside, surrounded by buckets of effluent from the septic tank system she used for her research. Courtesy: University of California at Riverside

Those buckets of efflluent are strangely compelling. I think it’s the abundance of orange. More seriously, a March 2, 2015 news item on Nanowerk poses a question about copper nanoparticles,

What do a human colon, septic tank, copper nanoparticles and zebrafish have in common?

They were the key components used by researchers at the University of California, Riverside and UCLA [University of California at Los Angeles] to study the impact copper nanoparticles, which are found in everything from paint to cosmetics, have on organisms inadvertently exposed to them.

The researchers found that the copper nanoparticles, when studied outside the septic tank, impacted zebrafish embryo hatching rates at concentrations as low as 0.5 parts per million. However, when the copper nanoparticles were released into the replica septic tank, which included liquids that simulated human digested food and household wastewater, they were not bioavailable and didn’t impact hatching rates.

A March 2, 2015 University of California at Riverside (UCR) news release (also on EurekAlert), which originated the news item, provides more detail about the research,

“The results are encouraging because they show with a properly functioning septic tank we can eliminate the toxicity of these nanoparticles,” said Alicia Taylor, a graduate student working in the lab of Sharon Walker, a professor of chemical and environmental engineering at the University of California, Riverside’s Bourns College of Engineering.

The research comes at a time when products with nanoparticles are increasingly entering the marketplace. While the safety of workers and consumers exposed to nanoparticles has been studied, much less is known about the environmental implications of nanoparticles. The Environmental Protection Agency is currently accessing the possible effects of nanomaterials, including those made of copper, have on human health and ecosystem health.

The UC Riverside and UCLA [University of California at Los Angeles] researchers dosed the septic tank with micro copper and nano copper, which are elemental forms of copper but encompass different sizes and uses in products, and CuPRO, a nano copper-based material used as an antifungal agent to spray agricultural crops and lawns.

While these copper-based materials have beneficial purposes, inadvertent exposure to organisms such as fish or fish embryos has not received sufficient attention because it is difficult to model complicated exposure environments.

The UC Riverside researchers solved that problem by creating a unique experimental system that consists of the replica human colon and a replica two-compartment septic tank, which was originally an acyclic septic tank. The model colon is made of a custom-built 20-inch-long glass tube with a 2-inch diameter with a rubber stopper at both ends and a tube-shaped membrane typically used for dialysis treatments within the glass tube.

To simulate human feeding, 100 milliliters of a 20-ingredient mixture that replicated digested food was pumped into the dialysis tube at 9 a.m., 3 p.m. and 9 p.m. for five-day-long experiments over nine months.

The septic tank was filled with waste from the colon along with synthetic greywater, which is meant to simulate wastewater from sources such as sinks and bathtubs, and the copper nanoparticles. The researchers built a septic tank because 20 to 30 percent of American households rely on them for sewage treatment. Moreover, research has shown up to 40 percent of septic tanks don’t function properly. This is a concern if the copper materials are disrupting the function of the septic system, which would lead to untreated waste entering the soil and groundwater.

Once the primary chamber of the septic system was full, liquid began to enter the second chamber. Once a week, the effluent was drained from the secondary chamber and it was placed into sealed five-gallon containers. The effluent was then used in combination with zebrafish embryos in a high content screening process using multiwall plates to access hatching rates.

The remaining effluent has been saved and sits in 30 five-gallon buckets in a closet at UC Riverside because some collaborators have requested samples of the liquid for their experiments.

Here’s a link to and a citation for the paper,

Understanding the Transformation, Speciation, and Hazard Potential of Copper Particles in a Model Septic Tank System Using Zebrafish to Monitor the Effluent* by Sijie Lin, Alicia A. Taylor, Zhaoxia Ji, Chong Hyun Chang, Nichola M. Kinsinger, William Ueng, Sharon L. Walker, and André E. Nel. ACS Nano, 2015, 9 (2), pp 2038–2048 DOI: 10.1021/nn507216f
Publication Date (Web): January 27, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

* Link added March 10, 2015.

