Tag Archives: University of California Berkeley

Get yourself some e-whiskers for improved tactile sensing

E-whiskers are highly responsive tactile sensor networks made from carbon nanotubes and silver nanoparticles that resemble the whiskers of cats and other mammals. Courtesy: Berkeley Labs [downloaded from http://newscenter.lbl.gov/science-shorts/2014/01/20/e-whiskers/]

E-whiskers are highly responsive tactile sensor networks made from carbon nanotubes and silver nanoparticles that resemble the whiskers of cats and other mammals. Courtesy: Berkeley Labs [downloaded from http://newscenter.lbl.gov/science-shorts/2014/01/20/e-whiskers/]

A Jan. 21, 2014 news item on Azonano features work from researchers who have simulated the sensitivity of cat’s and rat’s whiskers by creating e-whiskers,

Researchers with Berkeley Lab and the University of California (UC) Berkeley have created tactile sensors from composite films of carbon nanotubes and silver nanoparticles similar to the highly sensitive whiskers of cats and rats. These new e-whiskers respond to pressure as slight as a single Pascal, about the pressure exerted on a table surface by a dollar bill. Among their many potential applications is giving robots new abilities to “see” and “feel” their surrounding environment.

The Jan. 20, 2014 Lawrence Berkeley National Laboratory (Berkeley Lab) ‘science short’ by Lynn Yarris, which originated the news item,  provides more information about the research,

“Whiskers are hair-like tactile sensors used by certain mammals and insects to monitor wind and navigate around obstacles in tight spaces,” says the leader of this research Ali Javey, a faculty scientist in Berkeley Lab’s Materials Sciences Division and a UC Berkeley professor of electrical engineering and computer science.  “Our electronic whiskers consist of high-aspect-ratio elastic fibers coated with conductive composite films of nanotubes and nanoparticles. In tests, these whiskers were 10 times more sensitive to pressure than all previously reported capacitive or resistive pressure sensors.”

Javey and his research group have been leaders in the development of e-skin and other flexible electronic devices that can interface with the environment. In this latest effort, they used a carbon nanotube paste to form an electrically conductive network matrix with excellent bendability. To this carbon nanotube matrix they loaded a thin film of silver nanoparticles that endowed the matrix with high sensitivity to mechanical strain.

“The strain sensitivity and electrical resistivity of our composite film is readily tuned by changing the composition ratio of the carbon nanotubes and the silver nanoparticles,” Javey says. “The composite can then be painted or printed onto high-aspect-ratio elastic fibers to form e-whiskers that can be integrated with different user-interactive systems.”

Javey notes that the use of elastic fibers with a small spring constant as the structural component of the whiskers provides large deflection and therefore high strain in response to the smallest applied pressures. As proof-of-concept, he and his research group successfully used their e-whiskers to demonstrate highly accurate 2D and 3D mapping of wind flow. In the future, e-whiskers could be used to mediate tactile sensing for the spatial mapping of nearby objects, and could also lead to wearable sensors for measuring heartbeat and pulse rate.

“Our e-whiskers represent a new type of highly responsive tactile sensor networks for real time monitoring of environmental effects,” Javey says. “The ease of fabrication, light weight and excellent performance of our e-whiskers should have a wide range of applications for advanced robotics, human-machine user interfaces, and biological applications.”

The researchers’ paper has been published in the Proceedings of the National Academy of Sciences and is titled: “Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films.”

Here’s what the e-whiskers look like,

An array of seven vertically placed e-whiskers was used for 3D mapping of the wind by Ali Javey and his group [ Kuniharu Takei, Zhibin Yu, Maxwell Zheng, Hiroki Ota and Toshitake Takahashi].  Courtesy: Berkeley Lab

An array of seven vertically placed e-whiskers was used for 3D mapping of the wind by Ali Javey and his group [ Kuniharu Takei, Zhibin Yu, Maxwell Zheng, Hiroki Ota and Toshitake Takahashi]. Courtesy: Berkeley Lab

Dengue fever and NanoViricides, Inc.

Since 1970, dengue has grown to be a major health problem according to the World Health Organization Fact Sheet no. 117 (November 2012, *ETA August 9, 2023: There is a March 17, 2023 fact sheet update which is focused on more contemporary events and statistics*) and it’s one NanoViricides, Inc. hopes to tackle with its current European Medicines Agency (EMA) drug application. From the July 2, 2013 news item on Azonano,

NanoViricides, Inc. (the “Company”) announced today that it has submitted its letter of intent to file an Orphan Drug Application with the European Medicines Agency (EMA) for DengueCide™, its drug candidate for the treatment of dengue and dengue hemorrhagic fever.

