Tag Archives: University of Cambridge

Synthetic human embryos—what now? (1 of 2)

Usually, there’s a rough chronological order to how I introduce the research, but this time I’m looking at the term used to describe it, following up with the various news releases and commentaries about the research, and finishing with a Canadian perspective.

After writing this post (but before it was published), the Weizmann Institute of Science (Israel) made their September 6, 2023 announcement and things changed a bit. That’s in Part two.

Say what you really mean (a terminology issue)

First, it might be useful to investigate the term, ‘synthetic human embryos’ as Julian Hitchcock does in his June 29, 2023 article on Bristows website (h/t Mondaq’s July 5, 2023 news item), Note: Links have been removed,

Synthetic Embryos” are neither Synthetic nor Embryos. So why are editors giving that name to stem cell-based models of human development?

One of the less convincing aspects of the last fortnight’s flurry of announcements about advances in simulating early human development (see here) concerned their name. Headlines galore (in newspapers and scientific journals) referred to “synthetic embryos“.

But embryo models, however impressive, are not embryos. To claim that the fundamental stages of embryo development that we learnt at school – fertilisation, cleavage and compaction – could now be bypassed to achieve the same result would be wrong. Nor are these objects “synthesised”: indeed, their interest to us lies in the ways in which they organise themselves. The researchers merely place the stem cells in a matrix in appropriate conditions, then stand back and watch them do it. Scientists were therefore unhappy about this use of the term in news media, and relieved when the International Society for Stem Cell Research (ISSCR) stepped in with a press release:

“Unlike some recent media reports describing this research, the ISSCR advises against using the term “synthetic embryo” to describe embryo models, because it is inaccurate and can create confusion. Integrated embryo models are neither synthetic nor embryos. While these models can replicate aspects of the early-stage development of human embryos, they cannot and will not develop to the equivalent of postnatal stage humans. Further, the ISSCR Guidelines prohibit the transfer of any embryo model to the uterus of a human or an animal.”

Although this was the ISSCR’s first attempt to put that position to the public, it had already made that recommendation to the research community two years previously. Its 2021 Guidelines for Stem Cell Research and Clinical Translation had recommended researchers to “promote accurate, current, balanced, and responsive public representations of stem cell research”. In particular:

“While organoids, chimeras, embryo models, and other stem cell-based models are useful research tools offering possibilities for further scientific progress, limitations on the current state of scientific knowledge and regulatory constraints must be clearly explained in any communications with the public or media. Suggestions that any of the current in vitro models can recapitulate an intact embryo, human sentience or integrated brain function are unfounded overstatements that should be avoided and contradicted with more precise characterizations of current understanding.”

Here’s a little bit about Hitchcock from his Bristows profile page,

  • Diploma Medical School, University of Birmingham (1975-78)
  • LLB, University of Wolverhampton
  • Diploma in Intellectual Property Law & Practice, University of Bristol
  • Qualified 1998

Following an education in medicine at the University of Birmingham and a career as a BBC science producer, Julian has focused on the law and regulation of life science technologies since 1997, practising in England and Australia. He joined Bristows with Alex Denoon in 2018.

Hitchcock’s June 29, 2023 article comments on why this term is being used,

I have a lot of sympathy with the position of the science writers and editors incurring the scientists’ ire. First, why should journalists have known of the ISSCR’s recommendations on the use of the term “synthetic embryo”? A journalist who found Recommendation 4.1 of the ISSCR Guidelines would probably not have found them specific enough to address the point, and the academic introduction containing the missing detail is hard to find. …

My second reason for being sympathetic to the use of the terrible term is that no suitable alternative has been provided, other than in the Stem Cell Reports paper, which recommends the umbrella terms “embryo models” or “stem cell based embryo models”. …

When asked why she had used the term “synthetic embryo”, the journalist I contacted remarked that, “We’re still working out the right language and it’s something we’re discussing and will no doubt evolve along with the science”.

It is absolutely in the public’s interest (and in the interest of science), that scientific research is explained in terms that the public understands. There is, therefore, a need, I think, for the scientific community to supply a name to the media or endure the penalties of misinformation …

In such an intensely competitive field of research, disagreement among researchers, even as to names, is inevitable. In consequence, however, journalists and their audiences are confronted by a slew of terms which may or may not be synonymous or overlapping, with no agreed term [emphasis mine] for the overall class of stem cell based embryo models. We cannot blame them if they make up snappy titles of their own [emphasis mine]. …

The announcement

The earliest date for the announcement at the International Society for Stem Cell Researh meeting that I can find is Hannah Devlin’s June 14, 2023 article in The Guardian newspaper, Note: A link has been removed,

Scientists have created synthetic human embryos using stem cells, in a groundbreaking advance that sidesteps the need for eggs or sperm.

Scientists say these model embryos, which resemble those in the earliest stages of human development, could provide a crucial window on the impact of genetic disorders and the biological causes of recurrent miscarriage.

However, the work also raises serious ethical and legal issues as the lab-grown entities fall outside current legislation in the UK and most other countries.

The structures do not have a beating heart or the beginnings of a brain, but include cells that would typically go on to form the placenta, yolk sac and the embryo itself.

Prof Magdalena Żernicka-Goetz, of the University of Cambridge and the California Institute of Technology, described the work in a plenary address on Wednesday [June 14, 2023] at the International Society for Stem Cell Research’s annual meeting in Boston.

The (UK) Science Media Centre made expert comments available in a June 14, 2023 posting “expert reaction to Guardian reporting news of creation of synthetic embryos using stem cells.”

Two days later, this June 16, 2023 essay by Kathryn MacKay, Senior Lecturer in Bioethics, University of Sydney (Australia), appeared on The Conversation (h/t June 16, 2023 news item on phys.org), Note: Links have been removed,

Researchers have created synthetic human embryos using stem cells, according to media reports. Remarkably, these embryos have reportedly been created from embryonic stem cells, meaning they do not require sperm and ova.

This development, widely described as a breakthrough that could help scientists learn more about human development and genetic disorders, was revealed this week in Boston at the annual meeting of the International Society for Stem Cell Research.

The research, announced by Professor Magdalena Żernicka-Goetz of the University of Cambridge and the California Institute of Technology, has not yet been published in a peer-reviewed journal. But Żernicka-Goetz told the meeting these human-like embryos had been made by reprogramming human embryonic stem cells.

So what does all this mean for science, and what ethical issues does it present?

MacKay goes on to answer her own questions, from the June 16, 2023 essay, Note: A link has been removed,

One of these quandaries arises around whether their creation really gets us away from the use of human embryos.

Robin Lovell-Badge, the head of stem cell biology and developmental genetics at the Francis Crick Institute in London UK, reportedly said that if these human-like embryos can really model human development in the early stages of pregnancy, then we will not have to use human embryos for research.

At the moment, it is unclear if this is the case for two reasons.

First, the embryos were created from human embryonic stem cells, so it seems they do still need human embryos for their creation. Perhaps more light will be shed on this when Żernicka-Goetz’s research is published.

Second, there are questions about the extent to which these human-like embryos really can model human development.

Professor Magdalena Żernicka-Goetz’s research is published

Almost two weeks later the research from the Cambridge team (there are other teams and countries also racing; see Part two for the news from Sept. 6, 2023) was published, from a June 27, 2023 news item on ScienceDaily,

Cambridge scientists have created a stem cell-derived model of the human embryo in the lab by reprogramming human stem cells. The breakthrough could help research into genetic disorders and in understanding why and how pregnancies fail.

