Tag Archives: University of Cambridge

Gold nanotubes for treating mesothelioma?

An October 26, 2020 news item on Nanowerk describes some new research that may lead the way to treatments for people with asbestos-related cancers (e.g., mesothelioma), Note: A link has been removed,

Gold nanotubes – tiny hollow cylinders one thousandth the width of a human hair – could be used to treat mesothelioma, a type of cancer caused by exposure to asbestos, according to a team of researchers at the Universities of Cambridge and Leeds.

In a study published in journal Small (“Exploring High Aspect Ratio Gold Nanotubes as Cytosolic Agents: Structural Engineering and Uptake into Mesothelioma Cells”), the researchers demonstrate that once inside the cancer cells, the nanotubes absorb light, causing them to heat up, thereby killing the cells.

Here`s an image illustrating the research,

Caption: Confocal fluorescence image of gold nanotures (green) in mesothelioma cells. Credit: Arsalan Azad

An October 27, 2020 University of Cambridge press release (also on EurekAlert but published on Oct. 26, 2020), which originated the news item, describes the context for the research and provides a few more technical details,

More than 2,600 people are diagnosed in the UK each year with mesothelioma, a malignant form of cancer caused by exposure to asbestos. Although the use of asbestos is outlawed in the UK now, the country has the world’s highest levels of mesothelioma because it imported vast amounts of asbestos in the post-war years. The global usage of asbestos remains high, particularly in low- and middle-income countries, which means mesothelioma will become a global problem.

“Mesothelioma is one of the ‘hard-to-treat’ cancers, and the best we can offer people with existing treatments is a few months of extra survival,” said Dr Arsalan Azad from the Cambridge Institute for Medical Research at the University of Cambridge. “There’s an important unmet need for new, effective treatments.”

In 2018, the University of Cambridge was awarded £10million from the Engineering and Physical Sciences Research Council to help develop engineering solutions, including nanotech, to find ways to address hard-to-treat cancers.

In a collaboration between the University of Cambridge and University of Leeds, researchers have developed a form of gold nanotubes whose physical properties are ‘tunable’ – in other words, the team can tailor the wall thickness, microstructure, composition, and ability to absorb particular wavelengths of light.

The researchers added the nanotubes to mesothelioma cells cultured in the lab and found that they were absorbed by the cells, residing close to the nucleus, where the cell’s DNA lies. When the team targeted the cells with a laser, the nanotubes absorbed the light and heated up, killing the mesothelioma cell.

Professor Stefan Marciniak, also from the Cambridge Institute for Medical Research, added: “The mesothelioma cells ‘eat’ the nanotubes, leaving them susceptible when we shine light on them. Laser light is able to penetrate deep into tissue without causing damage to surrounding tissue. It then gets absorbed by the nanotubes, which heat up and, we hope in the future, could be used to cause localised cancer-cell killing.”

The team will be developing the work further to ensure the nanotubes are targeted to cancer cells with less effect on normal tissue.

The nanotubes are made in a two-step process. First, solid silver nanorods are created of the desired diameter. Gold is then deposited from solution onto the surface of the silver. As the gold builds-up at the surface, the silver dissolves from the inside to leave a hollow nanotube.

The approach advanced by the Leeds team allows these nanotubes to be developed at room temperature, which should make their manufacture at scale more feasible.

Professor Stephen Evans from the School of Physics and Astronomy at the University of Leeds said: “Having control over the size and shape of the nanotubes allows us to tune them to absorb light where the tissue is transparent and will allow them to be used for both the imaging and treatment of cancers. The next stage will be to load these nanotubes with medicines for enhanced therapies.”

Here`s a link to and a citation for the paper,

Exploring High Aspect Ratio Gold Nanotubes as Cytosolic Agents: Structural Engineering and Uptake into Mesothelioma Cells by Sunjie Ye, Arsalan A. Azad, Joseph E. Chambers, Alison J. Beckett, Lucien Roach, Samuel C. T. Moorcroft, Zabeada Aslam, Ian A. Prior, Alexander F. Markham, P. Louise Coletta, Stefan J. Marciniak, Stephen D. Evans. Small DOI: https://doi.org/10.1002/smll.202003793 First published: 25 October 2020

This paper is open access.

Telling stories about artificial intelligence (AI) and Chinese science fiction; a Nov. 17, 2020 virtual event

[downloaded from https://www.berggruen.org/events/ai-narratives-in-contemporary-chinese-science-fiction/]

Exciting news: Chris Eldred of the Berggruen Institute sent this notice (from his Nov. 13, 2020 email)

Renowned science fiction novelists Hao Jingfang, Chen Qiufan, and Wang Yao (Xia Jia) will be featured in a virtual event next Tuesday, and I thought their discussion may be of interest to you and your readers. The event will explore how AI is used in contemporary Chinese science fiction, and the writers’ roundtable will address questions such as: How does Chinese sci-fi literature since the Reform and Opening-Up compare to sci-fi writing in the West? How does the Wandering Earth narrative and Chinese perspectives on home influence ideas about the impact of AI on the future?

Berggruen Fellow Hao Jingfang is an economist by training and an award-winning author (Hugo Award for Best Novelette). This event will be co-hosted with the University of Cambridge Leverhulme Centre for the Future of Intelligence. 

This event will be live streamed on Zoom (agenda and registration link here) on Tuesday, November 17th, from 8:30-11:50 AM GMT / 4:30-7:50 PM CST. Simultaneous English translation will be provided. 

The Berggruen Institute is offering a conversation with authors and researchers about how Chinese science fiction grapples with artificial intelligence (from the Berggruen Institute’s AI Narratives in Contemporary Chinese Science Fiction event page),

AI Narratives in Contemporary Chinese Science Fiction

November 17, 2020

Platform & Language:

Zoom (Chinese and English, with simultaneous translation)

Click here to register.

Discussion points:

1. How does Chinese sci-fi literature since the Reform and Opening-Up compare to sci-fi writing in the West?

2. How does the Wandering Earth narrative and Chinese perspectives on home influence ideas about the impact of AI on the future

About the Speakers:

WU Yan is a professor and PhD supervisor at the Humanities Center of Southern University of Science and Technology. He is a science fiction writer, vice chairman of the China Science Writers Association, recipient of the Thomas D Clareson Award of the American Science Fiction Research Association, and co-founder of the Xingyun (Nebula) Awards for Global Chinese Science Fiction. He is the author of science fictions such as Adventure of the Soul and The Sixth Day of Life and Death, academic works such as Outline of Science Fiction Literature, and textbooks such as Science and Fantasy – Training Course for Youth Imagination and Scientific Innovation.

Sanfeng is a science fiction researcher, visiting researcher of the Humanities Center of Southern University of Science and Technology, chief researcher of Shenzhen Science & Fantasy Growth Foundation, honorary assistant professor of the University of Hong Kong, Secretary-General of the World Chinese Science Fiction Association, and editor-in-chief of Nebula Science Fiction Review. His research covers the history of Chinese science fiction, development of science fiction industry, science fiction and urban development, science fiction and technological innovation, etc.

About the Event

Keynote 1 “Chinese AI Science Fiction in the Early Period of Reform and Opening-Up (1978-1983)”

(改革开放早期(1978-1983)的中国AI科幻小说)

Abstract: Science fiction on the themes of computers and robots emerged early but in a scattered manner in China. In the stories, the protagonists are largely humanlike assistants chiefly collecting data or doing daily manual labor, and this does not fall in the category of today’s artificial intelligence. Major changes took place after the reform and opening-up in 1978 in this regard. In 1979, the number of robot-themed works ballooned. By 1980, the quality of works also saw a quantum leap, and stories on the nature of artificial intelligence began to appear. At this stage, the AI works such as Spy Case Outside the Pitch, Dulles and Alice, Professor Shalom’s Misconception, and Riot on the Ziwei Island That Shocked the World describe how intelligent robots respond to activities such as adversarial ball games (note that these are not chess games), fully integrate into the daily life of humans, and launch collective riots beyond legal norms under special circumstances. The ideas that the growth of artificial intelligence requires a suitable environment, stable family relationship, social adaptation, etc. are still of important value.