EMA requires a notification of intent to file at least 60 days prior to the actual filing, unlike the US FDA. The actual application will need to be translated into 27 different languages prior to submission.

… The Company has recently filed an Orphan Drug Designation application for DengueCide to the US FDA.

The July 1, 2013 NanoViricides news release, which originated the news item, goes on to explain (a direct link to the news release is not possible but you can find it on the company’s home page),

Dengue fever, a very old disease, has reemerged in the past 20 years with an expanded geographic distribution of both the viruses and the mosquito vectors, increased epidemic activity, the development of hyper-endemicity (the co-circulation of multiple serotypes), and the emergence of dengue hemorrhagic fever in new geographic regions. In 2013, this mosquito-borne disease is one of the most important tropical infectious diseases globally, with an estimated 400 million cases of dengue fever, over one million cases of dengue hemorrhagic fever, and 50,000-100,000 deaths annually. Dengue virus occurs in four primary serotypes. Although the disease is endemic in many tropical parts of the world, it is considered an orphan disease in the USA and Europe. (From Clinical Microbiology Reviews).

The news release also describes the proposed DengueCide treatment’s effectiveness in animal trials,

DengueCide is a nanoviricide® that has shown very high effectiveness in an animal model of dengue virus infection. These animal studies were conducted in the laboratory of Dr. Eva Harris, Professor of Public Health and Infectious Diseases at the University of California, Berkeley. Professor Harris has developed a mouse model simulating antibody-dependent-enhancement (ADE) of dengue infection using a special laboratory mouse strain called AG129. ADE in humans is thought to to lead to dengue hemorrhagic fever, and is associated with a high fatality rate. In this model, infection with a dengue virus, when the mice are left untreated, is 100% fatal. In contrast, in the same study, animals treated with NanoViricides’ DengueCide achieved an unprecedented 50% survival rate.

There is currently neither an effective drug treatment nor a vaccine for dengue virus infection. Tremendous efforts have been made for dengue vaccine development but, to date, no vaccine candidate has succeeded in clinical trials towards approval.

In an attempt to give their DengueCide application more heft, the news release provides a description of the company’s work with anti-influenza drugs,

NanoViricides is developing broad-spectrum anti-influenza drugs as part of its rich drug pipeline. The Company believes that its FluCide™ drug candidates will be effective against most if not all influenza viruses, including the H7N9 bird flu, H3N2 or H1N1 epidemic viruses, H5N1 bird flu, seasonal influenzas, as well as novel influenza viruses. This is because FluCide is based on the Company’s biomimetic technology, mimicking the natural sialic acid receptors for the influenza virus on the surface of a nanoviricide® polymeric micelle. It is important to note that all influenza viruses bind to the sialic acid receptors, even if they rapidly mutate. The FluCide drug candidates have already shown strong effectiveness against H1N1 and H3N2 influenza viruses in highly lethal animal models. The injectable FluCide drug candidates have shown 1,000X greater viral load reduction as compared to oseltamivir (Tamiflu®), the current standard of care, in a highly lethal influenza infection animal model. The Company believes that these animal model results should translate readily into humans.

NanoViricides has also developed an oral drug candidate against influenza. This oral version is also dramatically more effective than TamiFlu in the animals given a lethal influenza virus infection. This oral FluCide may be the very first nanomedicine that is effective when taken by mouth.

I hope they are successful with this new dengue drug. Oddly, the news release seemed to understate the scope of the problem. Here’s more from the WHO (World Health Organization) fact sheet no. 117,

The incidence of dengue has grown dramatically around the world in recent decades. Over 2.5 billion people – over 40% of the world’s population – are now at risk from dengue. WHO currently estimates there may be 50–100 million dengue infections worldwide every year.

Before 1970, only nine countries had experienced severe dengue epidemics. The disease is now endemic in more than 100 countries in Africa, the Americas, the Eastern Mediterranean, South-east Asia and the Western Pacific. The American, South-east Asia and the Western Pacific regions are the most seriously affected.

Cases across the Americas, South-east Asia and Western Pacific have exceeded 1.2 million cases in 2008 and over 2.3 million in 2010 (based on official data submitted by Member States). Recently the number of reported cases has continued to increase. In 2010, 1.6 million cases of dengue were reported in the Americas alone, of which 49 000 cases were severe dengue.