Published today [Tuesday, June 27, 2023] in the journal Nature, this embryo model is an organised three-dimensional structure derived from pluripotent stem cells that replicate some developmental processes that occur in early human embryos.

Use of such models allows experimental modelling of embryonic development during the second week of pregnancy. They can help researchers gain basic knowledge of the developmental origins of organs and specialised cells such as sperm and eggs, and facilitate understanding of early pregnancy loss.

A June 27, 2023 University of Cambridge press release (also on EurekAlert), which originated the news item, provides more detail about the work,

“Our human embryo-like model, created entirely from human stem cells, gives us access to the developing structure at a stage that is normally hidden from us due to the implantation of the tiny embryo into the mother’s womb,” said Professor Magdalena Zernicka-Goetz in the University of Cambridge’s Department of Physiology, Development and Neuroscience, who led the work.

She added: “This exciting development allows us to manipulate genes to understand their developmental roles in a model system. This will let us test the function of specific factors, which is difficult to do in the natural embryo.”

In natural human development, the second week of development is an important time when the embryo implants into the uterus. This is the time when many pregnancies are lost.

The new advance enables scientists to peer into the mysterious ‘black box’ period of human development – usually following implantation of the embryo in the uterus – to observe processes never directly observed before.

Understanding these early developmental processes holds the potential to reveal some of the causes of human birth defects and diseases, and to develop tests for these in pregnant women.

Until now, the processes could only be observed in animal models, using cells from zebrafish and mice, for example.

Legal restrictions in the UK currently prevent the culture of natural human embryos in the lab beyond day 14 of development: this time limit was set to correspond to the stage where the embryo can no longer form a twin. [emphasis mine]

Until now, scientists have only been able to study this period of human development using donated human embryos. This advance could reduce the need for donated human embryos in research.

Zernicka-Goetz says the while these models can mimic aspects of the development of human embryos, they cannot and will not develop to the equivalent of postnatal stage humans.

Over the past decade, Zernicka-Goetz’s group in Cambridge has been studying the earliest stages of pregnancy, in order to understand why some pregnancies fail and some succeed.

In 2021 and then in 2022 her team announced in Developmental Cell, Nature and Cell Stem Cell journals that they had finally created model embryos from mouse stem cells that can develop to form a brain-like structure, a beating heart, and the foundations of all other organs of the body.

The new models derived from human stem cells do not have a brain or beating heart, but they include cells that would typically go on to form the embryo, placenta and yolk sac, and develop to form the precursors of germ cells (that will form sperm and eggs).

Many pregnancies fail at the point when these three types of cells orchestrate implantation into the uterus begin to send mechanical and chemical signals to each other, which tell the embryo how to develop properly.

There are clear regulations governing stem cell-based models of human embryos and all researchers doing embryo modelling work must first be approved by ethics committees. Journals require proof of this ethics review before they accept scientific papers for publication. Zernicka-Goetz’s laboratory holds these approvals.

“It is against the law and FDA regulations to transfer any embryo-like models into a woman for reproductive aims. These are highly manipulated human cells and their attempted reproductive use would be extremely dangerous,” said Dr Insoo Hyun, Director of the Center for Life Sciences and Public Learning at Boston’s Museum of Science and a member of Harvard Medical School’s Center for Bioethics.

Zernicka-Goetz also holds position at the California Institute of Technology and is NOMIS Distinguished Scientist and Scholar Awardee.

The research was funded by the Wellcome Trust and Open Philanthropy.

(There’s more about legal concerns further down in this post.)

Here’s a link to and a citation for the paper,

Pluripotent stem cell-derived model of the post-implantation human embryo by Bailey A. T. Weatherbee, Carlos W. Gantner, Lisa K. Iwamoto-Stohl, Riza M. Daza, Nobuhiko Hamazaki, Jay Shendure & Magdalena Zernicka-Goetz. Nature (2023) DOI: https://doi.org/10.1038/s41586-023-06368-y Published: 27 June 2023

This paper is open access.

Published the same day (June 27, 2023) is a paper (citation and link follow) also focused on studying human embryonic development using stem cells. First, there’s this from the Abstract,

Investigating human development is a substantial scientific challenge due to the technical and ethical limitations of working with embryonic samples. In the face of these difficulties, stem cells have provided an alternative to experimentally model inaccessible stages of human development in vitro …

This time the work is from a US/German team,

Self-patterning of human stem cells into post-implantation lineages by Monique Pedroza, Seher Ipek Gassaloglu, Nicolas Dias, Liangwen Zhong, Tien-Chi Jason Hou, Helene Kretzmer, Zachary D. Smith & Berna Sozen. Nature (2023) DOI: https://doi.org/10.1038/s41586-023-06354-4 Published: 27 June 2023

The paper is open access.

Legal concerns and a Canadian focus

A July 25, 2023 essay by Françoise Baylis and Jocelyn Downie of Dalhousie University (Nova Scotia, Canada) for The Conversation (h/t July 25, 2023 article on phys.org) covers the advantages of doing this work before launching into a discussion of legislation and limits in the UK and, more extensively, in Canada, Note: Links have been removed,

This research could increase our understanding of human development and genetic disorders, help us learn how to prevent early miscarriages, lead to improvements in fertility treatment, and — perhaps — eventually allow for reproduction without using sperm and eggs.

Synthetic human embryos — also called embryoid bodies, embryo-like structures or embryo models — mimic the development of “natural human embryos,” those created by fertilization. Synthetic human embryos include the “cells that would typically go on to form the embryo, placenta and yolk sac, and develop to form the precursors of germ cells (that will form sperm and eggs).”

Though research involving natural human embryos is legal in many jurisdictions, it remains controversial. For some people, research involving synthetic human embryos is less controversial because these embryos cannot “develop to the equivalent of postnatal stage humans.” In other words, these embryos are non-viable and cannot result in live births.

Now, for a closer look at the legalities in the UK and in Canada, from the July 25, 2023 essay, Note: Links have been removed,

The research presented by Żernicka-Goetz at the ISSCR meeting took place in the United Kingdom. It was conducted in accordance with the Human Fertilization and Embryology Act, 1990, with the approval of the U.K. Stem Cell Bank Steering Committee.

U.K. law limits the research use of human embryos to 14 days of development. An embryo is defined as “a live human embryo where fertilisation is complete, and references to an embryo include an egg in the process of fertilisation.”

Synthetic embryos are not created by fertilization and therefore, by definition, the 14-day limit on human embryo research does not apply to them. This means that synthetic human embryo research beyond 14 days can proceed in the U.K.

The door to the touted potential benefits — and ethical controversies — seems wide open in the U.K.

While the law in the U.K. does not apply to synthetic human embryos, the law in Canada clearly does. This is because the legal definition of an embryo in Canada is not limited to embryos created by fertilization [emphasis mine].

The Assisted Human Reproduction Act (the AHR Act) defines an embryo as “a human organism during the first 56 days of its development following fertilization or creation, excluding any time during which its development has been suspended.”

Based on this definition, the AHR Act applies to embryos created by reprogramming human embryonic stem cells — in other words, synthetic human embryos — provided such embryos qualify as human organisms.

A synthetic human embryo is a human organism. It is of the species Homo sapiens, and is thus human. It also qualifies as an organism — a life form — alongside other organisms created by means of fertilization, asexual reproduction, parthenogenesis or cloning.

