Tag Archives: University of Colorado at Boulder

Cooling down your electronics

A September 20, 2021 news item on phys.org announces research investigating the heating of electronics at the nanoscale,

A team of physicists at CU Boulder [University of Colorado at Boulder] has solved the mystery behind a perplexing phenomenon in the nano realm: why some ultra-small heat sources cool down faster if you pack them closer together. The findings, published today in the journal Proceedings of the National Academy of Sciences (PNAS), could one day help the tech industry design faster electronic devices that overheat less.

A September 20, 2021 UC Boulder news release (also on EurekAlert) by Daniel Strain, which originated the news item, delves further into the topic of heat and electronics (Note: Links have been removed),

“Often, heat is a challenging consideration in designing electronics. You build a device then discover that it’s heating up faster than desired,” said study co-author Joshua Knobloch, postdoctoral research associate at JILA, a joint research institute between CU Boulder and the National Institute of Standards and Technology (NIST). “Our goal is to understand the fundamental physics involved so we can engineer future devices to efficiently manage the flow of heat.”

The research began with an unexplained observation: In 2015, researchers led by physicists Margaret Murnane and Henry Kapteyn at JILA were experimenting with bars of metal that were many times thinner than the width of a human hair on a silicon base. When they heated those bars up with a laser, something strange occurred.

“They behaved very counterintuitively,” Knobloch said. “These nano-scale heat sources do not usually dissipate heat efficiently. But if you pack them close together, they cool down much more quickly.”

Now, the researchers know why it happens.

In the new study, they used computer-based simulations to track the passage of heat from their nano-sized bars. They discovered that when they placed the heat sources close together, the vibrations of energy they produced began to bounce off each other, scattering heat away and cooling the bars down.

The group’s results highlight a major challenge in designing the next generation of tiny devices, such as microprocessors or quantum computer chips: When you shrink down to very small scales, heat does not always behave the way you think it should.

Atom by atom

The transmission of heat in devices matters, the researchers added. Even minute defects in the design of electronics like computer chips can allow temperature to build up, adding wear and tear to a device. As tech companies strive to produce smaller and smaller electronics, they’ll need to pay more attention than ever before to phonons—vibrations of atoms that carry heat in solids.

“Heat flow involves very complex processes, making it hard to control,” Knobloch said. “But if we can understand how phonons behave on the small scale, then we can tailor their transport, allowing us to build more efficient devices.”

To do just that, Murnane and Kapteyn and their team of experimental physicists joined forces with a group of theorists led by Mahmoud Hussein, professor in the Ann and H.J. Smead Department of Aerospace Engineering Sciences. His group specializes in simulating, or modeling, the motion of phonons.

“At the atomic scale, the very nature of heat transfer emerges in a new light,” said Hussein who also has a courtesy appointment in the Department of Physics.

The researchers, essentially, recreated their experiment from several years before, but this time, entirely on a computer. They modeled a series of silicon bars, laid side by side like the slats in a train track and heated them up.

The simulations were so detailed, Knobloch said, that the team could follow the behavior of each and every atom in the model—millions of them in all—from start to finish.

“We were really pushing the limits of memory of the Summit Supercomputer at CU Boulder,” he said.

Directing heat

The technique paid off. The researchers found, for example, that when they spaced their silicon bars far enough apart, heat tended to escape away from those materials in a predictable way. The energy leaked from the bars and into the material below them, dissipating in every direction.

When the bars got closer together, however, something else happened. As the heat from those sources scattered, it effectively forced that energy to flow more intensely away from the sources—like a crowd of people in a stadium jostling against each other and eventually leaping out of the exit. The team denoted this phenomenon “directional thermal channeling.”

“This phenomenon increases the transport of heat down into the substrate and away from the heat sources,” Knobloch said.

The researchers suspect that engineers could one day tap into this unusual behavior to gain a better handle on how heat flows in small electronics—directing that energy along a desired path, instead of letting it run wild and free.

For now, the researchers see the latest study as what scientists from different disciplines can do when they work together.

“This project was such an exciting collaboration between science and engineering—where advanced computational analysis methods developed by Mahmoud’s group were critical for understanding new materials behavior uncovered earlier by our group using new extreme ultraviolet quantum light sources,” said Murnane, also a professor of physics.

Here’s a link to and a citation for the paper,

Directional thermal channeling: A phenomenon triggered by tight packing of heat sources by Hossein Honarvar, Joshua L. Knobloch, Travis D. Frazer, Begoña Abad, Brendan McBennett, Mahmoud I. Hussein, Henry C. Kapteyn, Margaret M. Murnane, and Jorge N. Hernandez-Charpak. PNAS October 5, 2021 118 (40) e2109056118; DOI: https://doi.org/10.1073/pnas.2109056118

This paper is behind a paywall.