Sand and nanotechnology

There’s some good news coming out of the University of California, Riverside regarding sand and lithium-ion (li-ion) batteries, which I will temper with some additional information later in this posting.

First, the good news is that researchers have a new non-toxic, low cost way to produce a component in lithium-ion (li-ion) batteries according to a July 8, 2014 news item on ScienceDaily,

Researchers at the University of California, Riverside’s Bourns College of Engineering have created a lithium ion battery that outperforms the current industry standard by three times. The key material: sand. Yes, sand.

“This is the holy grail — a low cost, non-toxic, environmentally friendly way to produce high performance lithium ion battery anodes,” said Zachary Favors, a graduate student working with Cengiz and Mihri Ozkan, both engineering professors at UC Riverside.

The idea came to Favors six months ago. He was relaxing on the beach after surfing in San Clemente, Calif. when he picked up some sand, took a close look at it and saw it was made up primarily of quartz, or silicon dioxide.

His research is centered on building better lithium ion batteries, primarily for personal electronics and electric vehicles. He is focused on the anode, or negative side of the battery. Graphite is the current standard material for the anode, but as electronics have become more powerful graphite’s ability to be improved has been virtually tapped out.

A July 8, 2014 University of California at Riverside news release by Sean Nealon, which originated the news item, describes some of the problems with silicon as a replacement for graphite and how the researchers approached those problems,

Researchers are now focused on using silicon at the nanoscale, or billionths of a meter, level as a replacement for graphite. The problem with nanoscale silicon is that it degrades quickly and is hard to produce in large quantities.

Favors set out to solve both these problems. He researched sand to find a spot in the United States where it is found with a high percentage of quartz. That took him to the Cedar Creek Reservoir, east of Dallas, where he grew up.

Sand in hand, he came back to the lab at UC Riverside and milled it down to the nanometer scale, followed by a series of purification steps changing its color from brown to bright white, similar in color and texture to powdered sugar.

After that, he ground salt and magnesium, both very common elements found dissolved in sea water into the purified quartz. The resulting powder was then heated. With the salt acting as a heat absorber, the magnesium worked to remove the oxygen from the quartz, resulting in pure silicon.

The Ozkan team was pleased with how the process went. And they also encountered an added positive surprise. The pure nano-silicon formed in a very porous 3-D silicon sponge like consistency. That porosity has proved to be the key to improving the performance of the batteries built with the nano-silicon.

Now, the Ozkan team is trying to produce larger quantities of the nano-silicon beach sand and is planning to move from coin-size batteries to pouch-size batteries that are used in cell phones.

The research is supported by Temiz Energy Technologies. The UCR Office of Technology Commercialization has filed patents for inventions reported in the research paper.

Here’s a link to and a citation for the research paper,

Scalable Synthesis of Nano-Silicon from Beach Sand for Long Cycle Life Li-ion Batteries by Zachary Favors, Wei Wang, Hamed Hosseini Bay, Zafer Mutlu, Kazi Ahmed, Chueh Liu, Mihrimah Ozkan, & Cengiz S. Ozkan. Scientific Reports 4, Article number: 5623 doi:10.1038/srep05623 Published 08 July 2014

While this is good news, it does pose a conundrum of sorts. It seems that supplies of sand are currently under siege. A documentary, Sand Wars (2013) lays out the issues (from the Sand Wars website’s Synopsis page),

Most of us think of it as a complimentary ingredient of any beach vacation. Yet those seemingly insignificant grains of silica surround our daily lives. Every house, skyscraper and glass building, every bridge, airport and sidewalk in our modern society depends on sand. We use it to manufacture optical fiber, cell phone components and computer chips. We find it in our toothpaste, powdered foods and even in our glass of wine (both the glass and the wine, as a fining agent)!