Given that the AHR Act applies to synthetic human embryos, there are legal limits on their creation and use in Canada.

First, human embryos — including synthetic human embryos – can only be created for the purposes of “creating a human being, improving or providing instruction in assisted reproduction procedures.”

Given the state of the science, it follows that synthetic human embryos could legally be created for the purpose of improving assisted reproduction procedures.

Second, “spare” or “excess” human embryos — including synthetic human embryos — originally created for one of the permitted purposes, but no longer wanted for this purpose, can be used for research. This research must be done in accordance with the consent regulations which specify that consent must be for a “specific research project.”

Finally, all research involving human embryos — including synthetic human embryos — is subject to the 14-day rule. The law stipulates that: “No person shall knowingly… maintain an embryo outside the body of a female person after the fourteenth day of its development following fertilization or creation, excluding any time during which its development has been suspended.”

Putting this all together, the creation of synthetic embryos for improving assisted human reproduction procedures is permitted, as is research using “spare” or “excess” synthetic embryos originally created for this purpose — provided there is specific consent and the research does not exceed 14 days.

This means that while synthetic human embryos may be useful for limited research on pre-implantation embryo development, they are not available in Canada for research on post-implantation embryo development beyond 14 days.

The authors close with this comment about the prospects for expanding Canada’s14-day limit, from the July 25, 2023 essay,

… any argument will have to overcome the political reality that the federal government is unlikely to open up the Pandora’s box of amending the AHR Act.

It therefore seems likely that synthetic human embryo research will remain limited in Canada for the foreseeable future.

As mentioned, in September 2023 there was a new development. See: Part two.

European medieval monks, Japanese scribes, and Middle Eastern chroniclers all contributed to volcanology

Volcanoes are not often a topic on this blog, which is focused on emerging science and technology. However, stories featuring scientific information from unexpected sources has long been a fascination of mine and this April 5, 2023 news item on ScienceDaily shines a light on an unusual cast of medieval scientific observers spanning the globe,

By observing the night sky, medieval monks unwittingly recorded some of history’s largest volcanic eruptions. An international team of researchers, led by the University of Geneva (UNIGE), drew on readings of 12th and 13th century European and Middle Eastern chronicles, along with ice core and tree ring data, to accurately date some of the biggest volcanic eruptions the world has ever seen. Their results, reported in the journal Nature, uncover new information about one of the most volcanically active periods in Earth’s history, which some think helped to trigger the Little Ice Age, a long interval of cooling that saw the advance of European glaciers.

llumination from the late 14th or early 15th century, which portrays two individuals observing a lunar eclipse. It features the words «La lune avant est eclipsee», «The moon is eclipsed» in english. © Source gallica.bnf.fr / BnF Courtesy: Université de Genève

An April 5, 2023 Université de Genève (UNIGE) press release (also on EurekAlert), which originated the news item, includes observations from Japanese scribes along with those from medieval European monks and Middle Eastern scholars,

It took the researchers almost five years to examine hundreds of annals and chronicles from across Europe and the Middle East, in search of references to total lunar eclipses and their colouration. Total lunar eclipses occur when the moon passes into the Earth’s shadow. Typically, the moon remains visible as a reddish orb because it is still bathed in sunlight bent round the Earth by its atmosphere. But after a very large volcanic eruption, there can be so much dust in the stratosphere – the middle part of the atmosphere starting roughly where commercial aircraft fly – that the eclipsed moon almost disappears.

Medieval chroniclers recorded and described all kinds of historical events, including the deeds of kings and popes, important battles, and natural disasters and famines. Just as noteworthy were the celestial phenomena that might foretell such calamities. Mindful of the Book of Revelation, a vision of the end times that speaks of a blood-red moon, the monks were especially careful to take note of the moon’s coloration. Of the 64 total lunar eclipses that occurred in Europe between 1100 and 1300, the chroniclers had faithfully documented 51. In five of these cases, they also reported that the moon was exceptionally dark.

The contribution of Japanese scribes 

Asked what made him connect the monks’ records of the brightness and colour of the eclipsed moon with volcanic gloom, the lead author of the work, Sébastien Guillet, senior research associate at the Institute for environmental sciences at the UNIGE,  said: “I was listening to Pink Floyd’s Dark Side of the Moon album when I realised that the darkest lunar eclipses all occurred within a year or so of major volcanic eruptions. Since we know the exact days of the eclipses, it opened the possibility of using the sightings to narrow down when the eruptions must have happened.”

The researchers found that scribes in Japan took equal note of lunar eclipses. One of the best known, Fujiwara no Teika, wrote of an unprecedented dark eclipse observed on 2 December 1229: ‘the old folk had never seen it like this time, with the location of the disk of the Moon not visible, just as if it had disappeared during the eclipse… It was truly something to fear.’ The stratospheric dust from large volcanic eruptions was not only responsible for the vanishing moon. It also cooled summer temperatures by limiting the sunlight reaching the Earth’s surface. This in turn could bring ruin to agricultural crops.

Cross-checking text and data 

“We know from previous work that strong tropical eruptions can induce global cooling on the order of roughly 1°C over a few years,” said Markus Stoffel, full professor at the Institute for environmental sciences at the UNIGE and last author of the study, a specialist in converting measurements of tree rings into climate data, who co-designed the study. “They can also lead to rainfall anomalies with droughts in one place and floods in another.”

Despite these effects, people at the time could not have imagined that the poor harvests or the unusual lunar eclipses had anything to do with volcanoes – the eruptions themselves were all but one undocumented. “We only knew about these eruptions because they left traces in the ice of Antarctica and Greenland,” said co-author Clive Oppenheimer, professor at the Department of Geography at the University of Cambridge. “By putting together the information from ice cores and the descriptions from medieval texts we can now make better estimates of when and where some of the biggest eruptions of this period occurred.”

Climate and society affected 

To make the most of this integration, Sébastien Guillet worked with climate modellers to compute the most likely timing of the eruptions. “Knowing the season when the volcanoes erupted is essential, as it influences the spread of the volcanic dust and the cooling and other climate anomalies associated with these eruptions,” he said.

As well as helping to narrow down the timing and intensity of these events, what makes the findings significant is that the interval from 1100 to 1300 is known from ice core evidence to be one of the most volcanically active periods in history. Of the 15 eruptions considered in the new study, one in the mid-13th century rivals the famous 1815 eruption of Tambora that brought on ‘the year without a summer’ of 1816. The collective effect of the medieval eruptions on Earth’s climate may have led to the Little Ice Age, when winter ice fairs were held on the frozen rivers of Europe. “Improving our knowledge of these otherwise mysterious eruptions, is crucial to understanding whether and how past volcanism affected not only climate but also society during the Middle Ages,” concludes the researcher.

Here’s a link to and a citation for the paper,

Lunar eclipses illuminate timing and climate impact of medieval volcanism by Sébastien Guillet, Christophe Corona, Clive Oppenheimer, Franck Lavigne, Myriam Khodri, Francis Ludlow, Michael Sigl, Matthew Toohey, Paul S. Atkins, Zhen Yang, Tomoko Muranaka, Nobuko Horikawa & Markus Stoffel. Nature volume 616, pages 90–95 (2023) Issue Date: 06 April 2023 DOI: https://doi.org/10.1038/s41586-023-05751-z Published online: 05 April 2023

This paper is open access.

