Tag Archives: University of Minnesota

Implantable living pharmacy

I stumbled across a very interesting US Defense Advanced Research Projects Agency (DARPA) project (from an August 30, 2021 posting on Northwestern University’s Rivnay Lab [a laboratory for organic bioelectronics] blog),

Our lab has received a cooperative agreement with DARPA to develop a wireless, fully implantable ‘living pharmacy’ device that could help regulate human sleep patterns. The project is through DARPA’s BTO (biotechnology office)’s Advanced Acclimation and Protection Tool for Environmental Readiness (ADAPTER) program, meant to address physical challenges of travel, such as jetlag and fatigue.

The device, called NTRAIN (Normalizing Timing of Rhythms Across Internal Networks of Circadian Clocks), would control the body’s circadian clock, reducing the time it takes for a person to recover from disrupted sleep/wake cycles by as much as half the usual time.

The project spans 5 institutions including Northwestern, Rice University, Carnegie Mellon, University of Minnesota, and Blackrock Neurotech.

Prior to the Aug. 30, 2021 posting, Amanda Morris wrote a May 13, 2021 article for Northwestern NOW (university magazine), which provides more details about the project, Note: A link has been removed,

The first phase of the highly interdisciplinary program will focus on developing the implant. The second phase, contingent on the first, will validate the device. If that milestone is met, then researchers will test the device in human trials, as part of the third phase. The full funding corresponds to $33 million over four-and-a-half years. 

Nicknamed the “living pharmacy,” the device could be a powerful tool for military personnel, who frequently travel across multiple time zones, and shift workers including first responders, who vacillate between overnight and daytime shifts.

Combining synthetic biology with bioelectronics, the team will engineer cells to produce the same peptides that the body makes to regulate sleep cycles, precisely adjusting timing and dose with bioelectronic controls. When the engineered cells are exposed to light, they will generate precisely dosed peptide therapies. 

“This control system allows us to deliver a peptide of interest on demand, directly into the bloodstream,” said Northwestern’s Jonathan Rivnay, principal investigator of the project. “No need to carry drugs, no need to inject therapeutics and — depending on how long we can make the device last — no need to refill the device. It’s like an implantable pharmacy on a chip that never runs out.” 

Beyond controlling circadian rhythms, the researchers believe this technology could be modified to release other types of therapies with precise timing and dosing for potentially treating pain and disease. The DARPA program also will help researchers better understand sleep/wake cycles, in general.

“The experiments carried out in these studies will enable new insights into how internal circadian organization is maintained,” said Turek [Fred W. Turek], who co-leads the sleep team with Vitaterna [Martha Hotz Vitaterna]. “These insights will lead to new therapeutic approaches for sleep disorders as well as many other physiological and mental disorders, including those associated with aging where there is often a spontaneous breakdown in temporal organization.” 

For those who like to dig even deeper, Dieynaba Young’s June 17, 2021 article for Smithsonian Magazine (GetPocket.com link to article) provides greater context and greater satisfaction, Note: Links have been removed,

In 1926, Fritz Kahn completed Man as Industrial Palace, the preeminent lithograph in his five-volume publication The Life of Man. The illustration shows a human body bustling with tiny factory workers. They cheerily operate a brain filled with switchboards, circuits and manometers. Below their feet, an ingenious network of pipes, chutes and conveyer belts make up the blood circulatory system. The image epitomizes a central motif in Kahn’s oeuvre: the parallel between human physiology and manufacturing, or the human body as a marvel of engineering.

An apparatus in the embryonic stage of development at the time of this writing in June of 2021—the so-called “implantable living pharmacy”—could have easily originated in Kahn’s fervid imagination. The concept is being developed by the Defense Advanced Research Projects Agency (DARPA) in conjunction with several universities, notably Northwestern and Rice. Researchers envision a miniaturized factory, tucked inside a microchip, that will manufacture pharmaceuticals from inside the body. The drugs will then be delivered to precise targets at the command of a mobile application. …

The implantable living pharmacy, which is still in the “proof of concept” stage of development, is actually envisioned as two separate devices—a microchip implant and an armband. The implant will contain a layer of living synthetic cells, along with a sensor that measures temperature, a short-range wireless transmitter and a photo detector. The cells are sourced from a human donor and reengineered to perform specific functions. They’ll be mass produced in the lab, and slathered onto a layer of tiny LED lights.

The microchip will be set with a unique identification number and encryption key, then implanted under the skin in an outpatient procedure. The chip will be controlled by a battery-powered hub attached to an armband. That hub will receive signals transmitted from a mobile app.

If a soldier wishes to reset their internal clock, they’ll simply grab their phone, log onto the app and enter their upcoming itinerary—say, a flight departing at 5:30 a.m. from Arlington, Virginia, and arriving 16 hours later at Fort Buckner in Okinawa, Japan. Using short-range wireless communications, the hub will receive the signal and activate the LED lights inside the chip. The lights will shine on the synthetic cells, stimulating them to generate two compounds that are naturally produced in the body. The compounds will be released directly into the bloodstream, heading towards targeted locations, such as a tiny, centrally-located structure in the brain called the suprachiasmatic nucleus (SCN) that serves as master pacemaker of the circadian rhythm. Whatever the target location, the flow of biomolecules will alter the natural clock. When the solider arrives in Okinawa, their body will be perfectly in tune with local time.