Not only is the number of cases increasing as the disease spreads to new areas, but explosive outbreaks are occurring. The threat of a possible outbreak of dengue fever now exists in Europe and local transmission of dengue was reported for the first time in France and Croatia in 2010 and imported cases were detected in three other European countries. A recent (2012) outbreak of dengue on Madeira islands of Portugal has resulted in over 1800 cases and imported cases were detected in five other countries in Europe apart from mainland Portugal.

An estimated 500 000 people with severe dengue require hospitalization each year, a large proportion of whom are children. About 2.5% of those affected die.

Bubblicious

Mathematicians love their bubbles according to the May 9, 2013 news release on EurekAlert,

Two University of California, Berkeley, researchers have now described mathematically the successive stages in the complex evolution and disappearance of foamy bubbles, a feat that could help in modeling industrial processes in which liquids mix or in the formation of solid foams such as those used to cushion bicycle helmets.

Applying these equations, they created mesmerizing computer-generated movies showing the slow and sedate disappearance of wobbly foams one burst bubble at a time.

The applied mathematicians, James A. Sethian and Robert I. Saye, will report their results in the May 10 issue of Science. Sethian, a UC Berkeley professor of mathematics, leads the mathematics group at Lawrence Berkeley National Laboratory (LBNL). Saye will graduate from UC Berkeley this May with a PhD in applied mathematics.

The May 9, 2013 University of California Berkeley news release by Robert Sanders, which originated the news release on EurekAlert, describes a serious side to the work,

“This work has application in the mixing of foams, in industrial processes for making metal and plastic foams, and in modeling growing cell clusters,” said Sethian. “These techniques, which rely on solving a set of linked partial differential equations, can be used to track the motion of a large number of interfaces connected together, where the physics and chemistry determine the surface dynamics.”

The problem with describing foams mathematically has been that the evolution of a bubble cluster a few inches across depends on what’s happening in the extremely thin walls of each bubble, which are thinner than a human hair.

“Modeling the vastly different scales in a foam is a challenge, since it is computationally impractical to consider only the smallest space and time scales,” Saye said. “Instead, we developed a scale-separated approach that identifies the important physics taking place in each of the distinct scales, which are then coupled together in a consistent manner.”

Saye and Sethian discovered a way to treat different aspects of the foam with different sets of equations that worked for clusters of hundreds of bubbles. One set of equations described the gravitational draining of liquid from the bubble walls, which thin out until they rupture. Another set of equations dealt with the flow of liquid inside the junctions between the bubble membranes. A third set handled the wobbly rearrangement of bubbles after one pops.

Using a fourth set of equations, the mathematicians solved the physics of a sunset reflected in the bubbles, taking account of thin film interference within the bubble membranes, which can create rainbow hues like an oil slick on wet pavement. Solving the full set of equations of motion took five days using supercomputers at the LBNL’s National Energy Research Scientific Computing Center (NERSC).

The mathematicians next plan to look at manufacturing processes for small-scale new materials.

Here’s a still image from the video the researchers created to demonstrate their work on soap bubble clusters,

A soap bubble cluster shown with physically accurate thin-film interference, which produces rainbow hues like an oil slick on pavement. A beach at sunset is reflected in the bubbles. Courtesy: UC Berkeley

A soap bubble cluster shown with physically accurate thin-film interference, which produces rainbow hues like an oil slick on pavement. A beach at sunset is reflected in the bubbles. Courtesy: UC Berkeley

You can find the full animation here.

Science, politics, and logic

I started the week with a posting where I highlighted a presentation about algae, biofuels, policy making, and politics (my Apr. 8, 2013 posting: Algae factories could produce nanocellulose for biofuels and more) and I’m going to end this week with another politics/policy posting, this time focusing on artemisinin and malaria.

Malaria is a serious, serious problem in many parts of the world as Brendan Borrell notes in his Apr. 4, 2013 article, The WHO vs. the Tea Doctor, about an herbal tea that contains artemisinin, for Slate.com,

Of all the illnesses that have afflicted humanity over millennia, few have left their mark quite like malaria, which infects 200 million people each year and kills at least 655,000, most of whom are children. [emphasis mine] Falciparum malaria—the most common type in sub-Saharan Africa—starts as a debilitating fever, which can progress in severe cases to convulsions, brain damage, and death. In this part of the world, it’s almost impossible to stay completely free of the parasites for long. Adults often display a low level of immunity, which makes each subsequent infection painful and unpleasant but usually not fatal.