Keynote 2 “Algorithm of the Soul: Narrative of AI in Recent Chinese Science Fiction”

(灵魂的算法:近期中国科幻小说中的AI叙事)

Abstract: As artificial intelligence has been applied to the fields of technology and daily life in the past decade, the AI narrative in Chinese science fiction has also seen seismic changes. On the one hand, young authors are aware that the “soul” of AI comes, to a large extent, from machine learning algorithms. As a result, their works often highlight the existence and implementation of algorithms, bringing maneuverability and credibility to the AI. On the other hand, the authors prefer to focus on the conflicts and contradictions in emotions, ethics, and morality caused by AI that penetrate into human life. If the previous AI-themed science fiction is like a distant robot fable, the recent AI narrative assumes contemporary and practical significance. This report focuses on exploring the AI-themed science fiction by several young authors (including Hao Jingfang’s [emphasis mine] The Problem of Love and Where Are You, Chen Qiufan’s Image Maker and Algorithm for Life, and Xia Jia’s Let’s Have a Talk and Shejiang, Baoshu’s Little Girl and Shuangchimu’s The Cock Prince, etc.) to delve into the breakthroughs and achievements in AI narratives.

Hao Jingfang, one of the authors mentioned in the abstract, is currently a fellow at the Berggruen Institute and she is scheduled to be a guest according to the co-host’s the University of Cambridge’s Leverhulme Centre for the Future of Intelligence (CFI) page: Workshop: AI Narratives in Contemporary Chinese Science Fiction programme description (I’ll try not to include too much repetitive information),

Workshop 2 – November 17, 2020

AI Narratives in Contemporary Chinese Science Fiction

Programme

16:30-16:40 CST (8:30-8:40 GMT)  Introductions

SONG Bing, Vice President, Co-Director, Berggruen Research Center, Peking University

Kanta Dihal, Postdoctoral Researcher, Project Lead on Global Narratives, Leverhulme Centre for the Future of Intelligence, University of Cambridge  

16:40-17:10 CST (8:40-9:10 GMT)  Talk 1 [Chinese AI SciFi and the early period]

17:10-17:40 CST (9:10-9:40 GMT)  Talk 2  [Algorithm of the soul]

17:40-18:10 CST (9:40-10:10 GMT)  Q&A

18:10-18:20 CST (10:10-10:20 GMT) Break

18:20-19:50 CST (10:20-11:50 GMT)  Roundtable Discussion

Host:

HAO Jingfang(郝景芳), author, researcher & Berggruen Fellow

Guests:

Baoshu (宝树), sci-fi and fantasy writer

CHEN Qiufan(陈楸帆), sci-fi writer, screenwriter & translator

Feidao(飞氘), sci-fi writer, Associate Professor in the Department of Chinese Language and Literature at Tsinghua University

WANG Yao(王瑶,pen name “Xia Jia”), sci-fi writer, Associate Professor of Chinese Literature at Xi’an Jiaotong University

Suggested Readings

ABOUT CHINESE [Science] FICTION

“What Makes Chinese Fiction Chinese?”, by Xia Jia and Ken Liu,

The Worst of All Possible Universes and the Best of All Possible Earths: Three Body and Chinese Science Fiction”, Cixin Liu, translated by Ken Liu

Science Fiction in China: 2016 in Review

SHORT NOVELS ABOUT ROBOTS/AI/ALGORITHM:

The Robot Who Liked to Tell Tall Tales”, by Feidao, translated by Ken Liu

Goodnight, Melancholy”, by Xia Jia, translated by Ken Liu

The Reunion”, by Chen Qiufan, translated by Emily Jin and Ken Liu, MIT Technology Review, December 16, 2018

Folding Beijing”, by Hao Jingfang, translated by Ken Liu

Let’s have a talk”, by Xia Jia

For those of us on the West Coast of North America the event times are: Tuesday, November 17, 2020, 1430 – 1750 or 2:30 – 5:50 pm. *Added On Nov.16.20 at 11:55 am PT: For anyone who can’t attend the live event, a full recording will be posted to YouTube.*

Kudos to all involved in organizing and participating in this event. It’s important to get as many viewpoints as possible on AI and its potential impacts.

Finally and for the curious, there’s another posting about Chinese science fiction here (May 31, 2019).

Viburnum and a new kind of structural colo(u)r

I love structural colo(u) and the first such story here was this February 7, 2013 posting, which is where you’ll find the image below,

AGELESS BRILLIANCE: Although the pigment-derived leaf color of this decades-old specimen of the African perennial Pollia condensata has faded, the fruit still maintains its intense metallic-blue iridescence.COURTESY OF P.J. RUDALL [downloaded from http://www.the-scientist.com/?articles.view/articleNo/34200/title/Color-from-Structure/]

Those berries are stunning especially when you realize they are part of a long-dead Pollia plant. Scientist, Rox Middleton of University of Bristol (UK) was studying the structures that render the Pollia plant’s berries (fruit) blue when she decided to study another, more conveniently accessible plant with blue fruit. That’s when she got a surprise (from an August 11, 2020 article by Véronique Greenwood for the New York Times),

Big, leafy viburnum bushes have lined yards in the United States and Europe for decades — their domes of blossoms have an understated attractiveness. But once the flowers of the Viburnum tinus plant fade, the shrub makes something unusual: shiny, brilliantly blue fruit.

Scientists had noticed that pigments related to those in blueberries exist in viburnum fruit, and assumed that this must be the source of their odd hue. Blue fruit, after all, is rare. But researchers reported last week in Current Biology that viburnum’s blue is actually created by layers of molecules arranged under the surface of the skin, a form of what scientists call structural color. By means still unknown, the plant’s cells create thin slabs of fat [emphasis mine] arranged in a stack, like the flakes of puff pastry, and their peculiar gleam is the result.

Rox Middleton, a researcher at University of Bristol in England and an author of the new paper, had been studying the African pollia plant, which produces its own exotic blue fruit. But viburnum fruit were everywhere, and she realized that their blue had not been well-studied. Along with Miranda Sinnott-Armstrong, a researcher at the University of Colorado, Boulder, and other colleagues, she set out to take a closer look at the fruit’s skin.

The pollia fruit’s blue is a form of structural color, in which light bounces off a regularly spaced arrangement of tiny structures such that certain wavelengths, usually those that look blue or green to us, are reflected back at the viewer. In pollia fruit, the color comes from light interacting with thin sheets of cellulose packed together. At first the team thought there would be something similar in viburnum. But they saw no cellulose stacks.

The research team has concluded that all it comes down the arrangement of fat molecules, which are also responsible for the cloudier, metallic blue in viburnum berries,

Caption Closeup of viburnum tinus. Credit: Rox Middleton Courtesy University of Cambridge

I encourage you to read Greenwood’s August 11, 2020 article in its entirety. For those who like more details, there are two press releases. The first is an August 6, 2020 University of Cambridge press release on EurekAlert. Middleton completed the ‘Virbunum’ research while completing her PhD at Cambridge. As mentioned earlier, Middleton is currently a researcher at the University of Bristol and they issued an August 11, 2020 press release touting her accomplishment.

Finally, for the insatiably curious, here’s a link to and a citation for the paper,

Viburnum tinus Fruits Use Lipids to Produce Metallic Blue Structural Color by Rox Middleton, Miranda Sinnott-Armstrong, Yu Ogawa, Gianni Jacucci, Edwige Moyroud, Paula J. Rudall, Chrissie Prychid, Maria Conejero, Beverley J. Glover, Michael J. Donoghue, Silvia Vignolini. Current Biology DOI:https://doi.org/10.1016/j.cub.2020.07.005 Published:August 06, 2020

This paper is behind a paywall.