The synthetic cells will be kept isolated from the host’s immune system by a membrane constructed of novel biomaterials, allowing only nutrients and oxygen in and only the compounds out. Should anything go wrong, they would swallow a pill that would kill the cells inside the chip only, leaving the rest of their body unaffected.

If you have the time, I recommend reading Young’s June 17, 2021 Smithsonian Magazine article (GetPocket.com link to article) in its entirety. Young goes on to discuss, hacking, malware, and ethical/societal issues and more.

There is an animation of Kahn’s original poster in a June 23, 2011 posting on openculture.com (also found on Vimeo; Der Mensch als Industriepalast [Man as Industrial Palace])

Credits: Idea & Animation: Henning M. Lederer / led-r-r.net; Sound-Design: David Indge; and original poster art: Fritz Kahn.

Brain-like computing and memory with magnetoresistance

This is an approach to brain-like computing that’s new (to me, anyway). From a January 9, 2018 news item on Nanowerk (Note: A link has been removed),

From various magnetic tapes, floppy disks and computer hard disk drives, magnetic materials have been storing our electronic information along with our valuable knowledge and memories for well over half of a century.

In more recent years, the new types [sic] phenomena known as magnetoresistance, which is the tendency of a material to change its electrical resistance when an externally-applied magnetic field or its own magnetization is changed, has found its success in hard disk drive read heads, magnetic field sensors and the rising star in the memory technologies, the magnetoresistive random access memory.

A new discovery, led by researchers at the University of Minnesota, demonstrates the existence of a new kind of magnetoresistance involving topological insulators that could result in improvements in future computing and computer storage. The details of their research are published in the most recent issue of the scientific journal Nature Communications (“Unidirectional spin-Hall and Rashba-Edelstein magnetoresistance in topological insulator-ferromagnet layer heterostructures”).

This image illustrates the work,

The schematic figure illustrates the concept and behavior of magnetoresistance. The spins are generated in topological insulators. Those at the interface between ferromagnet and topological insulators interact with the ferromagnet and result in either high or low resistance of the device, depending on the relative directions of magnetization and spins. Credit: University of Minnesota

A January 9, 2018 University of Minnesota College of Science and Engineering news release, which originated the news item, expands on the theme,

“Our discovery is one missing piece of the puzzle to improve the future of low-power computing and memory for the semiconductor industry, including brain-like computing and chips for robots and 3D magnetic memory,” said University of Minnesota Robert F. Hartmann Professor of Electrical and Computer Engineering Jian-Ping Wang, director of the Center for Spintronic Materials, Interfaces, and Novel Structures (C-SPIN) based at the University of Minnesota and co-author of the study.

Emerging technology using topological insulators

While magnetic recording still dominates data storage applications, the magnetoresistive random access memory is gradually finding its place in the field of computing memory. From the outside, they are unlike the hard disk drives which have mechanically spinning disks and swinging heads—they are more like any other type of memory. They are chips (solid state) which you’d find being soldered on circuit boards in a computer or mobile device.

Recently, a group of materials called topological insulators has been found to further improve the writing energy efficiency of magnetoresistive random access memory cells in electronics. However, the new device geometry demands a new magnetoresistance phenomenon to accomplish the read function of the memory cell in 3D system and network.

Following the recent discovery of the unidirectional spin Hall magnetoresistance in a conventional metal bilayer material systems, researchers at the University of Minnesota collaborated with colleagues at Pennsylvania State University and demonstrated for the first time the existence of such magnetoresistance in the topological insulator-ferromagnet bilayers.

The study confirms the existence of such unidirectional magnetoresistance and reveals that the adoption of topological insulators, compared to heavy metals, doubles the magnetoresistance performance at 150 Kelvin (-123.15 Celsius). From an application perspective, this work provides the missing piece of the puzzle to create a proposed 3D and cross-bar type computing and memory device involving topological insulators by adding the previously missing or very inconvenient read functionality.

In addition to Wang, researchers involved in this study include Yang Lv, Delin Zhang and Mahdi Jamali from the University of Minnesota Department of Electrical and Computer Engineering and James Kally, Joon Sue Lee and Nitin Samarth from Pennsylvania State University Department of Physics.

This research was funded by the Center for Spintronic Materials, Interfaces and Novel Architectures (C-SPIN) at the University of Minnesota, a Semiconductor Research Corporation program sponsored by the Microelectronics Advanced Research Corp. (MARCO) and the Defense Advanced Research Projects Agency (DARPA).

Here’s a link to and a citation for the paper,

Unidirectional spin-Hall and Rashba−Edelstein magnetoresistance in topological insulator-ferromagnet layer heterostructures by Yang Lv, James Kally, Delin Zhang, Joon Sue Lee, Mahdi Jamali, Nitin Samarth, & Jian-Ping Wang. Nature Communications 9, Article number: 111 (2018) doi:10.1038/s41467-017-02491-3 Published online: 09 January 2018

This is an open access paper.