Biohybrid device (a new type of neural implant) could restore limb function

A March 23, 2023 news item on ScienceDaily announces a neural implant that addresses failures due to scarring issues,

Researchers have developed a new type of neural implant that could restore limb function to amputees and others who have lost the use of their arms or legs.

In a study carried out in rats, researchers from the University of Cambridge used the device to improve the connection between the brain and paralysed limbs. The device combines flexible electronics and human stem cells — the body’s ‘reprogrammable’ master cells — to better integrate with the nerve and drive limb function.

Previous attempts at using neural implants to restore limb function have mostly failed, as scar tissue tends to form around the electrodes over time, impeding the connection between the device and the nerve. By sandwiching a layer of muscle cells reprogrammed from stem cells between the electrodes and the living tissue, the researchers found that the device integrated with the host’s body and the formation of scar tissue was prevented. The cells survived on the electrode for the duration of the 28-day experiment, the first time this has been monitored over such a long period.

A March 22, 2023 University of Cambridge press release (also on EurekAlert but published March 23, 2023) by Sarah Collins, delves further into the topic,

The researchers say that by combining two advanced therapies for nerve regeneration – cell therapy and bioelectronics – into a single device, they can overcome the shortcomings of both approaches, improving functionality and sensitivity.

While extensive research and testing will be needed before it can be used in humans, the device is a promising development for amputees or those who have lost function of a limb or limbs. The results are reported in the journal Science Advances.

A huge challenge when attempting to reverse injuries that result in the loss of a limb or the loss of function of a limb is the inability of neurons to regenerate and rebuild disrupted neural circuits.

“If someone has an arm or a leg amputated, for example, all the signals in the nervous system are still there, even though the physical limb is gone,” said Dr Damiano Barone from Cambridge’s Department of Clinical Neurosciences, who co-led the research. “The challenge with integrating artificial limbs, or restoring function to arms or legs, is extracting the information from the nerve and getting it to the limb so that function is restored.”

One way of addressing this problem is implanting a nerve in the large muscles of the shoulder and attaching electrodes to it. The problem with this approach is scar tissue forms around the electrode, plus it is only possible to extract surface-level information from the electrode.

To get better resolution, any implant for restoring function would need to extract much more information from the electrodes. And to improve sensitivity, the researchers wanted to design something that could work on the scale of a single nerve fibre, or axon.

“An axon itself has a tiny voltage,” said Barone. “But once it connects with a muscle cell, which has a much higher voltage, the signal from the muscle cell is easier to extract. That’s where you can increase the sensitivity of the implant.”

The researchers designed a biocompatible flexible electronic device that is thin enough to be attached to the end of a nerve. A layer of stem cells, reprogrammed into muscle cells, was then placed on the electrode. This is the first time that this type of stem cell, called an induced pluripotent stem cell, has been used in a living organism in this way.

“These cells give us an enormous degree of control,” said Barone. “We can tell them how to behave and check on them throughout the experiment. By putting cells in between the electronics and the living body, the body doesn’t see the electrodes, it just sees the cells, so scar tissue isn’t generated.”

The Cambridge biohybrid device was implanted into the paralysed forearm of the rats. The stem cells, which had been transformed into muscle cells prior to implantation, integrated with the nerves in the rat’s forearm. While the rats did not have movement restored to their forearms, the device was able to pick up the signals from the brain that control movement. If connected to the rest of the nerve or a prosthetic limb, the device could help restore movement.

The cell layer also improved the function of the device, by improving resolution and allowing long-term monitoring inside a living organism. The cells survived through the 28-day experiment: the first time that cells have been shown to survive an extended experiment of this kind.

The researchers say that their approach has multiple advantages over other attempts to restore function in amputees. In addition to its easier integration and long-term stability, the device is small enough that its implantation would only require keyhole surgery. Other neural interfacing technologies for the restoration of function in amputees require complex patient-specific interpretations of cortical activity to be associated with muscle movements, while the Cambridge-developed device is a highly scalable solution since it uses ‘off the shelf’ cells.

In addition to its potential for the restoration of function in people who have lost the use of a limb or limbs, the researchers say their device could also be used to control prosthetic limbs by interacting with specific axons responsible for motor control.

“This interface could revolutionise the way we interact with technology,” said co-first author Amy Rochford, from the Department of Engineering. “By combining living human cells with bioelectronic materials, we’ve created a system that can communicate with the brain in a more natural and intuitive way, opening up new possibilities for prosthetics, brain-machine interfaces, and even enhancing cognitive abilities.”

“This technology represents an exciting new approach to neural implants, which we hope will unlock new treatments for patients in need,” said co-first author Dr Alejandro Carnicer-Lombarte, also from the Department of Engineering.

“This was a high-risk endeavour, and I’m so pleased that it worked,” said Professor George Malliaras from Cambridge’s Department of Engineering, who co-led the research. “It’s one of those things that you don’t know whether it will take two years or ten before it works, and it ended up happening very efficiently.”

The researchers are now working to further optimise the devices and improve their scalability. The team have filed a patent application on the technology with the support of Cambridge Enterprise, the University’s technology transfer arm.

The technology relies on opti-oxTM enabled muscle cells. opti-ox is a precision cellular reprogramming technology that enables faithful execution of genetic programmes in cells allowing them to be manufactured consistently at scale. The opti-ox enabled muscle iPSC cell lines used in the experiment were supplied by the Kotter lab [Mark Kotter] from the University of Cambridge. The opti-ox reprogramming technology is owned by synthetic biology company bit.bio.

The research was supported in part by the Engineering and Physical Sciences Research Council (EPSRC), part of UK Research and Innovation (UKRI), Wellcome, and the European Union’s Horizon 2020 Research and Innovation Programme.

Caption: In a study carried out in rats, researchers from the University of Cambridge used a biohybrid device to improve the connection between the brain and paralysed limbs. The device combines flexible electronics and human stem cells – the body’s ‘reprogrammable’ master cells – to better integrate with the nerve and drive limb function. Credit: University of Cambirdge

Here’s a link to and a citation for the paper,

Functional neurological restoration of amputated peripheral nerve using biohybrid regenerative bioelectronics by Amy E. Rochford, Alejandro Carnicer-Lombarte, Malak Kawan, Amy Jin, Sam Hilton, Vincenzo F. Curto, Alexandra L. Rutz, Thomas Moreau, Mark R. N. Kotter, George G. Malliaras, and Damiano G. Barone. Science Advances 22 Mar 2023 Vol 9, Issue 12 DOI: 10.1126/sciadv.add8162

This paper is open access.

The synthetic biology company mentioned in the press release, bit.bio is here

Graphene goes to the moon

The people behind the European Union’s Graphene Flagship programme (if you need a brief explanation, keep scrolling down to the “What is the Graphene Flagship?” subhead) and the United Arab Emirates have got to be very excited about the announcement made in a November 29, 2022 news item on Nanowerk, Note: Canadians too have reason to be excited as of April 3, 2023 when it was announced that Canadian astronaut Jeremy Hansen was selected to be part of the team on NASA’s [US National Aeronautics and Space Administration] Artemis II to orbit the moon (April 3, 2023 CBC news online article by Nicole Mortillaro) ·

Graphene Flagship Partners University of Cambridge (UK) and Université Libre de Bruxelles (ULB, Belgium) paired up with the Mohammed bin Rashid Space Centre (MBRSC, United Arab Emirates), and the European Space Agency (ESA) to test graphene on the Moon. This joint effort sees the involvement of many international partners, such as Airbus Defense and Space, Khalifa University, Massachusetts Institute of Technology, Technische Universität Dortmund, University of Oslo, and Tohoku University.

