Tag Archives: University of Georgia

“Egyptian blue” the first synthetic pigment in history inspires nanomaterials

Some chemists at the University of Georgia (US) have analyzed the blue pigment found in Egyptian monuments and elsewhere to discover that it has some unique properties at the nanoscale which ancient Egyptians and others capitalized on in their artworks. From the Feb. 20, 2013 news item on Nanowerk,

Tina T. Salguero [University of Georgia] and colleagues point out that Egyptian blue, regarded as humanity’s first artificial pigment, was used in paintings on tombs, statues and other objects throughout the ancient Mediterranean world. Remnants have been found, for instance, on the statue of the messenger goddess Iris on the Parthenon and in the famous Pond in a Garden fresco in the tomb of Egyptian “scribe and counter of grain” Nebamun in Thebes.

They describe surprise in discovering that the calcium copper silicate in Egyptian blue breaks apart into nanosheets so thin that thousands would fit across the width of a human hair. The sheets produce invisible infrared (IR) radiation similar to the beams that communicate between remote controls and TVs, car door locks and other telecommunications devices.

The article can be found here,

Nanoscience of an Ancient Pigment by Darrah Johnson-McDaniel, Christopher A. Barrett, Asma Sharafi, and Tina T. Salguero. J. Am. Chem. Soc., 2013, 135 (5), pp 1677–1679 DOI: 10.1021/ja310587c Publication Date (Web): December 10, 2012

Copyright © 2012 American Chemical Society

The article is behind a paywall but the abstract is open to everyone and there is this image,

Credit: Researchers at the University of Georgia [downloaded from http://pubs.acs.org.proxy.lib.sfu.ca/doi/full/10.1021/ja310587c#]

Credit: Researchers at the University of Georgia [downloaded from http://pubs.acs.org.proxy.lib.sfu.ca/doi/full/10.1021/ja310587c#]

If I understand this rightly, Egyptian blue can be categorized as both a traditional pigment and a structural color due to nanoscale structures. (I recently wrote about structure, color, and the nanoscale in a Feb. 7, 2013 posting.)

As these things do from time to time, it reminded me of a song,

Enjoy!

One step diagnosis (nanotechnology-enabled) from University of Georgia (US)

The researchers haven’t tried this out on blood, saliva, or urine yet but this July 21, 2012 news item by Gary Thomas on Azonano hints that will be the next step,

Researchers at the University of Georgia have devised a single-step, quick and accurate technique using nanomaterials to detect pathogens and contaminants. The team demonstrated the capability of the new technique in detecting compounds like protein albumin and lactic acid in extremely diluted mixtures that comprised of dyes and chemicals.

The researchers conclude that the same method can be employed on biological mixtures like blood, saliva, food and urine to detect contaminants and pathogens.

The originating July 19, 2012 news release by Sam Fahmy for the University of Georgia provides more detail,

“The results are unambiguous and quickly give you a high degree of specificity,” said senior author Yiping Zhao, professor of physics in the UGA [University of Georgia] Franklin College of Arts and Sciences and director of the university’s Nanoscale Science and Engineering Center.

Zhao and his co-authors—doctoral students Jing Chen and Justin Abell and professor Yao-wen Huang of the UGA College of Agricultural and Environmental Sciences—used nanotechnology to combine two well-known techniques and create their new diagnostic test. …

The first component of their two-in-one system uses a technique known as surface enhanced Raman spectroscopy, or SERS, which measures the change in frequency of a laser as it scatters off a compound. Every compound displays a series of distinctive changes in frequency, or Raman shifts, that are as unique as a fingerprint. The signal produced by Raman scattering is inherently weak, but Zhao and his colleagues have arrayed silver nanorods 1,000 times finer than the width of a human hair at a precise angle to significantly amplify the signal. In previous studies with Ralph Tripp in the UGA College of Veterinary Medicine and chemist Richard Dluhy in the Franklin College, they demonstrated that the use of SERS with silver nanorods could identify viruses such as HIV and RSV isolated from infected cells.

Here’s why they needed a second technique and how it fits into the picture (from the news release),

“In a clinical setting, the sample that you obtain from patients typically contains bacteria or viruses as well as a lot of fluid—as in blood, urine or saliva—that contains biological agents that interfere with the signal you’re trying to detect,” Zhao said. “To develop a diagnostic that could be used at the point of care, we needed a way to separate those agents.”

Once again, the scientists turned to nanotechnology to create a next-generation diagnostic test. Using traditional thin layer chromatography, or TLC, scientists blot a drop of sample onto a porous surface. They then apply a solvent such as methanol to the sample, and the sample components separate based on how strongly they’re attracted to the solvent and the surface.