Improving neuromorphic devices with ion conducting polymer

A July 1, 2020 news item on ScienceDaily announces work which researchers are hopeful will allow them exert more control over neuromorphic devices’ speed of response,

“Neuromorphic” refers to mimicking the behavior of brain neural cells. When one speaks of neuromorphic computers, they are talking about making computers think and process more like human brains-operating at high-speed with low energy consumption.

Despite a growing interest in polymer-based neuromorphic devices, researchers have yet to establish an effective method for controlling the response speed of devices. Researchers from Tohoku University and the University of Cambridge, however, have overcome this obstacle through mixing the polymers PSS-Na and PEDOT:PSS, discovering that adding an ion conducting polymer enhances neuromorphic device response time.

A June 24, 2020 Tohoku University press release (also on EurekAlert), which originated the news item, provides a few more technical details,

Polymers are materials composed of long molecular chains and play a fundamental aspect in modern life from the rubber in tires, to water bottles, to polystyrene. Mixing polymers together results in the creation of new materials with their own distinct physical properties.

Most studies on neuromorphic devices based on polymer focus exclusively on the application of PEDOT: PSS, a mixed conductor that transports both electrons and ions. PSS-Na, on the other hand, transports ions only. By blending these two polymers, the researchers could enhance the ion diffusivity in the active layer of the device. Their measurements confirmed an increase in device response time, achieving a 5-time shorting at maximum. The results also proved how closely related response time is to the diffusivity of ions in the active layer.

“Our study paves the way for a deeper understanding behind the science of conducting polymers.” explains co-author Shunsuke Yamamoto from the Department of Biomolecular Engineering at Tohoku University’s Graduate School of Engineering. “Moving forward, it may be possible to create artificial neural networks composed of multiple neuromorphic devices,” he adds.

Here’s a link to and a citation for the paper,

Controlling the Neuromorphic Behavior of Organic Electrochemical Transistors by Blending Mixed and Ion Conductors by Shunsuke Yamamoto and George G. Malliaras. ACS [American Chemical Society] Appl. Electron. Mater. 2020, XXXX, XXX, XXX-XXX DOI: https://doi.org/10.1021/acsaelm.0c00203 Publication Date:June 15, 2020 Copyright © 2020 American Chemical Society

This paper is behind a paywall.

Colo(u)r-changing building surfaces thanks to gold nanoparticles

Gold, at the nanoscale, has different properties than it has at the macroscale and research at the University of Cambridge has found a new way to exploit gold’s unique properties at the nanoscale according to a May 13, 2019 news item item on ScienceDaily,

The smallest pixels yet created — a million times smaller than those in smartphones, made by trapping particles of light under tiny rocks of gold — could be used for new types of large-scale flexible displays, big enough to cover entire buildings.

The colour pixels, developed by a team of scientists led by the University of Cambridge, are compatible with roll-to-roll fabrication on flexible plastic films, dramatically reducing their production cost. The results are reported in the journal Science Advances [May 10, 2019].

A May 10,2019 University of Cambridge press release (also on EurekAlert), which originated the news item, delves further into the research,

It has been a long-held dream to mimic the colour-changing skin of octopus or squid, allowing people or objects to disappear into the natural background, but making large-area flexible display screens is still prohibitively expensive because they are constructed from highly precise multiple layers.

At the centre of the pixels developed by the Cambridge scientists is a tiny particle of gold a few billionths of a metre across. The grain sits on top of a reflective surface, trapping light in the gap in between. Surrounding each grain is a thin sticky coating which changes chemically when electrically switched, causing the pixel to change colour across the spectrum.

The team of scientists, from different disciplines including physics, chemistry and manufacturing, made the pixels by coating vats of golden grains with an active polymer called polyaniline and then spraying them onto flexible mirror-coated plastic, to dramatically drive down production cost.

The pixels are the smallest yet created, a million times smaller than typical smartphone pixels. They can be seen in bright sunlight and because they do not need constant power to keep their set colour, have an energy performance that makes large areas feasible and sustainable. “We started by washing them over aluminized food packets, but then found aerosol spraying is faster,” said co-lead author Hyeon-Ho Jeong from Cambridge’s Cavendish Laboratory.

“These are not the normal tools of nanotechnology, but this sort of radical approach is needed to make sustainable technologies feasible,” said Professor Jeremy J Baumberg of the NanoPhotonics Centre at Cambridge’s Cavendish Laboratory, who led the research. “The strange physics of light on the nanoscale allows it to be switched, even if less than a tenth of the film is coated with our active pixels. That’s because the apparent size of each pixel for light is many times larger than their physical area when using these resonant gold architectures.”

The pixels could enable a host of new application possibilities such as building-sized display screens, architecture which can switch off solar heat load, active camouflage clothing and coatings, as well as tiny indicators for coming internet-of-things devices.
The team are currently working at improving the colour range and are looking for partners to develop the technology further.

The research is funded as part of a UK Engineering and Physical Sciences Research Council (EPSRC) investment in the Cambridge NanoPhotonics Centre, as well as the European Research Council (ERC) and the China Scholarship Council.

This image accompanies the press release,

Caption: eNPoMs formed from gold nanoparticles (Au NPs) encapsulated in a conductive polymer shell. Credit: NanoPhotonics Cambridge/Hyeon-Ho Jeong, Jialong Peng Credit: NanoPhotonics Cambridge/Hyeon-Ho Jeong, Jialong Peng

Here’s a link to and a citation for the paper,

Scalable electrochromic nanopixels using plasmonics by Jialong Peng, Hyeon-Ho Jeong, Qianqi Lin, Sean Cormier, Hsin-Ling Liang, Michael F. L. De Volder, Silvia Vignolini, and Jeremy J. Baumberg. Science Advances Vol. 5, no. 5, eaaw2205 DOI: 10.1126/sciadv.aaw2205 Published: 01 May 2019

This paper appears to be open access.

Wearable electronic textiles from the UK, India, and Canada: two different carbon materials

It seems wearable electronic textiles may be getting nearer to the marketplace. I have three research items (two teams working with graphene and one working with carbon nanotubes) that appeared on my various feeds within two days of each other.

UK/China

This research study is the result of a collaboration between UK and Chinese scientists. From a May 15, 2019 news item on phys.org (Note: Links have been removed),


Wearable electronic components incorporated directly into fabrics have been developed by researchers at the University of Cambridge. The devices could be used for flexible circuits, healthcare monitoring, energy conversion, and other applications.

The Cambridge researchers, working in collaboration with colleagues at Jiangnan University in China, have shown how graphene – a two-dimensional form of carbon – and other related materials can be directly incorporated into fabrics to produce charge storage elements such as capacitors, paving the way to textile-based power supplies which are washable, flexible and comfortable to wear.

The research, published in the journal Nanoscale, demonstrates that graphene inks can be used in textiles able to store electrical charge and release it when required. The new textile electronic devices are based on low-cost, sustainable and scalable dyeing of polyester fabric. The inks are produced by standard solution processing techniques.

Building on previous work by the same team, the researchers designed inks which can be directly coated onto a polyester fabric in a simple dyeing process. The versatility of the process allows various types of electronic components to be incorporated into the fabric.

Schematic of the textile-based capacitor integrating GNP/polyesters as electrodes and h-BN/polyesters as dielectrics. Credit: Felice Torrisi

A May 16, 2019 University of Cambridge press release, which originated the news item, probes further,

Most other wearable electronics rely on rigid electronic components mounted on plastic or textiles. These offer limited compatibility with the skin in many circumstances, are damaged when washed and are uncomfortable to wear because they are not breathable.