Art in the details: A look at the role of art in science—a Sept. 19, 2017 Café Scientifique event in Vancouver, Canada

The Sept. 19, 2017 Café Scientifique event, “Art in the Details A look at the role of art in science,” in Vancouver seems to be part of a larger neuroscience and the arts program at the University of British Columbia. First, the details about the Sept. 13, 2017 event from the eventful Vancouver webpage,

Café Scientifique – Art in the Details: A look at the role of art in science

Art in the Details: A look at the role of art in science With so much beauty in the natural world, why does the misconception that art and science are vastly different persist? Join us for discussion and dessert as we hear from artists, researchers and academic professionals about the role art has played in scientific research – from the formative work of Santiago Ramon Y Cajal to modern imaging, and beyond – and how it might help shape scientific understanding in the future. September 19th, 2017  7:00 – 9:00 pm (doors open at 6:45pm)  TELUS World of Science [also known as Science World], 1455 Quebec St., Vancouver, BC V6A 3Z7 Free Admission [emphasis mine] Experts Dr Carol-Ann Courneya Associate Professor in the Department of Cellular and Physiological Science and Assistant Dean of Student Affairs, Faculty of Medicine, University of British Columbia   Dr Jason Snyder  Assistant Professor, Department of Psychology, University of British Columbia http://snyderlab.com/   Dr Steven Barnes Instructor and Assistant Head—Undergraduate Affairs, Department of Psychology, University of British Columbia http://stevenjbarnes.com/   Moderated By   Bruce Claggett Senior Managing Editor, NEWS 1130   This evening event is presented in collaboration with the Djavad Mowafaghian Centre for Brain Health. Please note: this is a private, adult-oriented event and TELUS World of Science will be closed during this discussion.

The Art in the Details event page on the Science World website provides a bit more information about the speakers (mostly in the form of links to their webpage),,

Experts

Dr Carol-Ann Courneya
Associate Professor in the Department of Cellular and Physiological Science and Assistant Dean of Student Affairs, Faculty of Medicine, University of British Columbia

Dr Jason Snyder 

Assistant Professor, Department of Psychology, University of British Columbi

Dr Steven Barnes

Instructor, Department of Psychology, University of British Columbia

Moderated By  

Bruce Claggett

Senior Managing Editor, NEWS 1130

Should you click though to obtain tickets from either the eventful Vancouver or Science World websites, you’ll find the event is sold out but perhaps the organizers will include a waitlist.

Even if you can’t get a ticket, there’s an exhibition of Santiago Ramon Y Cajal’s work (from the Djavad Mowafaghian Centre for Brain Health’s Beautiful brain’s webpage),

Drawings of Santiago Ramón y Cajal to be shown at UBC

Santiago Ramón y Cajal, injured Purkinje neurons, 1914, ink and pencil on paper. Courtesy of Instituto Cajal (CSIC).

Pictured: Santiago Ramón y Cajal, injured Purkinje neurons, 1914, ink and pencil on paper. Courtesy of Instituto Cajal (CSIC).

The Beautiful Brain is the first North American museum exhibition to present the extraordinary drawings of Santiago Ramón y Cajal (1852–1934), a Spanish pathologist, histologist and neuroscientist renowned for his discovery of neuron cells and their structure, for which he was awarded the Nobel Prize in Physiology and Medicine in 1906. Known as the father of modern neuroscience, Cajal was also an exceptional artist. He combined scientific and artistic skills to produce arresting drawings with extraordinary scientific and aesthetic qualities.

A century after their completion, Cajal’s drawings are still used in contemporary medical publications to illustrate important neuroscience principles, and continue to fascinate artists and visual art audiences. Eighty of Cajal’s drawings will be accompanied by a selection of contemporary neuroscience visualizations by international scientists. The Morris and Helen Belkin Art Gallery exhibition will also include early 20th century works that imaged consciousness, including drawings from Annie Besant’s Thought Forms (1901) and Charles Leadbeater’s The Chakras (1927), as well as abstract works by Lawren Harris that explored his interest in spirituality and mysticism.

After countless hours at the microscope, Cajal was able to perceive that the brain was made up of individual nerve cells or neurons rather than a tangled single web, which was only decisively proven by electron microscopy in the 1950s and is the basis of neuroscience today. His speculative drawings stemmed from an understanding of aesthetics in their compressed detail and lucid composition, as he laboured to clearly represent matter and processes that could not be seen.

In a special collaboration with the Morris and Helen Belkin Art Gallery and the VGH & UBC Hospital Foundation this project will encourage meaningful dialogue amongst artists, curators, scientists and scholars on concepts of neuroplasticity and perception. Public and Academic programs will address the emerging field of art and neuroscience and engage interdisciplinary research of scholars from the sciences and humanities alike.

“This is an incredible opportunity for the neuroscience and visual arts communities at the University and Vancouver,” says Dr. Brian MacVicar, who has been working diligently with Director Scott Watson at the Morris and Helen Belkin Art Gallery and with his colleagues at the University of Minnesota for the past few years to bring this exhibition to campus. “Without Cajal’s impressive body of work, our understanding of the anatomy of the brain would not be so well-formed; Cajal’s legacy has been of critical importance to neuroscience teaching and research over the past century.”