Is sand an infinite resource? Can the existing supply satisfy a gigantic demand fueled by construction booms?  What are the consequences of intensive beach sand mining for the environment and the neighboring populations?

Based on encounters with sand smugglers, barefoot millionaires, corrupt politicians, unscrupulous real estate developers and environmentalists, this investigation takes us around the globe to unveil a new gold rush and a disturbing fact: the “SAND WARS” have begun.

Dr. Muditha D Senarath Yapa of John Keells Research at John Keells Holdings comments on the situation in Sri Lanka in his June 22, 2014 article (Nanotechnology – Depleting the most precious minerals for a few dollars) for The Nation,

Many have written for many years about the mineral sands of Pulmoddai. It is a national tragedy that for more than 50 years, we have been depleting the most precious minerals of our land for a few dollars. There are articles that appeared in various newspapers on how the mineral sands industry has boomed over the years. I hope the readers understand that it only means that we are depleting our resources faster than ever. According to the Lanka Mineral Sands Limited website, 90,000 tonnes of ilmenite, 9,000 tonnes of rutile, 5,500 tonnes of zircon, 100 tonnes of monazite and 4,000 tonnes of high titanium ilmenite are produced annually and shipped away to other countries.

… It is time for Sri Lanka to look at our own resources with this new light and capture the future nano materials market to create value added materials.

It’s interesting that he starts with the depletion of the sands as a national tragedy and ends with a plea to shift from a resource-based economy to a manufacturing-based economy. (This plea resonates strongly here in Canada where we too are a resource-based economy.)

Sidebar: John Keells Holdings is a most unusual company, from the About Us page,

In terms of market capitalisation, John Keells Holdings PLC is one of the largest listed conglomerate on the Colombo Stock Exchange. Other measures tell a similar tale; our group companies manage the largest number of hotel rooms in Sri Lanka, own the country’s largest privately-owned transportation business and hold leading positions in Sri Lanka’s key industries: tea, food and beverage manufacture and distribution, logistics, real estate, banking and information technology. Our investment in Sri Lanka is so deep and widely diversified that our stock price is sometimes used by international financial analysts as a benchmark of the country’s economy.

Yapa heads the companies research effort, which recently celebrated a synthetic biology agreement (from a May 2014 John Keells news release by Nuwan),

John Keells Research Signs an Historic Agreement with the Human Genetics Unit, Faculty of Medicine, University of Colombo to establish Sri Lanka’s first Synthetic Biology Research Programme.

Getting back to sand, these three pieces, ‘sand is good for li-ion batteries’, ‘sand is a diminishing resource’, and ‘let’s stop being a source of sand for other countries’ lay bare some difficult questions about our collective future on this planet.

Environmental impacts and graphene

Researchers at the University of California at Riverside (UCR) have published the results of what they claim is the first study featuring the environmental impact from graphene use. From the April 29, 2014 news item on ScienceDaily,

In a first-of-its-kind study of how a material some think could transform the electronics industry moves in water, researchers at the University of California, Riverside Bourns College of Engineering found graphene oxide nanoparticles are very mobile in lakes or streams and therefore may well cause negative environmental impacts if released.

Graphene oxide nanoparticles are an oxidized form of graphene, a single layer of carbon atoms prized for its strength, conductivity and flexibility. Applications for graphene include everything from cell phones and tablet computers to biomedical devices and solar panels.

The use of graphene and other carbon-based nanomaterials, such as carbon nanotubes, are growing rapidly. At the same time, recent studies have suggested graphene oxide may be toxic to humans. [emphasis mine]

As production of these nanomaterials increase, it is important for regulators, such as the Environmental Protection Agency, to understand their potential environmental impacts, said Jacob D. Lanphere, a UC Riverside graduate student who co-authored a just-published paper about graphene oxide nanoparticles transport in ground and surface water environments.