“Other techniques to incorporate electronic components directly into textiles are expensive to produce and usually require toxic solvents, which makes them unsuitable to be worn,” said Dr Felice Torrisi from the Cambridge Graphene Centre, and the paper’s corresponding author. “Our inks are cheap, safe and environmentally-friendly, and can be combined to create electronic circuits by simply overlaying different fabrics made of two-dimensional materials on the fabric.”

The researchers suspended individual graphene sheets in a low boiling point solvent, which is easily removed after deposition on the fabric, resulting in a thin and uniform conducting network made up of multiple graphene sheets. The subsequent overlay of several graphene and hexagonal boron nitride (h-BN) fabrics creates an active region, which enables charge storage. This sort of ‘battery’ on fabric is bendable and can withstand washing cycles in a normal washing machine.

“Textile dyeing has been around for centuries using simple pigments, but our result demonstrates for the first time that inks based on graphene and related materials can be used to produce textiles that could store and release energy,” said co-author Professor Chaoxia Wang from Jiangnan University in China. “Our process is scalable and there are no fundamental obstacles to the technological development of wearable electronic devices both in terms of their complexity and performance.”

The work done by the Cambridge researchers opens a number of commercial opportunities for ink based on two-dimensional materials, ranging from personal health and well-being technology, to wearable energy and data storage, military garments, wearable computing and fashion.

“Turning textiles into functional energy storage elements can open up an entirely new set of applications, from body-energy harvesting and storage to the Internet of Things,” said Torrisi “In the future our clothes could incorporate these textile-based charge storage elements and power wearable textile devices.”

Here’s a link to and a citation for the paper,

Wearable solid-state capacitors based on two-dimensional material all-textile heterostructures by Siyu Qiang, Tian Carey, Adrees Arbab, Weihua Song, Chaoxia Wang and Felice Torris. Nanoscale, 2019, Advance Article DOI: 10.1039/C9NR00463G First published on 18 Apr 2019

This paper is behind a paywall.

India

Prior to graphene’s reign as the ‘it’ carbon material, carbon nanotubes (CNTs) ruled. It’s been quieter on the CNT front since graphene took over but a May 15, 2019 Nanowerk Spotlight article by Michael Berger highlights some of the latest CNT research coming out of India,


The most important technical challenge is to blend the chemical nature of raw materials with fabrication techniques and processability, all of which are diametrically conflicting for textiles and conventional energy storage devices. A team from Indian Institute of Technology Bombay has come out with a comprehensive approach involving simple and facile steps to fabricate a wearable energy storage device. Several scientific and technological challenges were overcome during this process.

First, to achieve user-comfort and computability with clothing, the scaffold employed was the the same as what a regular fabric is made up of – cellulose fibers. However, cotton yarns are electrical insulators and therefore practically useless for any electronics. Therefore, the yarns are coated with single-wall carbon nanotubes (SWNTs).

SWNTs are hollow, cylindrical allotropes of carbon and combine excellent mechanical strength with electrical conductivity and surface area. Such a coating converts the electrical insulating cotton yarn to a metallic conductor with high specific surface area. At the same time, using carbon-based materials ensures that the final material remains light-weight and does not cause user discomfort that can arise from metallic wires such as copper and gold. This CNT-coated cotton yarn (CNT-wires) forms the electrode for the energy storage device.

Next, the electrolyte is composed of solid-state electrolyte sheets since no liquid-state electrolytes can be used for this purpose. However, solid state electrolytes suffer from poor ionic conductivity – a major disadvantage for energy storage applications. Therefore, a steam-based infiltration approach that enhances the ionic conductivity of the electrolyte is adopted. Such enhancement of humidity significantly increases the energy storage capacity of the device.


The integration of the CNT-wire electrode with the electrolyte sheet was carried out by a simple and elegant approach of interweaving the CNT-wire through the electrolyte (see Figure 1). This resulted in cross-intersections which are actually junctions where the electrical energy can be stored. Each such junction is now an energy storage unit, referred to as sewcap.

The advantage of this process is that several 100s and 1000s of sewcaps can be made in a small area and integrated to increase the total amount of energy stored in the system. This scalability is unique and critical aspect of this work and stems from the approach of interweaving.

Further, this process is completely adaptable with current processes used in textile industries. Hence, a proportionately large energy-storage is achieved by creating sewcap-junctions in various combinations.

All components of the final sewcap device are flexible. However, they need to be protected from environmental effects such as temperature, humidity and sweat while retaining the mechanical flexibility. This is achieved by laminating the entire device between polymer sheets. The process is exactly similar to the one used for protecting documents and ID cards.

The laminated sewcap can be integrated easily on clothing and fabrics while retaining the flexibility and sturdiness. This is demonstrated by the unchanged performance of the device during extreme and harsh mechanical testing such as striking repeatedly with a hammer, complete flexing, bending and rolling and washing in a laundry machine.

In fact, this is the first device that has been proven to be stable under rigorous washing conditions in the presence of hot water, detergents and high torque (spinning action of washing machine). This provides the device with comprehensive mechanical stability.


CNTs have high surface area and electrical conductivity. The CNT-wire combines these properties of CNTs with stability and porosity of cellulose yarns. The junction created by interweaving is essentially comprised of two such CNT-wires that are sandwiching an electrolyte. Application of potential difference leads to polarization of the electrolyte thus enabling energy storage similar to the way in which a conventional capacitor acts.

“We use the advantage of the interweaving process and create several such junctions. So, with each junction being able to store a certain amount of electrical energy, all the junctions synchronized are able to store a large amount of energy. This provides high energy density to the device,” Prof. C. Subramaniam, Department of Chemistry, IIT Bombay and corresponding author of the paper points out.

The device has also been employed for lighting up an LED [light-emitting diode]. This can be potentially scaled to provide electrical energy demanded by the application.

This image accompanies the paper written by Prof. C. Subramaniam and his team,

Courtesy: IACS Applied Materials Interfaces

Here’s a link to and a citation for the paper,

Interwoven Carbon Nanotube Wires for High-Performing, Mechanically Robust, Washable, and Wearable Supercapacitors by Mihir Kumar Jha, Kenji Hata, and Chandramouli Subramaniam. ACS Appl. Mater. Interfaces, Article ASAP DOI: 10.1021/acsami.8b22233 Publication Date (Web): April 29, 2019 Copyright © 2019 American Chemical Society

This paper is behind a paywall.

Canada

A research team from the University of British Columbia (UBC at the Okanagan Campus) joined the pack with a May 16, 2019 news item on ScienceDaily,

Forget the smart watch. Bring on the smart shirt.

Researchers at UBC Okanagan’s School of Engineering have developed a low-cost sensor that can be interlaced into textiles and composite materials. While the research is still new, the sensor may pave the way for smart clothing that can monitor human movement.

A May 16, 2019 UBC news release (also on EurekAlert), which originated the news item, describes the work in more detail,


“Microscopic sensors are changing the way we monitor machines and humans,” says Hoorfar, lead researcher at the Advanced Thermo-Fluidic Lab at UBC’s Okanagan campus. “Combining the shrinking of technology along with improved accuracy, the future is very bright in this area.”

This ‘shrinking technology’ uses a phenomenon called piezo-resistivity—an electromechanical response of a material when it is under strain. These tiny sensors have shown a great promise in detecting human movements and can be used for heart rate monitoring or temperature control, explains Hoorfar.

Her research, conducted in partnership with UBC Okanagan’s Materials and Manufacturing Research Institute, shows the potential of a low-cost, sensitive and stretchable yarn sensor. The sensor can be woven into spandex material and then wrapped into a stretchable silicone sheath. This sheath protects the conductive layer against harsh conditions and allows for the creation of washable wearable sensors.