A book published by Abrams accompanies the exhibition, containing full colour reproductions of all 80 of the exhibition drawings, commentary on each of the works and essays on Cajal’s life and scientific contributions, artistic roots and achievements and contemporary neuroscience imaging techniques.

Cajal’s work will be on display at the Morris and Helen Belkin Art Gallery from September 5 to December 3, 2017.

Join the UBC arts and neuroscience communities for a free symposium and dance performance celebrating The Beautiful Brain at UBC on September 7. [link removed]

The Beautiful Brain: The Drawings of Santiago Ramón y Cajal was developed by the Frederick R. Weisman Art Museum, University of Minnesota with the Instituto Cajal. The exhibition at the Morris and Helen Belkin Art Gallery, University British Columbia is presented in partnership with the Djavad Mowafaghian Centre for Brain Health with support from the VGH & UBC Hospital Foundation. We gratefully acknowledge the generous support of the Canada Council for the Arts, the British Columbia Arts Council and Belkin Curator’s Forum members.

The Morris and Helen Belkin Art Gallery’s Beautiful Brain webpage has a listing of upcoming events associated with the exhibition as well as instructions on how to get there (if you click on About),

SEMINAR & READING GROUP: Plasticity at SFU Vancouver and 221A: Wednesdays, October 4, 18, November 1, 15 and 21 at 7 pm

CONVERSATION with Anthony Phillips and Timothy Taylor: Wednesday, October 11, 2017 at 7 pm

LECTURE with Catherine Malabou at the Liu Institute: Thursday, November 23 at 6 pm

CONCERT with UBC Contemporary Players: Friday, December 1 at 2 pm

Cajal was also an exceptional artist and studied as a teenager at the Academy of Arts in Huesca, Spain. He combined scientific and artistic skills to produce arresting drawings with extraordinary scientific and aesthetic qualities. A century after their completion, his drawings are still used in contemporary medical publications to illustrate important neuroscience principles, and continue to fascinate artists and visual art audiences. Eighty of Cajal’s drawings are accompanied by a selection of contemporary neuroscience visualizations by international scientists.

Organizationally, this seems a little higgledy piggledy with the Cafe Scientifique event found on some sites, the Belkin Gallery events found on one site, and no single listing of everything on any one site for the Beautiful Brain. Please let me know if you find something I’ve missed.

US Dept. of Agriculture announces its nanotechnology research grants

I don’t always stumble across the US Department of Agriculture’s nanotechnology research grant announcements but I’m always grateful when I do as it’s good to find out about  nanotechnology research taking place in the agricultural sector. From a July 21, 2017 news item on Nanowerk,,

The U.S. Department of Agriculture’s (USDA) National Institute of Food and Agriculture (NIFA) today announced 13 grants totaling $4.6 million for research on the next generation of agricultural technologies and systems to meet the growing demand for food, fuel, and fiber. The grants are funded through NIFA’s Agriculture and Food Research Initiative (AFRI), authorized by the 2014 Farm Bill.

“Nanotechnology is being rapidly implemented in medicine, electronics, energy, and biotechnology, and it has huge potential to enhance the agricultural sector,” said NIFA Director Sonny Ramaswamy. “NIFA research investments can help spur nanotechnology-based improvements to ensure global nutritional security and prosperity in rural communities.”

A July 20, 2017 USDA news release, which originated the news item, lists this year’s grants and provides a brief description of a few of the newly and previously funded projects,

Fiscal year 2016 grants being announced include:

Nanotechnology for Agricultural and Food Systems

  • Kansas State University, Manhattan, Kansas, $450,200
  • Wichita State University, Wichita, Kansas, $340,000
  • University of Massachusetts, Amherst, Massachusetts, $444,550
  • University of Nevada, Las Vegas, Nevada,$150,000
  • North Dakota State University, Fargo, North Dakota, $149,000
  • Cornell University, Ithaca, New York, $455,000
  • Cornell University, Ithaca, New York, $450,200
  • Oregon State University, Corvallis, Oregon, $402,550
  • University of Pennsylvania, Philadelphia, Pennsylvania, $405,055
  • Gordon Research Conferences, West Kingston, Rhode Island, $45,000
  • The University of Tennessee,  Knoxville, Tennessee, $450,200
  • Utah State University, Logan, Utah, $450,200
  • The George Washington University, Washington, D.C., $450,200

Project details can be found at the NIFA website (link is external).

Among the grants, a University of Pennsylvania project will engineer cellulose nanomaterials [emphasis mine] with high toughness for potential use in building materials, automotive components, and consumer products. A University of Nevada-Las Vegas project will develop a rapid, sensitive test to detect Salmonella typhimurium to enhance food supply safety.

Previously funded grants include an Iowa State University project in which a low-cost and disposable biosensor made out of nanoparticle graphene that can detect pesticides in soil was developed. The biosensor also has the potential for use in the biomedical, environmental, and food safety fields. University of Minnesota (link is external) researchers created a sponge that uses nanotechnology to quickly absorb mercury, as well as bacterial and fungal microbes from polluted water. The sponge can be used on tap water, industrial wastewater, and in lakes. It converts contaminants into nontoxic waste that can be disposed in a landfill.