As I’m about to contrast the information in Borrell’s article with the information in an Apr. 11, 2013 news release from the University of California Berkeley on EurekAlert, about the development of a synthetic artemisinin, I’m going to highlight their ‘agreement’ as the seriousness of the malaria problem,

… a lifesaver for the hundreds of millions of people in developing countries who each year contract malaria and more than 650,000, most of them children, who die of the disease. [emphasis mine]

Borrell sets the discussion for his take on the artemisinin situation with a little history (Note: Links have been removed),

The story of artemisinin demonstrates that even the best malaria drugs are worthless if they are not getting to the people who need them. In the late 1990s, African malaria parasites had become resistant to standard treatments such as chloroquine, and malaria deaths in Uganda doubled in a decade. By the early 2000s, there was a proven alternative: artemisinin combination therapies [ACTs]. Nevertheless, the Global Fund for AIDS, Tuberculosis, and Malaria repeatedly rejected countries’ requests for money for ACTs, funding failing treatments over ACTs at a rate of 10-to-1. In 2004, a group of fed-up scientists writing in the Lancet called these decisions “medical malpractice.” Today, although ACTs are heavily subsidized by the international aid community, local clinics frequently run out of stock, and Africans often end up with substandard, ineffective, and sometimes counterfeit medications.

Borrell goes on to recount the story of a  Chinese plant, sweet wormwood ((Artemisia annua), which is the source for both a class of anti-malarial drugs and a tea (Note: A link has been removed),

It [sweet wormwood] can also be grown in wetter parts of Africa, and a year’s supply costs no more than a few dollars. Although the tea itself has traditionally been used in treatment, not prevention, in China, a randomized controlled trial on this farm showed that workers who drank it regularly reduced their risk of suffering from multiple episodes of malaria by one-third. For a group of people who were once waylaid by this mosquito-borne disease four or more times per year, the tea is a godsend.

According to the article, WHO (World Health Organization) and most malaria researchers are opposed to the tea’s use. Reasons given include the claim that herbal concoctions are more dangerous and less effective than pharmaceuticals and that use of the tea could lead to the malaria parasite developing resistance to the drugs.

There are two issues I have with the first claim about herbal concoctions. Having perused the Compendium of Pharmaceuticals (CPS), I can tell you the last I looked it was huge and listed thousands and thousands of drugs and their side effects (did you know that death is considered a side effect?). Fabrication in a laboratory does not equal safety any more that chopping something off a plant and brewing it as a tea equals safety. Personally, I don’t understand why they aren’t testing the tea, which is derived from sweet wormwood and successfully passed one randomized clinical trial, to see if the result can be repeated and also to test it against the drugs in human clinical trials.

As for the second claim that use of the tea could lead to the malaria parasite developing resistance to the drugs, isn’t that what happened to anti-malarial drugs in the late 1990s? Using chloroquine led to resistance against chloroquine. Following this claim to its logical end, we should never use any drug or herbal concoction as either might lead to resistance.

As for the tea’s successful clinical trial, the researcher experienced difficulty getting his study published (from the article; Note: A link has been removed),

While the workers are effusive about the tea, malaria experts have taken less kindly to it. When Ogwang [Patrick Ogwang of the Ugandan Ministry of Health] tried to publish the results in Malaria Journal, a reviewer largely praised the quality of the science but nixed publication out of concern that use of the tea could render ACTs ineffective. It’s a remarkably patronizing recommendation: that a scientific journal should keep the latest evidence out of the hands of Africans, lest they begin treating themselves. Marcel Hommel, editor in chief of the journal, defends the decision, saying, “It is the responsibility of an editor to avoid publishing papers that promote interventions which could potentially put patients at risk.” Ogwang eventually published his results in a less prestigious journal.

Borrell expresses reservations about herbal medicines/concoctions and he supports having the drugs for special cases but he also notes a study which suggests that a tea made from the plant might be more effective for adults and for less severe cases. From the article (Note: Links have been removed),

In the case of malaria, Anamed and others also argue that it makes sense to preserve stocks of conventional drugs for children and severe cases. One reason ACTs have been so expensive is the cost of isolating artemisinin, but there have long been indications that using a cruder, cheaper whole-plant extract could potentially be more effective and cheaper. In a study conducted in rats last year, University of Massachusetts researchers compared a single dose of pure artemisinin to dried whole leaves, and found that the whole plant was better at killing malaria parasites. And while millions have been spent bioengineering bacteria to crank out pure artemisinin on a budget, you still have to get it to the people who need it.

The resistance that the experts fear has been proved true, according to Borrell’s article, in areas where artemisinin drugs have been distributed and used with abandon.