While the idea of smart clothing—fabrics that can tell the user when to hydrate, or when to rest—may change the athletics industry, UBC Professor Abbas Milani says the sensor has other uses. It can monitor deformations in fibre-reinforced composite fabrics currently used in advanced industries such as automotive, aerospace and marine manufacturing.

The low-cost stretchable composite sensor has also shown a high sensitivity and can detect small deformations such as yarn stretching as well as out-of-plane deformations at inaccessible places within composite laminates, says Milani, director of the UBC Materials and Manufacturing Research Institute.

The testing indicates that further improvements in its accuracy could be achieved by fine-tuning the sensor’s material blend and improving its electrical conductivity and sensitivity This can eventually make it able to capture major flaws like “fibre wrinkling” during the manufacturing of advanced composite structures such as those currently used in airplanes or car bodies.

“Advanced textile composite materials make the most of combining the strengths of different reinforcement materials and patterns with different resin options,” he says. “Integrating sensor technologies like piezo-resistive sensors made of flexible materials compatible with the host textile reinforcement is becoming a real game-changer in the emerging era of smart manufacturing and current automated industry trends.”

Here’s a link to and a citation for the paper,

Graphene‐Coated Spandex Sensors Embedded into Silicone Sheath for Composites Health Monitoring and Wearable Applications by Hossein Montazerian, Armin Rashidi, Arash Dalili, Homayoun Najjaran, Abbas S. Milani, Mina Hoorfar. Small Volume15, Issue17 April 26, 2019 1804991 DOI: https://doi.org/10.1002/smll.201804991 First published: 28 March 2019

This paper is behind a paywall.

Will there be one winner or will they find CNTs better for one type of wearable tech textile while graphene excels for another type of wearable tech textile?

Media registration for United Nations 3rd AI (artificial intelligence) for Good Global Summit

This is strictly for folks who have media accreditation. First, the news about the summit and then some detail about how you might accreditation should you be interested in going to Switzerland. Warning: The International Telecommunications Union which is holding this summit is a United Nations agency and you will note almost an entire paragraph of ‘alphabet soup’ when all the ‘sister’ agencies involved are listed.

From the March 21, 2019 International Telecommunications Union (ITU) media advisory (Note: There have been some changes to the formatting),

Geneva, 21 March 2019
​​​​​​​​​​​​​
Artificial Intelligence (AI) h​as taken giant leaps forward in recent years, inspiring growing confidence in AI’s ability to assist in solving some of humanity’s greatest challenges. Leaders in AI and humanitarian action are convening on the neutral platform offered by the United Nations to work towards AI improving the quality and sustainability of life on our planet.
The 2017 summit marked the beginning of global dialogue on the potential of AI to act as a force for good. The action-oriented 2018 summit gave rise to numerous ‘AI for Good’ projects, including an ‘AI for Health’ Focus Group, now led by ITU and the World Health Organization (WHO). The 2019 summit will continue to connect AI innovators with public and private-sector decision-makers, building collaboration to maximize the impact of ‘AI for Good’.

Organized by the International Telecommunication Union (IT​U) – the United Nations specialized agency for information and communication technology (ICT) – in partnership with the XPRIZE Foundation, the Association for Computing Machinery (ACM) and close to 30 sister United Nations agencies, the 3rd annual ​AI for Good Global Summit in Geneva, 28-31 May, is the leading United Nations platform for inclusive dialogue on AI. The goal of the summit is to identify practical applications of AI to accelerate progress towards the United Nations Sustainable Development Goals​​.​

►►► MEDIA REGISTRATION IS NOW OPEN ◄◄◄

Media are recommended to register in advance to receive key announcements in the run-up to the summit.

WHAT: The summit attracts a cross-section of AI experts from industry and academia, global business leaders, Heads of UN agencies, ICT ministers, non-governmental organizations, and civil society.

The summit is designed to generate ‘AI for Good’ projects able to be enacted in the near term, guided by the summit’s multi-stakeholder and inter-disciplinary audience. It also formulates supporting strategies to ensure trusted, safe and inclusive development of AI technologies and equitable access to their benefits.

The 2019 summit will highlight AI’s value in advancing education, healthcare and wellbeing, social and economic equality, space research, and smart and safe mobility. It will propose actions to assist high-potential AI solutions in achieving global scale. It will host debate around unintended consequences of AI as well as AI’s relationship with art and culture. A ‘learning day’ will offer potential AI adopters an audience with leading AI experts and educators.

A dynamic show floor will demonstrate innovations at the cutting edge of AI research and development, such as the IBM Watson live debater; the Fusion collaborative exoskeleton; RoboRace, the world’s first self-driving electric racing car; avatar prototypes, and the ElliQ social robot for the care of the elderly. Summit attendees can also look forward to AI-inspired performances from world-renowned musician Jojo Mayer and award-winning vocal and visual artist​ Reeps One

WHEN: 28-31 May 2019
WHERE: International Conference Centre Geneva, 17 Rue de Varembé, Geneva, Switzerland

WHO: Over 100 speakers have been confirmed to date, including:

Jim Hagemann Snabe – Chairman, Siemens​​
Cédric Villani – AI advisor to the President of France, and Mathematics Fields Medal Winner
Jean-Philippe Courtois – President of Global Operations, Microsoft
Anousheh Ansari – CEO, XPRIZE Foundation, Space Ambassador
Yves Daccord – Director General, International Committee of the Red Cross
Yan Huang – Director AI Innovation, Baidu
Timnit Gebru – Head of AI Ethics, Google
Vladimir Kramnik – World Chess Champion
Vicki Hanson – CEO, ACM
Zoubin Ghahramani – Chief Scientist, Uber, and Professor of Engineering, University of Cambridge
Lucas di Grassi – Formula E World Racing Champion, CEO of Roborac

Confirmed speakers also include C-level and expert representatives of Bosch, Botnar Foundation, Byton, Cambridge Quantum Computing, the cities of Montreal and Pittsburg, Darktrace, Deloitte, EPFL, European Space Agency, Factmata, Google, IBM, IEEE, IFIP, Intel, IPSoft, Iridescent, MasterCard, Mechanica.ai, Minecraft, NASA, Nethope, NVIDIA, Ocean Protocol, Open AI, Philips, PWC, Stanford University, University of Geneva, and WWF.

Please visit the summit programme for more information on the latest speakers, breakthrough sessions and panels.

The summit is organized in partnership with the following sister United Nations agencies:CTBTO, ICAO, ILO, IOM, UNAIDS, UNCTAD, UNDESA, UNDPA, UNEP, UNESCO, UNFPA, UNGP, UNHCR, UNICEF, UNICRI, UNIDIR, UNIDO, UNISDR, UNITAR, UNODA, UNODC, UNOOSA, UNOPS, UNU, WBG,  WFP, WHO, and WIPO.

The 2019 summit is kindly supported by Platinum Sponsor and Strategic Partner, Microsoft; Gold Sponsors, ACM, the Kay Family Foundation, Mind.ai and the Autonomous Driver Alliance; Silver Sponsors, Deloitte and the Zero Abuse Project; and Bronze Sponsor, Live Tiles.​

More information available at aiforgood.itu.int
​Join the conversat​ion on social media ​using the hashtag #AIforGood

As promised here are the media accreditation details from the ITU Media Registration and Accreditation webpage,

To gain media access, ITU must confirm your status as a bona fide member of the media. Therefore, please read ITU’s Media Accreditation Guidelines below so you are aware of the information you will be required to submit for ITU to confirm such status. ​
Media accreditation is not granted to 1) non-editorial staff working for a publishing house (e.g. management, marketing, advertising executives, etc.); 2) researchers, academics, authors or editors of directories; 3) employees of information outlets of public, non-governmental or private entities that are not first and foremost media organizations; 4) members of professional broadcasting or media associations, 5) press or communication professionals accompanying member state delegations; and 6) citizen journalists under no apparent editorial board oversight. If you have questions about your eligibility, please email us at pressreg@itu.int.​

Applications for accreditation are considered on a case-by-case basis and ITU reserves the right to request additional proof or documentation other than what is listed below. ​​​Media accreditation decisions rest with ITU and all decisions are final.