NIFA invests in and advances agricultural research, education, and extension and promotes transformative discoveries that solve societal challenges. NIFA support for the best and brightest scientists and extension personnel has resulted in user-inspired, groundbreaking discoveries that combat childhood obesity, improve and sustain rural economic growth, address water availability issues, increase food production, find new sources of energy, mitigate climate variability and ensure food safety. To learn more about NIFA’s impact on agricultural science, visit www.nifa.usda.gov/impacts, sign up for email updates (link is external) or follow us on Twitter @USDA_NIFA (link is external), #NIFAImpacts (link is external).

Given my interest in nanocellulose materials (Canada was/is a leader in the production of cellulose nanocrystals [CNC] but there has been little news about Canadian research into CNC applications), I used the NIFA link to access the table listing the grants and clicked on ‘brief’ in the View column in the University of Pennsylania row to find this description of the project,

ENGINEERING CELLULOSE NANOMATERIALS WITH HIGH TOUGHNESS

NON-TECHNICAL SUMMARY: Cellulose nanofibrils (CNFs) are natural materials with exceptional mechanical properties that can be obtained from renewable plant-based resources. CNFs are stiff, strong, and lightweight, thus they are ideal for use in structural materials. In particular, there is a significant opportunity to use CNFs to realize polymer composites with improved toughness and resistance to fracture. The overall goal of this project is to establish an understanding of fracture toughness enhancement in polymer composites reinforced with CNFs. A key outcome of this work will be process – structure – fracture property relationships for CNF-reinforced composites. The knowledge developed in this project will enable a new class of tough CNF-reinforced composite materials with applications in areas such as building materials, automotive components, and consumer products.The composite materials that will be investigated are at the convergence of nanotechnology and bio-sourced material trends. Emerging nanocellulose technologies have the potential to move biomass materials into high value-added applications and entirely new markets.

It’s not the only nanocellulose material project being funded in this round, there’s this at North Dakota State University, from the NIFA ‘brief’ project description page,

NOVEL NANOCELLULOSE BASED FIRE RETARDANT FOR POLYMER COMPOSITES

NON-TECHNICAL SUMMARY: Synthetic polymers are quite vulnerable to fire.There are 2.4 million reported fires, resulting in 7.8 billion dollars of direct property loss, an estimated 30 billion dollars of indirect loss, 29,000 civilian injuries, 101,000 firefighter injuries and 6000 civilian fatalities annually in the U.S. There is an urgent need for a safe, potent, and reliable fire retardant (FR) system that can be used in commodity polymers to reduce their flammability and protect lives and properties. The goal of this project is to develop a novel, safe and biobased FR system using agricultural and woody biomass. The project is divided into three major tasks. The first is to manufacture zinc oxide (ZnO) coated cellulose nanoparticles and evaluate their morphological, chemical, structural and thermal characteristics. The second task will be to design and manufacture polymer composites containing nano sized zinc oxide and cellulose crystals. Finally the third task will be to test the fire retardancy and mechanical properties of the composites. Wbelieve that presence of zinc oxide and cellulose nanocrystals in polymers will limit the oxygen supply by charring, shielding the surface and cellulose nanocrystals will make composites strong. The outcome of this project will help in developing a safe, reliable and biobased fire retardant for consumer goods, automotive, building products and will help in saving human lives and property damage due to fire.

One day, I hope to hear about Canadian research into applications for nanocellulose materials. (fingers crossed for good luck)

Repairing a ‘broken’ heart with a 3D printed patch

The idea of using stem cells to help heal your heart so you don’t have scar tissue seems to be a step closer to reality. From an April 14, 2017 news item on ScienceDaily which announces the research and explains why scar tissue in your heart is a problem,

A team of biomedical engineering researchers, led by the University of Minnesota, has created a revolutionary 3D-bioprinted patch that can help heal scarred heart tissue after a heart attack. The discovery is a major step forward in treating patients with tissue damage after a heart attack.

According to the American Heart Association, heart disease is the No. 1 cause of death in the U.S. killing more than 360,000 people a year. During a heart attack, a person loses blood flow to the heart muscle and that causes cells to die. Our bodies can’t replace those heart muscle cells so the body forms scar tissue in that area of the heart, which puts the person at risk for compromised heart function and future heart failure.

An April 13, 2017 University of Minnesota news release (also on EurekAlert but dated April 14, 2017), which originated the news item, describes the work in more detail,

In this study, researchers from the University of Minnesota-Twin Cities, University of Wisconsin-Madison, and University of Alabama-Birmingham used laser-based 3D-bioprinting techniques to incorporate stem cells derived from adult human heart cells on a matrix that began to grow and beat synchronously in a dish in the lab.

When the cell patch was placed on a mouse following a simulated heart attack, the researchers saw significant increase in functional capacity after just four weeks. Since the patch was made from cells and structural proteins native to the heart, it became part of the heart and absorbed into the body, requiring no further surgeries.

“This is a significant step forward in treating the No. 1 cause of death in the U.S.,” said Brenda Ogle, an associate professor of biomedical engineering at the University of Minnesota. “We feel that we could scale this up to repair hearts of larger animals and possibly even humans within the next several years.”