The Rashid rover is planned to be launched on 30 November 2022 [Note: the launch appears to have occurred on December 11, 2022; keep scrolling for more about that] from Cape Canaveral in Florida and will land on a geologically rich and, as yet, only remotely explored area on the Moon’s nearside – the side that always faces the Earth. During one lunar day, equivalent to approximately 14 days on Earth, Rashid will move on the lunar surface investigating interesting geological features.

A November 29, 2022 Graphene Flagship press release (also on EurekAlert), which originated the news item, provides more details,

The Rashid rover wheels will be used for repeated exposure of different materials to the lunar surface. As part of this Material Adhesion and abrasion Detection experiment, graphene-based composites on the rover wheels will be used to understand if they can protect spacecraft against the harsh conditions on the Moon, and especially against regolith (also known as ‘lunar dust’).

Regolith is made of extremely sharp, tiny and sticky grains and, since the Apollo missions, it has been one of the biggest challenges lunar missions have had to overcome. Regolith is responsible for mechanical and electrostatic damage to equipment, and is therefore also hazardous for astronauts. It clogs spacesuits’ joints, obscures visors, erodes spacesuits and protective layers, and is a potential health hazard.  

University of Cambridge researchers from the Cambridge Graphene Centre produced graphene/polyether ether ketone (PEEK) composites. The interaction of these composites with the Moon regolith (soil) will be investigated. The samples will be monitored via an optical camera, which will record footage throughout the mission. ULB researchers will gather information during the mission and suggest adjustments to the path and orientation of the rover. Images obtained will be used to study the effects of the Moon environment and the regolith abrasive stresses on the samples.

This moon mission comes soon after the ESA announcement of the 2022 class of astronauts, including the Graphene Flagship’s own Meganne Christian, a researcher at Graphene Flagship Partner the Institute of Microelectronics and Microsystems (IMM) at the National Research Council of Italy.

“Being able to follow the Moon rover’s progress in real time will enable us to track how the lunar environment impacts various types of graphene-polymer composites, thereby allowing us to infer which of them is most resilient under such conditions. This will enhance our understanding of how graphene-based composites could be used in the construction of future lunar surface vessels,” says Sara Almaeeni, MBRSC science team lead, who designed Rashid’s communication system.

“New materials such as graphene have the potential to be game changers in space exploration. In combination with the resources available on the Moon, advanced materials will enable radiation protection, electronics shielding and mechanical resistance to the harshness of the Moon’s environment. The Rashid rover will be the first opportunity to gather data on the behavior of graphene composites within a lunar environment,” says Carlo Iorio, Graphene Flagship Space Champion, from ULB.

Leading up to the Moon mission, a variety of inks containing graphene and related materials, such as conducting graphene, insulating hexagonal boron nitride and graphene oxide, semiconducting molybdenum disulfide, prepared by the University of Cambridge and ULB were also tested on the MAterials Science Experiment Rocket 15 (MASER 15) mission, successfully launched on the 23rd of November 2022 from the Esrange Space Center in Sweden. This experiment, named ARLES-2 (Advanced Research on Liquid Evaporation in Space) and supported by European and UK space agencies (ESA, UKSA) included contributions from Graphene Flagship Partners University of Cambridge (UK), University of Pisa (Italy) and Trinity College Dublin (Ireland), with many international collaborators, including Aix-Marseille University (France), Technische Universität Darmstadt (Germany), York University (Canada), Université de Liège (Belgium), University of Edinburgh and Loughborough.

This experiment will provide new information about the printing of GMR inks in weightless conditions, contributing to the development of new addictive manufacturing procedures in space such as 3d printing. Such procedures are key for space exploration, during which replacement components are often needed, and could be manufactured from functional inks.

“Our experiments on graphene and related materials deposition in microgravity pave the way addictive manufacturing in space. The study of the interaction of Moon regolith with graphene composites will address some key challenges brought about by the harsh lunar environment,” says Yarjan Abdul Samad, from the Universities of Cambridge and Khalifa, who prepared the samples and coordinated the interactions with the United Arab Emirates.    

“The Graphene Flagship is spearheading the investigation of graphene and related materials (GRMs) for space applications. In November 2022, we had the first member of the Graphene Flagship appointed to the ESA astronaut class. We saw the launch of a sounding rocket to test printing of a variety of GRMs in zero gravity conditions, and the launch of a lunar rover that will test the interaction of graphene—based composites with the Moon surface. Composites, coatings and foams based on GRMs have been at the core of the Graphene Flagship investigations since its beginning. It is thus quite telling that, leading up to the Flagship’s 10th anniversary, these innovative materials are now to be tested on the lunar surface. This is timely, given the ongoing effort to bring astronauts back to the Moon, with the aim of building lunar settlements. When combined with polymers, GRMs can tailor the mechanical, thermal, electrical properties of then host matrices. These pioneering experiments could pave the way for widespread adoption of GRM-enhanced materials for space exploration,” says Andrea Ferrari, Science and Technology Officer and Chair of the Management Panel of the Graphene Flagship. 

Caption: The MASER15 launch Credit: John-Charles Dupin

A pioneering graphene work and a first for the Arab World

A December 11, 2022 news item on Alarabiya news (and on CNN) describes the ‘graphene’ launch which was also marked the Arab World’s first mission to the moon,

The United Arab Emirates’ Rashid Rover – the Arab world’s first mission to the Moon – was launched on Sunday [December 11, 2022], the Mohammed bin Rashid Space Center (MBRSC) announced on its official Twitter account.

The launch came after it was previously postponed for “pre-flight checkouts.”

The launch of a SpaceX Falcon 9 rocket carrying the UAE’s Rashid rover successfully took off from Cape Canaveral, Florida.

The Rashid rover – built by Emirati engineers from the UAE’s Mohammed bin Rashid Space Center (MBRSC) – is to be sent to regions of the Moon unexplored by humans.

What is the Graphene Flagship?

In 2013, the Graphene Flagship was chosen as one of two FET (Future and Emerging Technologies) funding projects (the other being the Human Brain Project) each receiving €1 billion to be paid out over 10 years. In effect, it’s a science funding programme specifically focused on research, development, and commercialization of graphene (a two-dimensional [it has length and width but no depth] material made of carbon atoms).

You can find out more about the flagship and about graphene here.

“Living in a Dream,” part of Cambridge Festival (on display March 31 and April 1, 2023 in the UK)

Caption: Dream artwork by Jewel Chang of Anglia Ruskin University, which will be on display at the Cambridge Festival. Credit: Jewel Chang, Anglia Ruskin University

Let’s clear up a few things. First, as noted in the headline, the Cambridge Festival (March 17 – April 2, 2023) is being held in the UK by the University of Cambridge in the town of Cambridge. Second, the specific festival event featured here is a display put together by students and professors at Anglia Ruskin University (ARU) and in the town of Cambridge as part of the festival and will be held for two days, March 31 – April 1, 2023.

A March 27, 2023 ARU press release (also on EurekAlert) provides more details about the two day display, Note: Links have been removed,

Dreams are being turned into reality as new research investigating the unusual experiences of people with depersonalisation symptoms is being brought to life in an art exhibition at Anglia Ruskin University (ARU) in Cambridge, England.