​Accreditation eligibility & credentials 
​1. Journalists* should provide an official letter of assignment from the Editor-in-Chief (or the News Editor for radio/TV). One letter per crew/editorial team will suffice. Editors-in-Chief and Bureau Chiefs should submit a letter from their Director. Please email this to pressreg@itu.int along with the required supporting credentials, based on the type of media organization you work for:

​​​​​Print and online publications should be available to the general public and published at least 6 times a year by an organization whose principle business activity is publishing and which generally carries paid advertising;
o please submit 2 copies or links to recent byline articles published within the last 4 months.

News wire services should provide news coverage to subscribers, including newspapers, periodicals and/or television networks;
o please submit 2 copies or links to recent byline articles or broadcasting material published within the last 4 months.

Broadcast media should provide news and information programmes to the general public. Inde​pendent film and video production companies can only be accredited if officially mandated by a broadcast station via a letter of assignment;
o please submit broadcasting material published within the last 4 months.

Freelance journalists and photographers must provide clear documentation that they are on assignment from a specific news organization or publication. Evidence that they regularly supply journalistic content to recognized media may be acceptable in the absence of an assignment letter and at the discretion of the ITU Corporate Communication Division.
o if possible, please submit a valid assignment letter from the news organization or publication.

2. Bloggers and community media may be granted accreditation if the content produced is deemed relevant to the industry, contains news commentary, is regularly updated and/or made publicly available. Corporate bloggers may register as normal participants (not media). Please see Guidelines for Bloggers and Community Media Accreditation below for more details:

Special guidelines for bloggers and community ​media accreditation

ITU is committed to working with independent and ‘new media’ reporters and columnists who reach their audiences via blogs, podcasts, video blogs, community or online radio, limited print formats which generally carry paid advertising ​​and other online media. These are some of the guidelines we use to determine whether to accredit bloggers and community media representatives:

​​ITU reserves the right to request traffic data from a third party (Sitemeter, Technorati, Feedburner, iTunes or equivalent) when considering your application. While the decision to grant access is not based solely on traffic/subscriber data, we ask that applicants provide sufficient transparency into their operations to help us make a fair and timely decision. If your media outlet is new, you must have an established record of having written extensively on ICT issues and must present copies or links to two recently published videos, podcasts or articles with your byline.​

Obtaining media accreditation for ITU events is an opportunity to meet and interact with key industry and political figures. While continued accreditation for ITU events is not directly contingent on producing coverage, owing to space limitations we may take this into consideration when processing future accreditation requests. Following any ITU event for which you are accredited, we therefore kindly request that you forward a link to your post/podcast/video blog to pressreg​@itu.int.

Bloggers who are granted access to ITU events are expected to act professionally. Those who do not maintain the standards expected of professional media representatives run the risk of having their accreditation withdrawn.

UN-accre​dited media

Media already accredited and badged by the United Nations are automatically accredited and registered by ITU. In this case, you only need to send a copy of your UN badge to pressreg@itu.int​to make sure you receive your event badge. Anyone joining an ITU event MUST have an event badge in order to access the premises. ​Please make sure you let us know in advance that you are planning to attend so your event badge is ready for printing and pick-up.​

You can register and get accreditation here (scroll past the guidelines). Good luck!

A transatlantic report highlighting the risks and opportunities associated with synthetic biology and bioengineering

I love e-Life, the open access journal where its editors noted that a submitted synthetic biology and bioengineering report was replete with US and UK experts (along with a European or two) but no expert input from other parts of the world. In response the authors added ‘transatlantic’ to the title. It was a good decision since it was too late to add any new experts if the authors planned to have their paper published in the foreseeable future.

I’ve commented many times here when panels of experts include only Canadian, US, UK, and, sometimes, European or Commonwealth (Australia/New Zealand) experts that we need to broaden our perspectives and now I can add: or at least acknowledge (e.g. transatlantic) that the perspectives taken are reflective of a rather narrow range of countries.

Now getting to the report, here’s more from a November 21, 2017 University of Cambridge press release,

Human genome editing, 3D-printed replacement organs and artificial photosynthesis – the field of bioengineering offers great promise for tackling the major challenges that face our society. But as a new article out today highlights, these developments provide both opportunities and risks in the short and long term.

Rapid developments in the field of synthetic biology and its associated tools and methods, including more widely available gene editing techniques, have substantially increased our capabilities for bioengineering – the application of principles and techniques from engineering to biological systems, often with the goal of addressing ‘real-world’ problems.

In a feature article published in the open access journal eLife, an international team of experts led by Dr Bonnie Wintle and Dr Christian R. Boehm from the Centre for the Study of Existential Risk at the University of Cambridge, capture perspectives of industry, innovators, scholars, and the security community in the UK and US on what they view as the major emerging issues in the field.

Dr Wintle says: “The growth of the bio-based economy offers the promise of addressing global environmental and societal challenges, but as our paper shows, it can also present new kinds of challenges and risks. The sector needs to proceed with caution to ensure we can reap the benefits safely and securely.”

The report is intended as a summary and launching point for policy makers across a range of sectors to further explore those issues that may be relevant to them.

Among the issues highlighted by the report as being most relevant over the next five years are:

Artificial photosynthesis and carbon capture for producing biofuels

If technical hurdles can be overcome, such developments might contribute to the future adoption of carbon capture systems, and provide sustainable sources of commodity chemicals and fuel.

Enhanced photosynthesis for agricultural productivity

Synthetic biology may hold the key to increasing yields on currently farmed land – and hence helping address food security – by enhancing photosynthesis and reducing pre-harvest losses, as well as reducing post-harvest and post-consumer waste.

Synthetic gene drives

Gene drives promote the inheritance of preferred genetic traits throughout a species, for example to prevent malaria-transmitting mosquitoes from breeding. However, this technology raises questions about whether it may alter ecosystems [emphasis mine], potentially even creating niches where a new disease-carrying species or new disease organism may take hold.

Human genome editing

Genome engineering technologies such as CRISPR/Cas9 offer the possibility to improve human lifespans and health. However, their implementation poses major ethical dilemmas. It is feasible that individuals or states with the financial and technological means may elect to provide strategic advantages to future generations.

Defence agency research in biological engineering

The areas of synthetic biology in which some defence agencies invest raise the risk of ‘dual-use’. For example, one programme intends to use insects to disseminate engineered plant viruses that confer traits to the target plants they feed on, with the aim of protecting crops from potential plant pathogens – but such technologies could plausibly also be used by others to harm targets.

In the next five to ten years, the authors identified areas of interest including:

Regenerative medicine: 3D printing body parts and tissue engineering

While this technology will undoubtedly ease suffering caused by traumatic injuries and a myriad of illnesses, reversing the decay associated with age is still fraught with ethical, social and economic concerns. Healthcare systems would rapidly become overburdened by the cost of replenishing body parts of citizens as they age and could lead new socioeconomic classes, as only those who can pay for such care themselves can extend their healthy years.

Microbiome-based therapies

The human microbiome is implicated in a large number of human disorders, from Parkinson’s to colon cancer, as well as metabolic conditions such as obesity and type 2 diabetes. Synthetic biology approaches could greatly accelerate the development of more effective microbiota-based therapeutics. However, there is a risk that DNA from genetically engineered microbes may spread to other microbiota in the human microbiome or into the wider environment.

Intersection of information security and bio-automation

Advancements in automation technology combined with faster and more reliable engineering techniques have resulted in the emergence of robotic ‘cloud labs’ where digital information is transformed into DNA then expressed in some target organisms. This opens the possibility of new kinds of information security threats, which could include tampering with digital DNA sequences leading to the production of harmful organisms, and sabotaging vaccine and drug production through attacks on critical DNA sequence databases or equipment.