Ogle said that this research is different from previous research in that the patch is modeled after a digital, three-dimensional scan of the structural proteins of native heart tissue.  The digital model is made into a physical structure by 3D printing with proteins native to the heart and further integrating cardiac cell types derived from stem cells.  Only with 3D printing of this type can we achieve one micron resolution needed to mimic structures of native heart tissue.

“We were quite surprised by how well it worked given the complexity of the heart,” Ogle said.  “We were encouraged to see that the cells had aligned in the scaffold and showed a continuous wave of electrical signal that moved across the patch.”

Ogle said they are already beginning the next step to develop a larger patch that they would test on a pig heart, which is similar in size to a human heart.

The researchers has made this video of beating heart cells in a petri dish available,

Date: Published on Apr 14, 2017

Caption: Researchers used laser-based 3D-bioprinting techniques to incorporate stem cells derived from adult human heart cells on a matrix that began to grow and beat synchronously in a dish in the lab. Credit: Brenda Ogle, University of Minnesota

Here’s a link to and a citation for the paper,

Myocardial Tissue Engineering With Cells Derived From Human-Induced Pluripotent Stem Cells and a Native-Like, High-Resolution, 3-Dimensionally Printed Scaffold by Ling Gao, Molly E. Kupfer, Jangwook P. Jung, Libang Yang, Patrick Zhang, Yong Da Sie, Quyen Tran, Visar Ajeti, Brian T. Freeman, Vladimir G. Fast, Paul J. Campagnola, Brenda M. Ogle, Jianyi Zhang. Circulation Research April 14, 2017, Volume 120, Issue 8 https://doi.org/10.1161/CIRCRESAHA.116.310277 Circulation Research. 2017;120:1318-1325 Originally published online] January 9, 2017

This paper appears to be open access.

Using a sponge to remove mercury from lake water

I’ve heard of Lake Como in Italy but Como Lake in Minnesota is a new one for me. The Minnesota lake is featured in a March 22, 2017 news item about water and sponges on phys.org,

Mercury is very toxic and can cause long-term health damage, but removing it from water is challenging. To address this growing problem, University of Minnesota College of Food, Agricultural and Natural Sciences (CFANS) Professor Abdennour Abbas and his lab team created a sponge that can absorb mercury from a polluted water source within seconds. Thanks to the application of nanotechnology, the team developed a sponge with outstanding mercury adsorption properties where mercury contaminations can be removed from tap, lake and industrial wastewater to below detectable limits in less than 5 seconds (or around 5 minutes for industrial wastewater). The sponge converts the contamination into a non-toxic complex so it can be disposed of in a landfill after use. The sponge also kills bacterial and fungal microbes.

Think of it this way: If Como Lake in St. Paul was contaminated with mercury at the EPA limit, the sponge needed to remove all of the mercury would be the size of a basketball.

A March 16, 2017 University of Minnesota news release, which originated the news item, explains why this discovery is important for water supplies in the state of Minnesota,

This is an important advancement for the state of Minnesota, as more than two thirds of the waters on Minnesota’s 2004 Impaired Waters List are impaired because of mercury contamination that ranges from 0.27 to 12.43 ng/L (the EPA limit is 2 ng/L). Mercury contamination of lake waters results in mercury accumulation in fish, leading the Minnesota Department of Health to establish fish consumption guidelines. A number of fish species store-bought or caught in Minnesota lakes are not advised for consumption more than once a week or even once a month. In Minnesota’s North Shore, 10 percent of tested newborns had mercury concentrations above the EPA reference dose for methylmercury (the form of mercury found in fish). This means that some pregnant women in the Lake Superior region, and in Minnesota, have mercury exposures that need to be reduced.  In addition, a reduced deposition of mercury is projected to have economic benefits reflected by an annual state willingness-to-pay of $212 million in Minnesota alone.

According to the US-EPA, cutting mercury emissions to the latest established effluent limit standards would result in 130,000 fewer asthma attacks, 4,700 fewer heart attacks, and 11,000 fewer premature deaths each year. That adds up to at least $37 billion to $90 billion in annual monetized benefits annually.

In addition to improving air and water quality, aquatic life and public health, the new technology would have an impact on inspiring new regulations. Technology shapes regulations, which in turn determine the value of the market. The 2015 EPA Mercury and Air Toxics Standards regulation was estimated to cost the industry around of $9.6 billion annually in 2020. The new U of M technology has a potential of bringing this cost down and make it easy for the industry to meet regulatory requirements.

Research by Abbas and his team was funded by the MnDRIVE Global Food Venture, MnDRIVE Environment, and USDA-NIFA. They currently have three patents on this technology. To learn more, visit www.abbaslab.com.

Here’s a link to and a citation for the paper,

A Nanoselenium Sponge for Instantaneous Mercury Removal to Undetectable Levels by Snober Ahmed, John Brockgreitens, Ke Xu, and Abdennour Abbas. Advanced Functional Materials DOI: 10.1002/adfm.201606572 Version of Record online: 6 MAR 2017

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Spinach and plant nanobionics

Who knew that spinach leaves could be turned into electronic devices? The answer is: engineers at the Massachusetts Institute of Technology, according to an Oct. 31, 2016 news item on phys.org,

Spinach is no longer just a superfood: By embedding leaves with carbon nanotubes, MIT engineers have transformed spinach plants into sensors that can detect explosives and wirelessly relay that information to a handheld device similar to a smartphone.