ARU neuroscientist Dr Jane Aspell has led a major international study into depersonalisation, funded by the Bial Foundation. The “Living in a Dream” project, results from which will be published later this year, found that people who experience depersonalisation symptoms sometimes experience life from a very different perspective, both while awake and while dreaming.

Those experiencing depersonalisation often report feeling as though they are not real and that their body does not belong to them. Dr Aspell’s study, which is the first to examine how people with this disorder experience dreams, collected almost 1,000 dream reports from participants.

Now these dreams have been recreated by eight students from ARU’s MA Illustration course and the artwork will go on display for the first time on 31 March and 1 April as part of the Cambridge Festival.

This collaboration between art and science, led by psychologist Matt Gwyther and illustrator Dr Nanette Hoogslag, with the support of artist and creative technologist Emily Godden, has resulted in 12 original artworks, which have been created using the latest audio-visual technologies, including artificial intelligence (AI), and are presented using a mix of audio-visual installation, virtual reality (VR) experiences, and traditional media.

Dr Jane Aspell, Associate Professor of Cognitive Neuroscience at ARU and Head of the Self and Body Lab, said: “People who experience depersonalisation sometimes feel detached from their self and body, and a common complaint is that it’s like they are watching their own life as a film.

“Because their waking reality is so different, myself and my international collaborators – Dr Anna Ciaunica, Professor Bigna Lenggenhager and Dr Jennifer Windt – were keen to investigate how they experience their dreams.

“People who took part in the study completed daily ‘dream diaries’, and it is fabulous to see how these dreams have been recreated by this group of incredibly talented artists.”

Matt Gwyther added: “Dreams are both incredibly visual and surreal, and you lose so much when attempting to put them into words. By bringing them to life as art, it has not only produced fabulous artwork, but it also helps us as scientists better understand the experiences of our research participants.”

Amongst the artists contributing to the exhibition is MA student Jewel Chang, who has recreated a dream about being chased. When the person woke up, they continued to experience it and were unsure whether they were experiencing the dream or reality.

False awakenings and multiple layers of dreams can be confusing, affecting our perception of time and space. Jewel used AI to create an environment with depth and endless moving patterns that makes the visitor feel trapped in their dream, unable to escape.

Kelsey Wu, meanwhile, used special 3D software and cameras to recreate a dream of floating over hills and forests, and losing balance. The immersive piece, with the audience invited to sit on a grass-covered floor, creates a sense of loss of control of the body, which moves in an abnormal and unbalanced way, and evokes a struggle between illusion and reality as the landscape continuously moves.

Dr Nanette Hoogslag, Course Leader for the MA in Illustration at ARU, said: “This project has been a unique challenge, where students not only applied themselves in supporting scientific research, but investigated and used a range of new technologies, including virtual reality and AI-generated imagery. The final pieces are absolutely remarkable, and also slightly unsettling!”

You can find out more about the 2023 Cambridge Festival here and about the Anglia Ruskin University exhibit, “Living in a Dream: A visual exploration of the self in dreams using AI technology” here.

Transformational machine learning (TML)

It seems machine learning is getting a tune-up. A November 29, 2021 news item on ScienceDaily describes research into improving machine learning from an international team of researchers,

Researchers have developed a new approach to machine learning that ‘learns how to learn’ and out-performs current machine learning methods for drug design, which in turn could accelerate the search for new disease treatments.

The method, called transformational machine learning (TML), was developed by a team from the UK, Sweden, India and Netherlands. It learns from multiple problems and improves performance while it learns.

A November 29, 2021 University of Cambridge press release (also on EurekAlert), which originated the news item, describes the potential this new technique may have on drug discovery and more,

TML could accelerate the identification and production of new drugs by improving the machine learning systems which are used to identify them. The results are reported in the Proceedings of the National Academy of Sciences.

Most types of machine learning (ML) use labelled examples, and these examples are almost always represented in the computer using intrinsic features, such as the colour or shape of an object. The computer then forms general rules that relate the features to the labels.

“It’s sort of like teaching a child to identify different animals: this is a rabbit, this is a donkey and so on,” said Professor Ross King from Cambridge’s Department of Chemical Engineering and Biotechnology, who led the research. “If you teach a machine learning algorithm what a rabbit looks like, it will be able to tell whether an animal is or isn’t a rabbit. This is the way that most machine learning works – it deals with problems one at a time.”

However, this is not the way that human learning works: instead of dealing with a single issue at a time, we get better at learning because we have learned things in the past.

“To develop TML, we applied this approach to machine learning, and developed a system that learns information from previous problems it has encountered in order to better learn new problems,” said King, who is also a Fellow at The Alan Turing Institute. “Where a typical ML system has to start from scratch when learning to identify a new type of animal – say a kitten – TML can use the similarity to existing animals: kittens are cute like rabbits, but don’t have long ears like rabbits and donkeys. This makes TML a much more powerful approach to machine learning.”

The researchers demonstrated the effectiveness of their idea on thousands of problems from across science and engineering. They say it shows particular promise in the area of drug discovery, where this approach speeds up the process by checking what other ML models say about a particular molecule. A typical ML approach will search for drug molecules of a particular shape, for example. TML instead uses the connection of the drugs to other drug discovery problems.

“I was surprised how well it works – better than anything else we know for drug design,” said King. “It’s better at choosing drugs than humans are – and without the best science, we won’t get the best results.”

Here’s a link to and a citation for the paper,

Transformational machine learning: Learning how to learn from many related scientific problems by Ivan Olier, Oghenejokpeme I. Orhobor, Tirtharaj Dash, Andy M. Davis, Larisa N. Soldatova, Joaquin Vanschoren, and Ross D. King. PNAS December 7, 2021 118 (49) e2108013118; DOI: https://doi.org/10.1073/pnas.2108013118

This paper appears to be open access.

Congratulations! Noēma magazine’s first year anniversary

Apparently, I am an idiot—if the folks at Expunct and other organizations passionately devoted to their own viewpoints are to be believed.

To be specific, Berggruen Institute (which publishes Noēma magazine) has attracted remarkably sharp criticism and, by implication, that seems to include anyone examining, listening, or reading the institute’s various communication efforts.

Perhaps you’d like to judge the quality of the ideas for yourself?

Abut the Institute and about the magazine

The institute is a think tank founded by Nicolas Berggruen, US-based billionaire investor and philanthropist, and Nathan Gardels, journalist and editor-in-chief of Noēma magazine, in 2010. Before moving onto the magazine’s first anniversary, here’s more about the Institute from its About webpage,

Ideas for a Changing World

We live in a time of great transformations. From capitalism, to democracy, to the global order, our institutions are faltering. The very meaning of the human is fragmenting.

The Berggruen Institute was established in 2010 to develop foundational ideas about how to reshape political and social institutions in the face of these great transformations. We work across cultures, disciplines and political boundaries, engaging great thinkers to develop and promote long-term answers to the biggest challenges of the 21st Century.

As the for the magazine, here’s more from the About Us webpage (Note: I have rearranged the paragraph order),

In ancient Greek, noēma means “thinking” or the “object of thought.” And that is our intention: to delve deeply into the critical issues transforming the world today, at length and with historical context, in order to illuminate new pathways of thought in a way not possible through the immediacy of daily media. In this era of accelerated social change, there is a dire need for new ideas and paradigms to frame the world we are moving into.