I wish they had cited the studies suggesting graphene oxide (GO) may be toxic. After a quick search I found: Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2 by Tobias Lammel, Paul Boisseaux, Maria-Luisa Fernández-Cruz, and José M Navas (free access paper in Particle and Fibre Toxicology 2013, 10:27 http://www.particleandfibretoxicology.com/content/10/1/27). From what I can tell, this was a highly specialized investigation conducted in a laboratory. While the results seem concerning it’s difficult to draw conclusions from this study or others that may have been conducted.

Dexter Johnson in a May 1, 2014 post on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) provides more relevant citations and some answers (Note: Links have been removed),

While the UC Riverside  did not look at the toxicity of GO in their study, researchers at the Hersam group from Northwestern University did report in a paper published in the journal Nano Letters (“Minimizing Oxidation and Stable Nanoscale Dispersion Improves the Biocompatibility of Graphene in the Lung”) that GO was the most toxic form of graphene-based materials that were tested in mice lungs. In other research published in the Journal of Hazardous Materials (“Investigation of acute effects of graphene oxide on wastewater microbial community: A case study”), investigators determined that the toxicity of GO was dose dependent and was toxic in the range of 50 to 300 mg/L. So, below 50 mg/L there appear to be no toxic effects to GO. To give you some context, arsenic is considered toxic at 0.01 mg/L.

Dexter also contrasts graphene oxide with graphene (from his May 1, 2014 post; Note: A link has been removed),

While GO is quite different from graphene in terms of its properties (GO is an insulator while graphene is a conductor), there are many applications that are similar for both GO and graphene. This is the result of GO’s functional groups allowing for different derivatives to be made on the surface of GO, which in turn allows for additional chemical modification. Some have suggested that GO would make a great material to be deposited on additional substrates for thin conductive films where the surface could be tuned for use in optical data storage, sensors, or even biomedical applications.

Getting back to the UCR research, an April 28, 2014 UCR news release (also on EurekAlert but dated April 29, 2014) describes it  in more detail,

Walker’s [Sharon L. Walker, an associate professor and the John Babbage Chair in Environmental Engineering at UC Riverside] lab is one of only a few in the country studying the environmental impact of graphene oxide. The research that led to the Environmental Engineering Science paper focused on understanding graphene oxide nanoparticles’ stability, or how well they hold together, and movement in groundwater versus surface water.

The researchers found significant differences.

In groundwater, which typically has a higher degree of hardness and a lower concentration of natural organic matter, the graphene oxide nanoparticles tended to become less stable and eventually settle out or be removed in subsurface environments.

In surface waters, where there is more organic material and less hardness, the nanoparticles remained stable and moved farther, especially in the subsurface layers of the water bodies.

The researchers also found that graphene oxide nanoparticles, despite being nearly flat, as opposed to spherical, like many other engineered nanoparticles, follow the same theories of stability and transport.

I don’t know what conclusions to draw from the information that the graphene nanoparticles remain stable and moved further in the water. Is a potential buildup of graphene nanoparticles considered a problem because it could end up in our water supply and we would be poisoned by these particles? Dexter provides an answer (from his May 1, 2014 post),

Ultimately, the question of danger of any material or chemical comes down to the simple equation: Hazard x Exposure=Risk. To determine what the real risk is of GO reaching concentrations equal to those that have been found to be toxic (50-300 mg/L) is the key question.

The results of this latest study don’t really answer that question, but only offer a tool by which to measure the level of exposure to groundwater if there was a sudden spill of GO at a manufacturing facility.

While I was focused on ingestion by humans, it seems this research was more focused on the natural environment and possible future poisoning by graphene oxide.

Here’s a link to and a citation for the paper,

Stability and Transport of Graphene Oxide Nanoparticles in Groundwater and Surface Water by Jacob D. Lanphere, Brandon Rogers, Corey Luth, Carl H. Bolster, and Sharon L. Walker. Environmental Engineering Science. -Not available-, ahead of print. doi:10.1089/ees.2013.0392.

Online Ahead of Print: March 17, 2014

If available online, this is behind a paywall.