Over the longer term, issues identified include:

New makers disrupt pharmaceutical markets

Community bio-labs and entrepreneurial startups are customizing and sharing methods and tools for biological experiments and engineering. Combined with open business models and open source technologies, this could herald opportunities for manufacturing therapies tailored to regional diseases that multinational pharmaceutical companies might not find profitable. But this raises concerns around the potential disruption of existing manufacturing markets and raw material supply chains as well as fears about inadequate regulation, less rigorous product quality control and misuse.

Platform technologies to address emerging disease pandemics

Emerging infectious diseases—such as recent Ebola and Zika virus disease outbreaks—and potential biological weapons attacks require scalable, flexible diagnosis and treatment. New technologies could enable the rapid identification and development of vaccine candidates, and plant-based antibody production systems.

Shifting ownership models in biotechnology

The rise of off-patent, generic tools and the lowering of technical barriers for engineering biology has the potential to help those in low-resource settings, benefit from developing a sustainable bioeconomy based on local needs and priorities, particularly where new advances are made open for others to build on.

Dr Jenny Molloy comments: “One theme that emerged repeatedly was that of inequality of access to the technology and its benefits. The rise of open source, off-patent tools could enable widespread sharing of knowledge within the biological engineering field and increase access to benefits for those in developing countries.”

Professor Johnathan Napier from Rothamsted Research adds: “The challenges embodied in the Sustainable Development Goals will require all manner of ideas and innovations to deliver significant outcomes. In agriculture, we are on the cusp of new paradigms for how and what we grow, and where. Demonstrating the fairness and usefulness of such approaches is crucial to ensure public acceptance and also to delivering impact in a meaningful way.”

Dr Christian R. Boehm concludes: “As these technologies emerge and develop, we must ensure public trust and acceptance. People may be willing to accept some of the benefits, such as the shift in ownership away from big business and towards more open science, and the ability to address problems that disproportionately affect the developing world, such as food security and disease. But proceeding without the appropriate safety precautions and societal consensus—whatever the public health benefits—could damage the field for many years to come.”

The research was made possible by the Centre for the Study of Existential Risk, the Synthetic Biology Strategic Research Initiative (both at the University of Cambridge), and the Future of Humanity Institute (University of Oxford). It was based on a workshop co-funded by the Templeton World Charity Foundation and the European Research Council under the European Union’s Horizon 2020 research and innovation programme.

Here’s a link to and a citation for the paper,

A transatlantic perspective on 20 emerging issues in biological engineering by Bonnie C Wintle, Christian R Boehm, Catherine Rhodes, Jennifer C Molloy, Piers Millett, Laura Adam, Rainer Breitling, Rob Carlson, Rocco Casagrande, Malcolm Dando, Robert Doubleday, Eric Drexler, Brett Edwards, Tom Ellis, Nicholas G Evans, Richard Hammond, Jim Haseloff, Linda Kahl, Todd Kuiken, Benjamin R Lichman, Colette A Matthewman, Johnathan A Napier, Seán S ÓhÉigeartaigh, Nicola J Patron, Edward Perello, Philip Shapira, Joyce Tait, Eriko Takano, William J Sutherland. eLife; 14 Nov 2017; DOI: 10.7554/eLife.30247

This paper is open access and the editors have included their notes to the authors and the authors’ response.

You may have noticed that I highlighted a portion of the text concerning synthetic gene drives. Coincidentally I ran across a November 16, 2017 article by Ed Yong for The Atlantic where the topic is discussed within the context of a project in New Zealand, ‘Predator Free 2050’ (Note: A link has been removed),

Until the 13th century, the only land mammals in New Zealand were bats. In this furless world, local birds evolved a docile temperament. Many of them, like the iconic kiwi and the giant kakapo parrot, lost their powers of flight. Gentle and grounded, they were easy prey for the rats, dogs, cats, stoats, weasels, and possums that were later introduced by humans. Between them, these predators devour more than 26 million chicks and eggs every year. They have already driven a quarter of the nation’s unique birds to extinction.

Many species now persist only in offshore islands where rats and their ilk have been successfully eradicated, or in small mainland sites like Zealandia where they are encircled by predator-proof fences. The songs in those sanctuaries are echoes of the New Zealand that was.

But perhaps, they also represent the New Zealand that could be.

In recent years, many of the country’s conservationists and residents have rallied behind Predator-Free 2050, an extraordinarily ambitious plan to save the country’s birds by eradicating its invasive predators. Native birds of prey will be unharmed, but Predator-Free 2050’s research strategy, which is released today, spells doom for rats, possums, and stoats (a large weasel). They are to die, every last one of them. No country, anywhere in the world, has managed such a task in an area that big. The largest island ever cleared of rats, Australia’s Macquarie Island, is just 50 square miles in size. New Zealand is 2,000 times bigger. But, the country has committed to fulfilling its ecological moonshot within three decades.

In 2014, Kevin Esvelt, a biologist at MIT, drew a Venn diagram that troubles him to this day. In it, he and his colleagues laid out several possible uses for gene drives—a nascent technology for spreading designer genes through groups of wild animals. Typically, a given gene has a 50-50 chance of being passed to the next generation. But gene drives turn that coin toss into a guarantee, allowing traits to zoom through populations in just a few generations. There are a few natural examples, but with CRISPR, scientists can deliberately engineer such drives.

Suppose you have a population of rats, roughly half of which are brown, and the other half white. Now, imagine there is a gene that affects each rat’s color. It comes in two forms, one leading to brown fur, and the other leading to white fur. A male with two brown copies mates with a female with two white copies, and all their offspring inherit one of each. Those offspring breed themselves, and the brown and white genes continue cascading through the generations in a 50-50 split. This is the usual story of inheritance. But you can subvert it with CRISPR, by programming the brown gene to cut its counterpart and replace it with another copy of itself. Now, the rats’ children are all brown-furred, as are their grandchildren, and soon the whole population is brown.

Forget fur. The same technique could spread an antimalarial gene through a mosquito population, or drought-resistance through crop plants. The applications are vast, but so are the risks. In theory, gene drives spread so quickly and relentlessly that they could rewrite an entire wild population, and once released, they would be hard to contain. If the concept of modifying the genes of organisms is already distasteful to some, gene drives magnify that distaste across national, continental, and perhaps even global scales.

These excerpts don’t do justice to this thought-provoking article. If you have time, I recommend reading it in its entirety  as it provides some insight into gene drives and, with some imagination on the reader’s part, the potential for the other technologies discussed in the report.

One last comment, I notice that Eric Drexler is cited as on the report’s authors. He’s familiar to me as K. Eric Drexler, the author of the book that popularized nanotechnology in the US and other countries, Engines of Creation (1986) .

Multi-level thinking in science—the art of seeing systems

I’ve quickly read Michael Edgeworth McIntyre’s paper on multi-level thinking and find it provides fascinating insight and some good writing style (I’ve provided a few excerpts from the paper further down in the posting).

Here’s more about the paper from an Aug. 17, 2017 Institute of Atmospheric Physics, Chinese Academy of Sciences press release on EurekAlert,

An unusual paper “On multi-level thinking and scientific understanding” appears in the October issue of Advances in Atmospheric Sciences. The author is Professor Michael Edgeworth McIntyre from University of Cambridge, whose work in atmospheric dynamics is well known. He has also had longstanding interests in astrophysics, music, perception psychology, and biological evolution.

The paper touches on a range of deep questions within and outside the atmospheric sciences. They include insights into the nature of science itself, and of scientific understanding — what it means to understand a scientific problem in depth — and into the communication skills necessary to convey that understanding and to mediate collaboration across specialist disciplines.