Noema is a magazine exploring the transformations sweeping our world. We publish essays, interviews, reportage, videos and art on the overlapping realms of philosophy, governance, geopolitics, economics, technology and culture. In doing so, our unique approach is to get out of the usual lanes and cross disciplines, social silos and cultural boundaries. From artificial intelligence and the climate crisis to the future of democracy and capitalism, Noema Magazine seeks a deeper understanding of the most pressing challenges of the 21st century.

Published online and in print by the Berggruen Institute, Noema grew out of a previous publication called The WorldPost, which was first a partnership with HuffPost and later with The Washington Post. Noema publishes thoughtful, rigorous, adventurous pieces by voices from both inside and outside the institute. While committed to using journalism to help build a more sustainable and equitable world, we do not promote any particular set of national, economic or partisan interests.

First anniversary

Noēma’s anniversary is being marked by its second paper publication (the first was produced for the magazine’s launch). From a July 1, 2021 announcement received via email,

June 2021 marked one year since the launch of Noema Magazine, a crucial milestone for the new publication focused on exploring and amplifying transformative ideas. Noema is working to attract audiences through longform perspectives and contemporary artwork that weave together threads in philosophy, governance, geopolitics, economics, technology, and culture.

“What began more than seven years ago as a news-driven global voices platform for The Huffington Post known as The WorldPost, and later in partnership with The Washington Post, has been reimagined,” said Nathan Gardels, editor-in-chief of Noema. “It has evolved into a platform for expansive ideas through a visual lens, and a timely and provocative portal to plumb the deeper issues behind present events.”

The magazine’s editorial board, involved in the genesis and as content drivers of the magazine, includes Orhan Pamuk, Arianna Huffington, Fareed Zakaria, Reid Hoffman, Dambisa Moyo, Walter Isaacson, Pico Iyer, and Elif Shafak. Pieces by thinkers cracking the calcifications of intellectual domains include, among many others:

·      Francis Fukuyama on the future of the nation-state

·      A collage of commentary on COVID with Yuval Harari and Jared Diamond 

·      An interview with economist Mariana Mazzucato on “mission-oriented government”

·      Taiwan’s Digital Minister Audrey Tang on digital democracy

·      Hedge-fund giant Ray Dalio in conversation with Nobel laureate Joe Stiglitz

·      Shannon Vallor on how AI is making us less intelligent and more artificial

·      Former Governor Jerry Brown in conversation with Stewart Brand 

·      Ecologist Suzanne Simard on the intelligence of forest ecosystems

·      A discussion on protecting the biosphere with Bill Gates’s guru Vaclav Smil 

·      An original story by Chinese science-fiction writer Hao Jingfang

Noema seeks to highlight how the great transformations of the 21st century are reflected in the work of today’s artistic innovators. Most articles are accompanied by an original illustration, melding together an aesthetic experience with ideas in social science and public policy. Among others, in the past year, the magazine has featured work from multimedia artist Pierre Huyghe, illustrator Daniel Martin Diaz, painter Scott Listfield, graphic designer and NFT artist Jonathan Zawada, 3D motion graphics artist Kyle Szostek, illustrator Moonassi, collage artist Lauren Lakin, and aerial photographer Brooke Holm. Additional contributions from artists include Berggruen Fellows Agnieszka Kurant and Anicka Yi discussing how their work explores the myth of the self.

Noema is available online and annually in print; the magazine’s second print issue will be released on July13, 2021. The theme of this issue is “planetary realism,” which proposes to go beyond the exhausted notions of globalization and geopolitical competition among nation-states to a new “Gaiapolitik.” It addresses the existential challenge of climate change across all borders and recognizes that human civilization is but one part of the ecology of being that encompasses multiple intelligences from microbes to forests to the emergent global exoskeleton of AI and internet connectivity (more on this in the letter from the editors below).

Published by the Berggruen Institute, Noema is an incubator for the Institute’s core ideas, such as “participation without populism,” “pre-distribution” and universal basic capital (vs. income), and the need for dialogue between the U.S. and China to avoid an AI arms race or inadvertent war.

“The world needs divergent thinking on big questions if we’re going to meet the challenges of the 21st century; Noema publishes bold and experimental ideas,” said Kathleen Miles, executive editor of Noema. “The magazine cross-fertilizes ideas across boundaries and explores correspondences among them in order to map out the terrain of the great transformations underway.”  

I notice Suzanne Simard (from the University of British Columbia and author of “Finding the Mother Tree: Discovering the Wisdom of the Forest”) on the list of essayists along with a story by Chinese science fiction writer, Hao Jingfang.

Simard was mentioned here in a May 12, 2021 posting (scroll down to the “UBC forestry professor, Suzanne Simard’s memoir going to the movies?” subhead) when it was announced that her then not yet published memoir will be a film starring Amy Adams (or so they hope).

Hao Jingfang was mentioned here in a November 16, 2020 posting titled: “Telling stories about artificial intelligence (AI) and Chinese science fiction; a Nov. 17, 2020 virtual event” (co-hosted by the Berggruen Institute and University of Cambridge’s Leverhulme Centre for the Future of Intelligence [CFI]).

A month after Noēma’s second paper issue on July 13, 2021, the theme and topics appear especially timely in light of the extensive news coverage in Canada and many other parts of the world given to the Monday, August, 9, 2021 release of the sixth UN Climate report raising alarms over irreversible impacts. (Emily Chung’s August 12, 2021 analysis for the Canadian Broadcasting Corporation [CBC] offers a little good news for those severely alarmed by the report.) Note: The Intergovernmental Panel on Climate Change (IPCC) is the UN body tasked with assessing the science related to climate change.

Graphene and its magnetism

I have two news bits about graphene and magnetism. If I understood what I was reading, one is more focused on applications and the other is focused on further establishing the field of valleytronics.

University of Cambridge and superconductivity

A February 8, 2021 news item on Nanowerk announces ‘magnetic work’ from the University of Cambridge (Note: A link has been removed),

The researchers, led by the University of Cambridge, were able to control the conductivity and magnetism of iron thiophosphate (FePS3), a two-dimensional material which undergoes a transition from an insulator to a metal when compressed. This class of magnetic materials offers new routes to understanding the physics of new magnetic states and superconductivity.

Using new high-pressure techniques, the researchers have shown what happens to magnetic graphene during the transition from insulator to conductor and into its unconventional metallic state, realised only under ultra-high pressure conditions. When the material becomes metallic, it remains magnetic, which is contrary to previous results and provides clues as to how the electrical conduction in the metallic phase works. The newly discovered high-pressure magnetic phase likely forms a precursor to superconductivity so understanding its mechanisms is vital.

Their results, published in the journal Physical Review X, also suggest a way that new materials could be engineered to have combined conduction and magnetic properties, which could be useful in the development of new technologies such as spintronics, which could transform the way in which computers process information.

A February 8, 2021 University of Cambridge press release (also on EurekAlert), which originated the news item, delves into the topic,

Properties of matter can alter dramatically with changing dimensionality. For example, graphene, carbon nanotubes, graphite and diamond are all made of carbon atoms, but have very different properties due to their different structure and dimensionality.