Coincidentally or not, the University of California Berekeley announced a the development of semi-synthetic artemisinin in the Apr. 11, 2013 news release mentioned earlier,

Twelve years after a breakthrough discovery in his University of California, Berkeley, laboratory, professor of chemical engineering Jay Keasling is seeing his dream come true.

On April 11 [2013], the pharmaceutical company Sanofi will launch the large-scale production of a partially synthetic version of artemisinin, a chemical critical to making today’s front-line antimalaria drug, based on Keasling’s discovery.

The drug is the first triumph of the nascent field of synthetic biology and will be, Keasling hopes, a lifesaver ….

Keasling and colleagues at Amyris, a company he cofounded in 2003 to bring the lab-bench discovery to the marketplace, will publish in the April 25 issue of Nature the sequence of genes they introduced into yeast that allowed Sanofi to make the chemical precursor of artemisinin. The paper will be available online April 10.

“It is incredible,” said Keasling, who also serves as associate director for biosciences at Lawrence Berkeley National Laboratory and as CEO of the Joint Bioenergy Institute in Emeryville, Calif. “The time scale hasn’t been that long, it just seems like a long time. There were many places along the way where it could have failed.”

The yeast strain developed by Amyris based on Keasling’s initial research and now used by Sanofi produces a chemical precursor of artemisinin, a compound that until now has been extracted from the sweet wormwood plant, Artemsia annua. Artemisinin from either sweet wormwood or the engineered yeast is then turned into the active antimalarial drug , and typically mixed with another antimalarial drug in what is called arteminsinin combination therapy, or ACT.

Global demand for artemisinin has increased since 2005, when the World Health Organization identified ACTs as the most effective malaria treatment available. Sanofi said that it is committed to producing semisynthetic artemisinin using a no-profit, no-loss production model, which will help to maintain a low price for developing countries. Though the price of ACTs will vary from product to product, the new source for its key ingredient, in addition to the plant-derived supply, should lead to a stable cost and steady supply, Keasling said.

Unfortunately, no details about Sanofi’s no-profit, no-loss production model are offered. Perhaps a reader could ease my ignorance? I am interpreting this model to mean that while Sanofi won’t make money from the project, it does expect to recoup its costs (no-loss). (I most recently mentioned Sanofi, a French multinational, in an Apr. 9, 2013 posting about the winners of its 2013 competition for Canadian students.)

The backers of the research do provide some reasoning for this synthetic biology artemisinin project (from the news release),

“The production of semisynthetic artemisinin will help secure part of the world’s supply and maintain the cost of this raw material at acceptable levels for public health authorities around the world and ultimately benefit patients,” said Dr. Robert Sebbag, vice-president of Access to Medicines at Sanofi. “This is a pivotal milestone in the fight against malaria.” [emphasis mine]

I wonder what constitutes an ‘acceptable’ level of costs to public health authorities and, for that matter, to Sanofi. After all, I was under the impression after reading Borrell’s article that all one needed to do was to cultivate the plant and harvest it for materials to make tea.  There was no mention of difficulties cultivating the plant in countries outside of China where it originated nor was there any mention that it was expensive to cultivate.

There are some fairly big names, in addition to Sanofi, involved in this synthetic biology project,

The success is due in large part to two grants totaling $53.3 million from the Bill & Melinda Gates Foundation to OneWorld Health, the drug development program for PATH, an international nonprofit organization aiming to transform global health through innovation. [emphasis mine] OneWorld Health shepherded the drug’s development out of Keasling’s UC Berkeley lab to Amyris for scale-up and then to pharmaceutical firm Sanofi, based in France, for production.

I am pointing out some interesting relationships with the intention of providing a view of a complex situation with many well-intentioned players, where lines of opposition have been drawn and the people most at risk seemingly forgotten. If the tea hasn’t caused resistance in over 1,500 years of use in China while the drugs have already done so on the Thai-Cambodian border as per Borrell’s article, why isn’t it being accepted and used? While some might point at corporate profit requirements (and I’m not discounting that motive regardless of what Sanofi’s company executives say), there are also issues of institutionalized opposition to any developments made outside of the medical establishment, and the fetishization of the laboratory environment where drugs are made pure in a pure environment while herbs come from the ‘dirty’ earth.

CINEMA; a ‘nano’satellite launched Aug. 3, 2012

I realize most eyes are on Mars and the Rover Curiosity but there are other launches also taking place.