Clean up soil and water or deliver drugs with nanobots

Nanobots/nanorobots/nanoswimmers or whatever they’re called, could prove to be quite useful for environmental remediation efforts or medical delivery systems according to a June 29, 2021 news item on Nanowerk (Note: One link has been removed),

CU Boulder [University of Colorado at Boulder] researchers have discovered that minuscule, self-propelled particles called “nanoswimmers” can escape from mazes as much as 20 times faster than other, passive particles, paving the way for their use in everything from industrial clean-ups to medication delivery.

The findings, published in the Proceedings of the National Academy of Sciences (“Mechanisms of transport enhancement for self-propelled nanoswimmers in a porous matrix”), describe how these tiny synthetic nanorobots are incredibly effective at escaping cavities within maze-like environments. These nanoswimmers could one day be used to remediate contaminated soil, improve water filtration or even deliver drugs to targeted areas of the body, like within dense tissues.

A June 29, 2021 University of Colorado at Boulder news release (also on EurekAlert) by Kelsey Simpkins, which originated the news item, explains what makes these nanobots different,

“This is the discovery of an entirely new phenomenon that points to a broad potential range of applications,” said Daniel Schwartz, senior author of the paper and Glenn L. Murphy Endowed Professor of chemical and biological engineering.

These nanoswimmers came to the attention of the theoretical physics community about 20 years ago, and people imagined a wealth of real-world applications, according to Schwartz. But unfortunately these tangible applications have not yet been realized, in part because it’s been quite difficult to observe and model their movement in relevant environments–until now.

These nanoswimmers, also called Janus particles (named after a Roman two-headed god), are tiny spherical particles composed of polymer or silica, engineered with different chemical properties on each side of the sphere. One hemisphere promotes chemical reactions to occur, but not the other. This creates a chemical field which allows the particle to take energy from the environment and convert it into directional motion–also known as self-propulsion.

“In biology and living organisms, cell propulsion is the dominant mechanism that causes motion to occur, and yet, in engineered applications, it’s rarely used. Our work suggests that there is a lot we can do with self-propulsion,” said Schwartz.

In contrast, passive particles which move about randomly (a kind of motion known as Brownian motion) are known as Brownian particles. They’re named after 19th century scientist Robert Brown, who studied such things as the random motion of pollen grains suspended in water.

The researchers converted these passive Brownian particles into Janus particles (nanoswimmers) for this research. Then they made these self-propelled nanoswimmers try to move through a maze, made of a porous medium, and compared how efficiently and effectively they found escape routes compared to the passive, Brownian particles.

The results were shocking, even to the researchers.

The Janus particles were incredibly effective at escaping cavities within the maze–as much as 20 times faster than the Brownian particles–because they moved strategically along the cavity walls searching for holes, which allowed them to find the exits very quickly. Their self-propulsion also appeared to give them a boost of energy needed to pass through the exit holes within the maze.

“We know we have a lot of applications for nanorobots, especially in very confined environments, but we didn’t really know how they move and what the advantages are compared to traditional Brownian particles. That’s why we started a comparison between these two,” said Haichao Wu, lead author of the paper and graduate student in chemical and biological engineering. “And we found that nanoswimmers are able to use a totally different way to search around these maze environments.”

While these particles are incredibly small, around 250 nanometers–just wider than a human hair (160 nanometers) but still much, much smaller than the head of a pin (1-2 millimeters)–the work is scalable. This means that these particles could navigate and permeate spaces as microscopic as human tissue to carry cargo and deliver drugs, as well as through soil underground or beaches of sand to remove unwanted pollutants.

Swarming nanoswimmers 

The next step in this line of research is to understand how nanoswimmers behave in groups within confined environments, or in combination with passive particles.

“In open environments, nanoswimmers are known to display emergent behavior–behavior that is more than the sum of its parts–that mimics the swarming motion of flocks of birds or schools of fish. That’s been a lot of the impetus for studying them,” said Schwartz.

One of the main obstacles to reaching this goal is the difficulty involved in being able to observe and understand the 3D movement of these tiny particles deep within a material comprising complex interconnected spaces.

Wu overcame this hurdle by using refractive index liquid in the porous medium, which is liquid that affects how fast light travels through a material. This made the maze essentially invisible, while allowing the observation of 3D particle motion using a technique known as double-helix point spread function microscopy.

This enabled Wu to track three-dimensional trajectories of the particles and create visual representations, a major advancement from typical 2D modeling of nanoparticles. Without this advancement, it would not be possible to better understand the movement and behavior of either individuals or groups of nanoswimmers.

“This paper is the first step: It provides a model system and the imaging platform that enables us to answer these questions,” said Wu. “The next step is to use this model with a larger population of nanoswimmers, to study how they are able to interact with each other in a confined environment.”