This is one of the first demonstrations of engineering electronic systems into plants, an approach that the researchers call “plant nanobionics.”

An Oct. 31, 2016 MIT news release (also on EurekAlert), which originated the news item, describes the research further (Note: Links have been removed),

“The goal of plant nanobionics is to introduce nanoparticles into the plant to give it non-native functions,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT and the leader of the research team.

In this case, the plants were designed to detect chemical compounds known as nitroaromatics, which are often used in landmines and other explosives. When one of these chemicals is present in the groundwater sampled naturally by the plant, carbon nanotubes embedded in the plant leaves emit a fluorescent signal that can be read with an infrared camera. The camera can be attached to a small computer similar to a smartphone, which then sends an email to the user.

“This is a novel demonstration of how we have overcome the plant/human communication barrier,” says Strano, who believes plant power could also be harnessed to warn of pollutants and environmental conditions such as drought.

Strano is the senior author of a paper describing the nanobionic plants in the Oct. 31 [2016] issue of Nature Materials. The paper’s lead authors are Min Hao Wong, an MIT graduate student who has started a company called Plantea to further develop this technology, and Juan Pablo Giraldo, a former MIT postdoc who is now an assistant professor at the University of California at Riverside.

Environmental monitoring

Two years ago, in the first demonstration of plant nanobionics, Strano and former MIT postdoc Juan Pablo Giraldo used nanoparticles to enhance plants’ photosynthesis ability and to turn them into sensors for nitric oxide, a pollutant produced by combustion.

Plants are ideally suited for monitoring the environment because they already take in a lot of information from their surroundings, Strano says.

“Plants are very good analytical chemists,” he says. “They have an extensive root network in the soil, are constantly sampling groundwater, and have a way to self-power the transport of that water up into the leaves.”

Strano’s lab has previously developed carbon nanotubes that can be used as sensors to detect a wide range of molecules, including hydrogen peroxide, the explosive TNT, and the nerve gas sarin. When the target molecule binds to a polymer wrapped around the nanotube, it alters the tube’s fluorescence.

In the new study, the researchers embedded sensors for nitroaromatic compounds into the leaves of spinach plants. Using a technique called vascular infusion, which involves applying a solution of nanoparticles to the underside of the leaf, they placed the sensors into a leaf layer known as the mesophyll, which is where most photosynthesis takes place.

They also embedded carbon nanotubes that emit a constant fluorescent signal that serves as a reference. This allows the researchers to compare the two fluorescent signals, making it easier to determine if the explosive sensor has detected anything. If there are any explosive molecules in the groundwater, it takes about 10 minutes for the plant to draw them up into the leaves, where they encounter the detector.

To read the signal, the researchers shine a laser onto the leaf, prompting the nanotubes in the leaf to emit near-infrared fluorescent light. This can be detected with a small infrared camera connected to a Raspberry Pi, a $35 credit-card-sized computer similar to the computer inside a smartphone. The signal could also be detected with a smartphone by removing the infrared filter that most camera phones have, the researchers say.

“This setup could be replaced by a cell phone and the right kind of camera,” Strano says. “It’s just the infrared filter that would stop you from using your cell phone.”

Using this setup, the researchers can pick up a signal from about 1 meter away from the plant, and they are now working on increasing that distance.

Michael McAlpine, an associate professor of mechanical engineering at the University of Minnesota, says this approach holds great potential for engineering not only sensors but many other kinds of bionic plants that might receive radio signals or change color.

“When you have manmade materials infiltrated into a living organism, you can have plants do things that plants don’t ordinarily do,” says McAlpine, who was not involved in the research. “Once you start to think of living organisms like plants as biomaterials that can be combined with electronic materials, this is all possible.”

“A wealth of information”

In the 2014 plant nanobionics study, Strano’s lab worked with a common laboratory plant known as Arabidopsis thaliana. However, the researchers wanted to use common spinach plants for the latest study, to demonstrate the versatility of this technique. “You can apply these techniques with any living plant,” Strano says.

So far, the researchers have also engineered spinach plants that can detect dopamine, which influences plant root growth, and they are now working on additional sensors, including some that track the chemicals plants use to convey information within their own tissues.

“Plants are very environmentally responsive,” Strano says. “They know that there is going to be a drought long before we do. They can detect small changes in the properties of soil and water potential. If we tap into those chemical signaling pathways, there is a wealth of information to access.”

These sensors could also help botanists learn more about the inner workings of plants, monitor plant health, and maximize the yield of rare compounds synthesized by plants such as the Madagascar periwinkle, which produces drugs used to treat cancer.

“These sensors give real-time information from the plant. It is almost like having the plant talk to us about the environment they are in,” Wong says. “In the case of precision agriculture, having such information can directly affect yield and margins.”