The nanosatellites referred to in the Aug.2, 2012 news release on EurekALert aren’t strictly speaking nano since they are measured in inches and weigh approximately eight pounds. I guess by comparison with a standard-sized satellite, CINEMA, one of 11 CubeSats, seems nano-sized. From the news release,

Eleven tiny satellites called CubeSats will accompany a spy satellite into Earth orbit on Friday, Aug. 3, inaugurating a new type of inexpensive, modular nanosatellite designed to piggyback aboard other NASA missions.

One of the 11 will be CINEMA (CubeSat for Ions, Neutrals, Electrons, & MAgnetic fields), an 8-pound, shoebox-sized package which was built over a period of three years by 45 students from the University of California, Berkeley, Kyung Hee University in Korea, Imperial College London, Inter-American University of Puerto Rico, and University of Puerto Rico, Mayaguez.

“This is a new way of doing space research, funded by the National Science Foundation with launch arranged by NASA,” said CINEMA principal investigator Robert Lin, professor emeritus of physics and former director of UC Berkeley’s Space Sciences Laboratory. “This is our first try, but if everything works, we’re going to get a lot of good science out of this.”

CINEMA will obtain images of the “ring current,” an electrical current that encircles the Earth and which, during large magnetic “space storms,” can blow out power grids on the ground. By next year, CubeSat will be joined by three identical satellites – two launched by Korea and another NASA-launched CubeSat – that together will monitor the 3-dimensional structure of the ring current and warn of dangerous activity.

This is an international effort and according to the lead researcher this work was done on a very small budget ,

For three years, Lin has overseen the construction and testing of CINEMA, aided by 25 UC Berkeley science and engineering undergraduates and graduate students. For two summers and winter vacations, about 10 students from Korea came to SSL to assist, while 8 students from Puerto Rico came to Berkeley to help with the engineering.

“There is more risk with these projects, because we use off-the-shelf products, 90 percent of the work is done by students, and the parts are not radiation-hard,” he said. “But it is cheaper and has the latest hardware. I will be very impressed if it lasts more than a year in orbit.”

There was mention of a spy satellite and of the CubeSat’s physical dimensions,

CINEMA is one of five university-built CubeSats aboard the Atlas V rocket; the other six are military or commercial. The main payload is NROL-36, a classified satellite commissioned by the U.S. National Reconnaissance Office.

NASA’s CubeSat Launch initiative provides an opportunity for small satellite payloads to fly as auxiliary payloads on previously planned missions. The nanosatellites are made of cubes that are approximately four inches on a side, have a volume of about one quart, weigh about two pounds, and are meant to be grouped in twos or threes for a particular satellite. CINEMA, for example, is comprised of three cubes. Some two dozen CubeSats are built or under construction at universities alone, and these 11 are the first to go into orbit.

I must have old-fashioned notions about spying. If I were going to send up a spy satellite, I wouldn’t tell anyone.

Egyptian scientists win cash prize for innovation: a nano test for Hepatitis C

A team of Egyptian scientists won the $10,000 prize for 3rd place at Intel’s 7th Annual Global Challenge held at the University of California at Berkeley. The team,  Dr Hassan M E Azzazy, Tamer M Samir, Sherif Mohamed Shawky, Mai M H Mansour and Ahmed H Tolba, won both an Intel Global Challenge Prize and 1st place in the Arab Technology Business Plan Competition for its Hepatitis C test. From the Nov. 16, 2011 article by Georgina Enzer for ITP.net,

The team developed a Hepatitis C test which uses gold nanoparticles to detect Hepatitis C in less than an hour, and at one-tenth the cost of current commercial tests. The team won a $10,000 prize for their innovation.

The Intel Global Challenge at UC Berkeley encourages student entrepreneurs and rewards innovative ideas that have the potential to have a positive impact on society.

The Egypt team, NanoDiagX, led by Dr Hassan M E Azzazy, Tamer M Samir, Sherif Mohamed Shawky, Mai M H Mansour and Ahmed H Tolba won first place in the 7th Arab Technology Business Plan Competition 2011, organised by the Arab Science and Technology Foundation (ASTF) in partnership with Intel Corporation. The regional competition, which was also in partnership with the United Nations Industrial Development Organisation (UNIDO), features 50 projects from 50 Arab entrepreneurs across 15 countries.

U.S. President Barak Obama has recognized the team’s achievements, from the Nov. 19, 2011 news item on Egypt.com

U.S. President Barack Obama honored the Egyptian team that won third prize of Intel’s Global Leadership after discovering a new cure for hepatitis C virus with nanotechnology.