“But imagine if you were also able to change all of these properties by adding magnetism,” said first author Dr Matthew Coak, who is jointly based at Cambridge’s Cavendish Laboratory and the University of Warwick. “A material which could be mechanically flexible and form a new kind of circuit to store information and perform computation. This is why these materials are so interesting, and because they drastically change their properties when put under pressure so we can control their behaviour.”

In a previous study by Sebastian Haines of Cambridge’s Cavendish Laboratory and the Department of Earth Sciences, researchers established that the material becomes a metal at high pressure, and outlined how the crystal structure and arrangement of atoms in the layers of this 2D material change through the transition.

“The missing piece has remained however, the magnetism,” said Coak. “With no experimental techniques able to probe the signatures of magnetism in this material at pressures this high, our international team had to develop and test our own new techniques to make it possible.”

The researchers used new techniques to measure the magnetic structure up to record-breaking high pressures, using specially designed diamond anvils and neutrons to act as the probe of magnetism. They were then able to follow the evolution of the magnetism into the metallic state.

“To our surprise, we found that the magnetism survives and is in some ways strengthened,” co-author Dr Siddharth Saxena, group leader at the Cavendish Laboratory. “This is unexpected, as the newly-freely-roaming electrons in a newly conducting material can no longer be locked to their parent iron atoms, generating magnetic moments there – unless the conduction is coming from an unexpected source.”

In their previous paper, the researchers showed these electrons were ‘frozen’ in a sense. But when they made them flow or move, they started interacting more and more. The magnetism survives, but gets modified into new forms, giving rise to new quantum properties in a new type of magnetic metal.

How a material behaves, whether conductor or insulator, is mostly based on how the electrons, or charge, move around. However, the ‘spin’ of the electrons has been shown to be the source of magnetism. Spin makes electrons behave a bit like tiny bar magnets and point a certain way. Magnetism from the arrangement of electron spins is used in most memory devices: harnessing and controlling it is important for developing new technologies such as spintronics, which could transform the way in which computers process information.

“The combination of the two, the charge and the spin, is key to how this material behaves,” said co-author Dr David Jarvis from the Institut Laue-Langevin, France, who carried out this work as the basis of his PhD studies at the Cavendish Laboratory. “Finding this sort of quantum multi-functionality is another leap forward in the study of these materials.”

“We don’t know exactly what’s happening at the quantum level, but at the same time, we can manipulate it,” said Saxena. “It’s like those famous ‘unknown unknowns’: we’ve opened up a new door to properties of quantum information, but we don’t yet know what those properties might be.”

There are more potential chemical compounds to synthesise than could ever be fully explored and characterised. But by carefully selecting and tuning materials with special properties, it is possible to show the way towards the creation of compounds and systems, but without having to apply huge amounts of pressure.

Additionally, gaining fundamental understanding of phenomena such as low-dimensional magnetism and superconductivity allows researchers to make the next leaps in materials science and engineering, with particular potential in energy efficiency, generation and storage.

As for the case of magnetic graphene, the researchers next plan to continue the search for superconductivity within this unique material. “Now that we have some idea what happens to this material at high pressure, we can make some predictions about what might happen if we try to tune its properties through adding free electrons by compressing it further,” said Coak.

“The thing we’re chasing is superconductivity,” said Saxena. “If we can find a type of superconductivity that’s related to magnetism in a two-dimensional material, it could give us a shot at solving a problem that’s gone back decades.”

The citation and link to the paper are at the end of this blog posting.

Aalto University’s valleytronics

Further north in Finland, researchers at Aalto University make some advances applicable to the field of valleytronics, from a February 5, 2021 Aalto University press release (also on EurekAltert but published February 8, 2021),

Electrons in materials have a property known as ‘spin’, which is responsible for a variety of properties, the most well-known of which is magnetism. Permanent magnets, like the ones used for refrigerator doors, have all the spins in their electrons aligned in the same direction. Scientists refer to this behaviour as ferromagnetism, and the research field of trying to manipulate spin as spintronics.

Down in the quantum world, spins can arrange in more exotic ways, giving rise to frustrated states and entangled magnets. Interestingly, a property similar to spin, known as “the valley,” appears in graphene materials. This unique feature has given rise to the field of valleytronics, which aims to exploit the valley property for emergent physics and information processing, very much like spintronics relies on pure spin physics.

‘Valleytronics would potentially allow encoding information in the quantum valley degree of freedom, similar to how electronics do it with charge and spintronics with the spin.’ Explains Professor Jose Lado, from Aalto’s Department of applied physics, and one of the authors of the work. ‘What’s more, valleytronic devices would offer a dramatic increase in the processing speeds in comparison with electronics, and with much higher stability towards magnetic field noise in comparison with spintronic devices.’

Structures made of rotated, ultra-thin materials provide a rich solid-state platform for designing novel devices. In particular, slightly twisted graphene layers have recently been shown to have exciting unconventional properties, that can ultimately lead to a new family of materials for quantum technologies. These unconventional states which are already being explored depend on electrical charge or spin. The open question is if the valley can also lead to its own family of exciting states.

Making materials for valleytronics

For this goal, it turns out that conventional ferromagnets play a vital role, pushing graphene to the realms of valley physics. In a recent work, Ph.D. student Tobias Wolf, together with Profs. Oded Zilberberg and Gianni Blatter at ETH Zurich, and Prof. Jose Lado at Aalto University, showed a new direction for correlated physics in magnetic van der Waals materials.

The team showed that sandwiching two slightly rotated layers of graphene between a ferromagnetic insulator provides a unique setting for new electronic states. The combination of ferromagnets, graphene’s twist engineering, and relativistic effects force the “valley” property to dominate the electrons behaviour in the material. In particular, the researchers showed how these valley-only states can be tuned electrically, providing a materials platform in which valley-only states can be generated. Building on top of the recent breakthrough in spintronics and van der Waals materials, valley physics in magnetic twisted van der Waals multilayers opens the door to the new realm of correlated twisted valleytronics.

‘Demonstrating these states represents the starting point towards new exotic entangled valley states.’ Said Professor Lado, ‘Ultimately, engineering these valley states can allow realizing quantum entangled valley liquids and fractional quantum valley Hall states. These two exotic states of matter have not been found in nature yet, and would open exciting possibilities towards a potentially new graphene-based platform for topological quantum computing.’

Citations and links

Here’s a link to and a citation for the University of Cambridge research,

Emergent Magnetic Phases in Pressure-Tuned van der Waals Antiferromagnet FePS3 by Matthew J. Coak, David M. Jarvis, Hayrullo Hamidov, Andrew R. Wildes, Joseph A. M. Paddison, Cheng Liu, Charles R. S. Haines, Ngoc T. Dang, Sergey E. Kichanov, Boris N. Savenko, Sungmin Lee, Marie Kratochvílová, Stefan Klotz, Thomas C. Hansen, Denis P. Kozlenko, Je-Geun Park, and Siddharth S. Saxena. Phys. Rev. X 11, 011024 DOI: https://doi.org/10.1103/PhysRevX.11.011024 Published 5 February 2021

This article appears to be open access.

Here’s a link to and a citation for the Aalto University research,

Spontaneous Valley Spirals in Magnetically Encapsulated Twisted Bilayer Graphene by Tobias M. R. Wolf, Oded Zilberberg, Gianni Blatter, and Jose L. Lado. Phys. Rev. Lett. 126, 056803 DOI: https://doi.org/10.1103/PhysRevLett.126.056803 Published 4 February 2021

This paper is behind a paywall.