The paper appears in a Special Issue arising from last year’s Symposium held in Nanjing to commemorate the life of Professor Duzheng YE, who was well known as a national and international scientific leader and for his own wide range of interests, within and outside the atmospheric sciences. The symposium was organized by the Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, where Prof. YE had worked nearly 70 years before he passed away. Upon the invitation of Prof. Jiang ZHU, the Director General of IAP, also the Editor-in-Chief of Advances in Atmospheric Sciences (AAS), Prof. McIntyre agreed to contribute a review paper to an AAS special issue commemorating the centenary of Duzheng YE’s birth. Prof. YE was also the founding Editor-in-Chief of this journal.

One of Professor McIntyre’s themes is that we all have unconscious mathematics, including Euclidean geometry and the calculus of variations. This is easy to demonstrate and is key to understanding not only how science works but also, for instance, how music works. Indeed, it reveals some of the deepest connections between music and mathematics, going beyond the usual remarks about number-patterns. All this revolves around the biological significance of what Professor McIntyre calls the “organic-change principle”.

Further themes include the scientific value of looking at a problem from more than one viewpoint, and the need to use more than one level of description. Many scientific and philosophical controversies stem from confusing one level of description with another, for instance applying arguments to one level that belong on another. This confusion can be especially troublesome when it comes to questions about human biology and human nature, and about what Professor YE called multi-level “orderly human activities”.

Related to all these points are the contrasting modes of perception and understanding offered by the brain’s left and right hemispheres. Our knowledge of their functioning has progressed far beyond the narrow clichés of popular culture, thanks to recent work in the neurosciences. The two hemispheres automatically give us different levels of description, and complementary views of a problem. Good science takes advantage of this. When the two hemispheres cooperate, with each playing to its own strengths, our problem-solving is at its most powerful.

The paper ends with three examples of unconscious assumptions that have impeded scientific progress in the past. Two of them are taken from Professor McIntyre’s main areas of research. A third is from biology.

Here’s a link to and a citation for the paper,

On multi-level thinking and scientific understanding by Michael Edgeworth McIntyre. Advances in Atmospheric Sciences October 2017, Volume 34, Issue 10, pp 1150–1158 DOI: https://doi.org/10.1007/s00376-017-6283-3

This paper is open access.

To give you a sense of his writing and imagination, I’ve excerpted a few paragraphs from p. 1153 but first you need to see this .gif (he provides a number of ways to watch the .gif in his text but I think it’s easier to watch the copy of the one he has on his website),

Now for the excerpt,

Here is an example to show what I mean. It is a classic in experimental psychology, from the work of Professor Gunnar JOHANSSON in the 1970s. …

As soon as the twelve dots start moving, everyone with normal vision sees a person walking. This immediately illustrates several things. First, it illustrates that we all make unconscious assumptions. Here, we unconsciously assume a particular kind of three-dimensional motion. In this case the unconscious assumption is completely involuntary. We cannot help seeing a person walking, despite knowing that it is only twelve moving dots.

The animation also shows that we have unconscious mathematics, Euclidean geometry in this case. In order to generate the percept of a person walking, your brain has to fit a mathematical model to the incoming visual data, in this case a mathematical model based on Euclidean geometry. (And the model-fitting process is an active, and highly complex, predictive process most of which is inaccessible to conscious introspection.)

This brings me to the most central point in our discussion. Science does essentially the same thing. It fits models to data. So science is, in the most fundamental possible sense, an extension of ordinary perception. That is a simple way of saying what was said many decades ago by great thinkers such as Professor Sir Karl POPPER….

I love that phase “unconscious mathematics” for the way it includes even those of us who would never dream of thinking we had any kind of mathematics. I encourage you to read his paper in its entirety, which does include a little technical language in a few spots but the overall thesis is clear and easily understood.

A candy cane supercapacitor?

Courtesy: Queen Mary University of London

It takes a lot more imagination than I have to describe the object on the right as resembling the  candy cane on the left, assuming that’s what was intended when it was used to illustrate the university’s press release. I like being pushed to see resemblances to things that are not immediately apparent to me. This may never look like a candy cane to me but I appreciate that someone finds it to be so. An August 16, 2017 news item on ScienceDaily announces the ‘candy cane’ supercapacitor,

Supercapacitors promise recharging of phones and other devices in seconds and minutes as opposed to hours for batteries. But current technologies are not usually flexible, have insufficient capacities, and for many their performance quickly degrades with charging cycles.

Researchers at Queen Mary University of London (QMUL) and the University of Cambridge have found a way to improve all three problems in one stroke.

Their prototyped polymer electrode, which resembles a candy cane usually hung on a Christmas tree, achieves energy storage close to the theoretical limit, but also demonstrates flexibility and resilience to charge/discharge cycling.

The technique could be applied to many types of materials for supercapacitors and enable fast charging of mobile phones, smart clothes and implantable devices.

The Aug. 16, 2017 Queen Mary University of London (QMUL) press release (also on EurekAlert), which originated the news item, provides more detail about the technology,

Pseudocapacitance is a property of polymer and composite supercapacitors that allows ions to enter inside the material and thus pack much more charge than carbon ones that mostly store the charge as concentrated ions (in the so-called double layer) near the surface.

The problem with polymer supercapacitors, however, is that the ions necessary for these chemical reactions can only access the top few nanometers below the material surface, leaving the rest of the electrode as dead weight. Growing polymers as nano-structures is one way to increase the amount of accessible material near the surface, but this can be expensive, hard to scale up, and often results in poor mechanical stability.

The researchers, however, have developed a way to interweave nanostructures within a bulk material, thereby achieving the benefits of conventional nanostructuring without using complex synthesis methods or sacrificing material toughness.

Project leader, Stoyan Smoukov, explained: “Our supercapacitors can store a lot of charge very quickly, because the thin active material (the conductive polymer) is always in contact with a second polymer which contains ions, just like the red thin regions of a candy cane are always in close proximity to the white parts. But this is on a much smaller scale.

“This interpenetrating structure enables the material to bend more easily, as well as swell and shrink without cracking, leading to greater longevity. This one method is like killing not just two, but three birds with one stone.”

The outcomes

The Smoukov group had previously pioneered a combinatorial route to multifunctionality using interpenetrating polymer networks (IPN) in which each component would have its own function, rather than using trial-and-error chemistry to fit all functions in one molecule.

This time they applied the method to energy storage, specifically supercapacitors, because of the known problem of poor material utilization deep beneath the electrode surface.

This interpenetration technique drastically increases the material’s surface area, or more accurately the interfacial area between the different polymer components.

Interpenetration also happens to solve two other major problems in supercapacitors. It brings flexibility and toughness because the interfaces stop growth of any cracks that may form in the material. It also allows the thin regions to swell and shrink repeatedly without developing large stresses, so they are electrochemically resistant and maintain their performance over many charging cycles.

The researchers are currently rationally designing and evaluating a range of materials that can be adapted into the interpenetrating polymer system for even better supercapacitors.

In an upcoming review, accepted for publication in the journal Sustainable Energy and Fuels, they overview the different techniques people have used to improve the multiple parameters required for novel supercapacitors.

Such devices could be made in soft and flexible freestanding films, which could power electronics embedded in smart clothing, wearable and implantable devices, and soft robotics. The developers hope to make their contribution to provide ubiquitous power for the emerging Internet of Things (IoT) devices, which is still a significant challenge ahead.

Here’s a link to and a citation for the paper,

Semi-Interpenetrating Polymer Networks for Enhanced Supercapacitor Electrodes by Kara D. Fong, Tiesheng Wang, Hyun-Kyung Kim, R. Vasant Kumar, and Stoyan K. Smoukov. ACS Energy Lett., 2017, 2, pp 2014–2020 DOI: 10.1021/acsenergylett.7b00466 Publication Date (Web): August 14, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.