The Egyptian team, Nano-Diagx, is the first Arab team to win the competition, organized by the Arab Organization for Science and Technology in cooperation with Intel and UNIDO.

Azazi [Dr. Hassan Azazi] said his team s most important advantage is the spirit of teamwork, which is uncommon in the culture of the Arab region.

He added the project used nanotechnology and gold to develop a cure for HIV hepatitis, which affects more than 200 million people worldwide and more than 100,000 Egyptians annually, particularly in cancer cases and cirrhosis of the liver.

It should be mentioned 28 technological projects participated in Intel’s World Challenge this year. The projects are all from 22 countries; Egypt, Saudi Arabia, Lebanon, Thailand, America, Portugal, Russia, Turkey, India, Uruguay, China, Japan, Brazil, Taiwan, Philippines, Turkey, Argentina, Chile, Poland, Denmark and Israel.

I came to the conclusion that the team was successful in two competitions, Intel’s World Challenge which attracted 28 entries and the Arab Technology Business Plan Competition which attracted 50 entries even though it’s not stated explicitly in the materials I have read.

Congratulations to the Egyptian team’s accomplishments which become even more noteworthy when you realize the working conditions for many scientists in Egypt. In a Feb. 4, 2011 posting, I excerpted parts of an interview in Nature magazine about Egypt and science,

The article goes on to recount a Q & A (Questions and Answers) session with Michael Harms of the German Academic Exchange Service offering his view from Cairo,

How would you describe Egyptian science?

There are many problems. Universities are critically under-funded and academic salaries are so low that most scientists need second jobs to be able to make a living. [emphasis mine] Tourist guides earn more money than most scientists. You just can’t expect world-class research under these circumstances. Also, Egypt has no large research facilities, such as particle accelerators. Some 750,000 students graduate each year and flood the labour market, yet few find suitable jobs – one reason for the current wave of protests.

If you are interested, here’s the article, ‘Deep fury’ of Egyptian scientists.

Nanotechnology-enabled robot skin

We take it for granted most of the time. The ability to sense pressure and respond to appropriately doesn’t seem like any great gift but without it, you’d crush fragile objects or be unable to hold onto the heavy ones.

It’s this ability to sense pressure that’s a stumbling block for robotmakers who want to move robots into jobs that require some dexterity, e.g., one that could clean yours windows and your walls without damaging one or failing to clean the other.

Two research teams have recently published papers about their work on solving the ‘pressure problem’. From the article by Jason Palmer for BBC News,

The materials, which can sense pressure as sensitively and quickly as human skin, have been outlined by two groups reporting in [the journal] Nature Materials.

The skins are arrays of small pressure sensors that convert tiny changes in pressure into electrical signals.

The arrays are built into or under flexible rubber sheets that could be stretched into a variety of shapes.

The materials could be used to sheath artificial limbs or to create robots that can pick up and hold fragile objects. They could also be used to improve tools for minimally-invasive surgery.

One team is located at the University of California, Berkeley and the other at Stanford University. The Berkeley team headed by Ali Javey, associate professor of electrical engineering and computer sciences has named their artificial skin ‘e-skin’. From the article by Dan Nosowitz on the Fast Company website,

Researchers at the University of California at Berkeley, backed by DARPA funding, have come up with a thin prototype material that’s getting science nerds all in a tizzy about the future of robotics.

This material is made from germanium and silicon nanowires grown on a cylinder, then rolled around a sticky polyimide substrate. What does that get you? As CNet says, “The result was a shiny, thin, and flexible electronic material organized into a matrix of transistors, each of which with hundreds of semiconductor nanowires.”

But what takes the material to the next level is the thin layer of pressure-sensitive rubber added to the prototype’s surface, capable of measuring pressures between zero and 15 kilopascals–about the normal range of pressure for a low-intensity human activity, like, say, writing a blog post. Basically, this rubber layer turns the nanowire material into a sort of artificial skin, which is being played up as a miracle material.

As Nosowitz points out, this is a remarkable achievement and it is a first step since skin registers pressure, pain, temperature, wetness, and more. Here’s an illustration of Berkeley’s e-skin (Source: University of California Berkeley, accessed from  http://berkeley.edu/news/media/releases/2010/09/12_eskin.shtml Sept. 14, 2010),

An artist’s illustration of an artificial e-skin with nanowire active matrix circuitry covering a hand. The fragile egg illustrates the functionality of the e-skin device for prosthetic and robotic applications.