Study co-author Justin Abell, a doctoral student in the UGA College of Engineering, explained that TLC typically requires a large sample volume because the compound of interest soaks into the surface in addition to moving along it, like a stain on a rug. The silver nanorod surface that the researchers use, in contrast, allows them to use a miniscule amount of sample in a technique known as ultra-thin layer chromatography.

“In our case, the nanorods are acting as the detection medium but also as the separation medium,” Abell said, “so it’s a two-in-one system.”

To test their method, the researchers used mixtures of dyes, the organic chemical melamine, lactic acid and the protein albumin. In each case, they were able to directly identify the compounds of interest, even in samples diluted to concentrations below 182 nanograms per milliliter-roughly 200 billionths of a gram in a fifth of a teaspoon. And while the detection of viruses using techniques such as polymerase chain reaction can take days or even weeks and requires fluorescent labels, the on-chip method developed by the UGA researchers yields results in less than an hour without the use of molecular labels.

As for future plans to develop this application (from the news release),

The researchers are currently testing their technique with biological samples from Tripp’s lab that contain viruses, and Zhao said preliminary results are promising. He adds that while his team is focused on health and food safety applications, SERS and ultra-thin layer chromatography can be used to detect compounds of all types—everything from forensic materials at a crime scene to environmental pollutants. His team also is working with colleagues across campus to create an online encyclopedia that would allow technicians to identify viruses, bacteria, biomarkers and pharmaceuticals based on their distinctive Raman shifts.

“Every compound has a unique SERS spectrum,” Zhao said, “so this is a very robust technology whose applications are practically endless.”

Diagnostics on a credit card?

Diagnostic equipment keeps getting smaller with the latest being the size of a credit card (more or less). It’s called an ‘mChip’ and can be used to diagnose either HIV or syphillis. From the August 2, 2011 article by Ariel Schwartz on Fast Company,

If you were concerned you had HIV (and lived in America), it would be easy enough to get some blood drawn at a clinic near your house, and wait a few days (or even hours) for the results. But in Africa, many clinics and hospitals have to send out blood samples to a national lab. It’s a process that can take weeks, and patients in remote areas sometimes don’t even bother to make the trek back to the clinic to get results. On a continent with a rampant HIV epidemic, this is a big problem. But Columbia University researchers have a partial solution–a $1 plastic chip that can diagnose HIV and syphilis in 15 minutes.

The “mChip”, a credit-card-sized piece of plastic that is produced using a plastic injection molding process, tests for multiple diseases with just one pinprick of blood.

The international team working on this project was led by professor of bioengineering at Columbia University, Samuel Sia. Field testing of the mChip took place in Rwanda. GrrlScientist in her August 3, 2011 posting (at the Guardian Science blogs site) offers more technical details,

“The microfluidic design is very simple”, said Dr Sia. “It’s essentially a .. linear channel that’s been looped around in various ways.”

… This credit card-sized cassette is manufactured from plastic and each mChip cassette can test seven samples (one per channel), and requires no moving parts, electricity or external instrumentation. Instead, it has small holes moulded into the plastic so reagent-loaded tubes can be attached. …

The principles for how the mChip work are well known, straightforward and, quite frankly, beautiful.

The mChip can be used for other diagnostic tests. A prostate cancer testing mChip has already been approved for use and other tests are being developed as well.

Sia’s team is not the only one working on faster, cheaper, more reliable diagnostic tests. A team at the University of Georgia (US)  has just published research about their flu detection test (from the August 3, 2011 news item on Nanowerk),

A new detection method developed at the University of Georgia and detailed in the August edition of the journal Analyst (“One-step assay for detecting influenza virus using dynamic light scattering and gold nanoparticles”), however, offers the best of both worlds. By coating gold nanoparticles with antibodies that bind to specific strains of the flu virus and then measuring how the particles scatter laser light, the technology can detect influenza in minutes at a cost of only a fraction of a penny per exam.

“We’ve known for a long time that you can use antibodies to capture viruses and that nanoparticles have different traits based on their size,” said study co-author Ralph Tripp, Georgia Research Alliance Eminent Scholar in Vaccine Development in the UGA College of Veterinary Medicine. “What we’ve done is combine the two to create a diagnostic test that is rapid and highly sensitive.”

Sia’s team seems to have worked on both the test and diagnostic device whereas some teams like the one in Georgia focus on tests or like the team at Stanford (mentioned in my March 1, 2011 posting about their nanoLAB) focus on the device.

Not all of these new handheld diagnostic tools and tests are designed for disease identification. Argento (mentioned in my February 15, 2011 posting) is being used by UK Sport to assist their elite athletes prior to the 2012 Olympics.  Locally, i.e., in Vancouver, there’s a team at St. Paul’s Hospital, PROOF (mentioned in my Feb. 15, 2011 posting), working on a test that would eliminate the need for monthly biopsies for patients who have received kidney transplants.