Here’s a link to and a citation for the paper,

Mechanisms of transport enhancement for self-propelled nanoswimmers in a porous matrix by Haichao Wu, Benjamin Greydanus, and Daniel K. Schwartz. PNAS July 6, 2021 118 (27) e2101807118; DOI: https://doi.org/10.1073/pnas.2101807118

This paper is behind a paywall.

Metamaterial could supply air conditioning with zero energy consumption

This is exciting provided they can scale up the metamaterial for industrial use. A Feb. 9, 2017 news item on Nanowerk announces a new metamaterial that could change air conditioning  from the University of Colorado at Boulder (Note: A link has been removed),

A team of University of Colorado Boulder engineers has developed a scalable manufactured metamaterial — an engineered material with extraordinary properties not found in nature — to act as a kind of air conditioning system for structures. It has the ability to cool objects even under direct sunlight with zero energy and water consumption.

When applied to a surface, the metamaterial film cools the object underneath by efficiently reflecting incoming solar energy back into space while simultaneously allowing the surface to shed its own heat in the form of infrared thermal radiation.

The new material, which is described today in the journal Science (“Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling”), could provide an eco-friendly means of supplementary cooling for thermoelectric power plants, which currently require large amounts of water and electricity to maintain the operating temperatures of their machinery.

A Feb. 9, 2017 University of Colorado at Boulder news release (also on EurekAlert), which originated the news item, expands on the theme (Note: Links have been removed),

The researchers’ glass-polymer hybrid material measures just 50 micrometers thick — slightly thicker than the aluminum foil found in a kitchen — and can be manufactured economically on rolls, making it a potentially viable large-scale technology for both residential and commercial applications.

“We feel that this low-cost manufacturing process will be transformative for real-world applications of this radiative cooling technology,” said Xiaobo Yin, co-director of the research and an assistant professor who holds dual appointments in CU Boulder’s Department of Mechanical Engineering and the Materials Science and Engineering Program. Yin received DARPA’s [US Defense Advanced Research Projects Agency] Young Faculty Award in 2015.

The material takes advantage of passive radiative cooling, the process by which objects naturally shed heat in the form of infrared radiation, without consuming energy. Thermal radiation provides some natural nighttime cooling and is used for residential cooling in some areas, but daytime cooling has historically been more of a challenge. For a structure exposed to sunlight, even a small amount of directly-absorbed solar energy is enough to negate passive radiation.

The challenge for the CU Boulder researchers, then, was to create a material that could provide a one-two punch: reflect any incoming solar rays back into the atmosphere while still providing a means of escape for infrared radiation. To solve this, the researchers embedded visibly-scattering but infrared-radiant glass microspheres into a polymer film. They then added a thin silver coating underneath in order to achieve maximum spectral reflectance.

“Both the glass-polymer metamaterial formation and the silver coating are manufactured at scale on roll-to-roll processes,” added Ronggui Yang, also a professor of mechanical engineering and a Fellow of the American Society of Mechanical Engineers.

“Just 10 to 20 square meters of this material on the rooftop could nicely cool down a single-family house in summer,” said Gang Tan, an associate professor in the University of Wyoming’s Department of Civil and Architectural Engineering and a co-author of the paper.

In addition to being useful for cooling of buildings and power plants, the material could also help improve the efficiency and lifetime of solar panels. In direct sunlight, panels can overheat to temperatures that hamper their ability to convert solar rays into electricity.

“Just by applying this material to the surface of a solar panel, we can cool the panel and recover an additional one to two percent of solar efficiency,” said Yin. “That makes a big difference at scale.”

The engineers have applied for a patent for the technology and are working with CU Boulder’s Technology Transfer Office to explore potential commercial applications. They plan to create a 200-square-meter “cooling farm” prototype in Boulder in 2017.

The invention is the result of a $3 million grant awarded in 2015 to Yang, Yin and Tang by the Energy Department’s Advanced Research Projects Agency-Energy (ARPA-E).

“The key advantage of this technology is that it works 24/7 with no electricity or water usage,” said Yang “We’re excited about the opportunity to explore potential uses in the power industry, aerospace, agriculture and more.”

Here’s a link to and a citation for the paper,

Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling by Yao Zhai, Yaoguang Ma, Sabrina N. David, Dongliang Zhao, Runnan Lou, Gang Tan, Ronggui Yang, Xiaobo Yin. Science  09 Feb 2017: DOI: 10.1126/science.aai7899

This paper is behind a paywall.

Members of the research team show off the metamaterial (?) Courtesy: University of Colorado at Boulder

I added the caption to this image, which was on the University of Colorado at Boulder’s home page where it accompanied the news release headline on the rotating banner.