The Stanford team’s approach has some similarities to the Berkeley’s (from Jason Palmer’s BBC article),

“Javey’s work is a nice demonstration of their capability in making a large array of nanowire TFTs [this film transistor],” said Zhenan Bao of Stanford University, whose group demonstrated the second approach.

The heart of Professor Bao’s devices is micro-structured rubber sheet in the middle of the TFT – effectively re-creating the functionality of the Berkeley group’s skins with less layers.

“Instead of laminating a pressure-sensitive resistor array on top of a nanowire TFT array, we made our transistors to be pressure sensitive,” Professor Bao explained to BBC News.

Here’s a short video about the Stanford team’s work (Source: Stanford University, accessed from http://news.stanford.edu/news/2010/september/sensitive-artificial-skin-091210.html Sept. 14, 2010),

Both approaches to the ‘pressure problem’ have at least one shortcoming. The Berkeley’s team’s e-skin has less sensitivity than Stanford’s while the Stanford team’s artificial skin is less flexible than e-skin as per Palmer’s BBC article. Also, I noticed that the Berkeley team at least is being funded by DARPA ([US Dept. of Defense] Defense Advanced Research Projects Agency) so I’m assuming a fair degree of military interest, which always gives me pause. Nonetheless, bravo to both teams.

First Open Science Summit: Updating the social contract for science

Christine Peterson from the Foresight Institute will be presenting on “Safety and Security Concerns, Open Source Biodefense” at 5:15 PM on Friday, July 30, 2010 at the first ever Open Science Summit being held at the University of California, Berkeley campus, July 29 – 31 2010. From the Open Science Summit website,

Despite nostalgic myths that Science is the realm of open inquiry, reasoned debate, and the pursuit of objective truth, it has always been politicized, though never to the dangerous degree attained just in the past decade. The viciousness of the fight over embryonic stem cell research, the conflict over creationism, and the politics of climate change are unprecedented new lows. Public confidence in science and technology is deeply shaken, as the outcry over genetically modified organisms attests. When biotechnology, the veritable “toolkit of life,” that could feed the hungry, heal the ill, and fuel the economy without despoiling the environment, is greeted with suspicion and downright hostility, we must acknowledge a deep failure. Citizens and consumers correctly worry that science has sold them out, as companies compromise safety and engineering standards in the dash to control the marketplace.

Beginning in the mid 1980’s a few judicial decisions, with no public or policy deliberation whatsoever, opened the floodgates to an exponential expansion in the filing of patents covering new subject matter and technologies that were never anticipated in the industrial age during which the system evolved. Indeed, there is a growing consensus that the unchecked proliferation of intellectual property rights is perversely out of touch with, and downright inimical to, the collaborative, cumulative, and interdependent essence of innovation in the 21st century’s networked knowledge economy. [emphasis mine] As the global economy struggles to find a new equilibrium after the financial meltdown, it is indisputable that old business models are unsustainable—this applies equally, indeed, especially, to technology and biomedicine, where cycles of over-hype, under-deliver, bubble then bust, have failed to produce cures for desperate, disappointed, and now disillusioned patients, bold proclamations of a “War on Cancer,” notwithstanding.

Then they start discussing alternative models and innovation,

In the last ten years, a collection of burgeoning movements has begun the herculean task of overhauling the outmoded institutions and worldviews that make up our global scientific governance system. Proponents of the Access to Knowledge movement (A2K) have united around the principle that data and knowledge are “anti-rivalrous,” the value of information increases as it spreads. Open Access Journals have demonstrated a new path for publishing that utilizes the power of the internet to instantly distribute ideas instead of imposing artificial scarcity to prop up old business models. “Health 2.0” entrepreneurs are seeking to apply the lessons of e-commerce to empower patients. However, these different efforts are each working on a piece of a problem without a view of the whole. It is not sufficient or realistic to tweak one component of the innovation system (eg, patent policy) and assume the others stay static. Instead, dynamic, interactive, nonlinear change is unfolding. The Open Science Summit is the first and only event to consider what happens throughout the entire innovation chain as reform in one area influences the prospects in others. In the best case scenario, a virtuous circle of mutually reinforcing shifts toward transparency and collaboration could unleash hitherto untapped reserves of human ingenuity.

I know it’s a little high-minded but it’s important to be idealistic every once in a while as I think your soul shrivels up otherwise. Unexpectedly, there’s a Canadian connection. I recognized two participating organizations (although there may be more) from Canada, the University of Calgary and the Sauder School of Business at the University of British Columbia.

If you can’t attend, there will be a livestream by Fora.tv, you can find the details here.