Once getting over the excitement, questions spring to mind. How could this be implemented? Is somebody  going to plant a field of spinach and then embed the leaves so they can detect landmines? How will anyone know where to plant the spinach? And on a different track, is this spinach edible? I suspect that if spinach can be successfully used as a sensor, it might not be for explosives but for pollution as the researchers suggest.

Here’s a link to and a citation for the paper,

Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics by Min Hao Wong, Juan P. Giraldo, Seon-Yeong Kwak, Volodymyr B. Koman, Rosalie Sinclair, Tedrick Thomas Salim Lew, Gili Bisker, Pingwei Liu, & Michael S. Strano. Nature Materials (2016) doi:10.1038/nmat4771 Published online 31 October 2016

This paper is behind a paywall.

The last posting here which featured Strano’s research is in an Aug. 25, 2015 piece about carbon nanotubes and medical sensors.

$81M for US National Nanotechnology Coordinated Infrastructure (NNCI)

Academics, small business, and industry researchers are the big winners in a US National Science Foundation bonanza according to a Sept. 16, 2015 news item on Nanowerk,

To advance research in nanoscale science, engineering and technology, the National Science Foundation (NSF) will provide a total of $81 million over five years to support 16 sites and a coordinating office as part of a new National Nanotechnology Coordinated Infrastructure (NNCI).

The NNCI sites will provide researchers from academia, government, and companies large and small with access to university user facilities with leading-edge fabrication and characterization tools, instrumentation, and expertise within all disciplines of nanoscale science, engineering and technology.

A Sept. 16, 2015 NSF news release provides a brief history of US nanotechnology infrastructures and describes this latest effort in slightly more detail (Note: Links have been removed),

The NNCI framework builds on the National Nanotechnology Infrastructure Network (NNIN), which enabled major discoveries, innovations, and contributions to education and commerce for more than 10 years.

“NSF’s long-standing investments in nanotechnology infrastructure have helped the research community to make great progress by making research facilities available,” said Pramod Khargonekar, assistant director for engineering. “NNCI will serve as a nationwide backbone for nanoscale research, which will lead to continuing innovations and economic and societal benefits.”

The awards are up to five years and range from $500,000 to $1.6 million each per year. Nine of the sites have at least one regional partner institution. These 16 sites are located in 15 states and involve 27 universities across the nation.

Through a fiscal year 2016 competition, one of the newly awarded sites will be chosen to coordinate the facilities. This coordinating office will enhance the sites’ impact as a national nanotechnology infrastructure and establish a web portal to link the individual facilities’ websites to provide a unified entry point to the user community of overall capabilities, tools and instrumentation. The office will also help to coordinate and disseminate best practices for national-level education and outreach programs across sites.

New NNCI awards:

Mid-Atlantic Nanotechnology Hub for Research, Education and Innovation, University of Pennsylvania with partner Community College of Philadelphia, principal investigator (PI): Mark Allen
Texas Nanofabrication Facility, University of Texas at Austin, PI: Sanjay Banerjee

Northwest Nanotechnology Infrastructure, University of Washington with partner Oregon State University, PI: Karl Bohringer

Southeastern Nanotechnology Infrastructure Corridor, Georgia Institute of Technology with partners North Carolina A&T State University and University of North Carolina-Greensboro, PI: Oliver Brand

Midwest Nano Infrastructure Corridor, University of  Minnesota Twin Cities with partner North Dakota State University, PI: Stephen Campbell

Montana Nanotechnology Facility, Montana State University with partner Carlton College, PI: David Dickensheets
Soft and Hybrid Nanotechnology Experimental Resource,

Northwestern University with partner University of Chicago, PI: Vinayak Dravid

The Virginia Tech National Center for Earth and Environmental Nanotechnology Infrastructure, Virginia Polytechnic Institute and State University, PI: Michael Hochella

North Carolina Research Triangle Nanotechnology Network, North Carolina State University with partners Duke University and University of North Carolina-Chapel Hill, PI: Jacob Jones

San Diego Nanotechnology Infrastructure, University of California, San Diego, PI: Yu-Hwa Lo

Stanford Site, Stanford University, PI: Kathryn Moler

Cornell Nanoscale Science and Technology Facility, Cornell University, PI: Daniel Ralph

Nebraska Nanoscale Facility, University of Nebraska-Lincoln, PI: David Sellmyer

Nanotechnology Collaborative Infrastructure Southwest, Arizona State University with partners Maricopa County Community College District and Science Foundation Arizona, PI: Trevor Thornton

The Kentucky Multi-scale Manufacturing and Nano Integration Node, University of Louisville with partner University of Kentucky, PI: Kevin Walsh

The Center for Nanoscale Systems at Harvard University, Harvard University, PI: Robert Westervelt

The universities are trumpeting this latest nanotechnology funding,

NSF-funded network set to help businesses, educators pursue nanotechnology innovation (North Carolina State University, Duke University, and University of North Carolina at Chapel Hill)

Nanotech expertise earns Virginia Tech a spot in National Science Foundation network

ASU [Arizona State University] chosen to lead national nanotechnology site

UChicago, Northwestern awarded $5 million nanotechnology infrastructure grant

That is a lot of excitement.

Center for Sustainable Nanotechnology or how not to poison and make the planet uninhabitable

I received notice of the Center for Sustainable Nanotechnology’s newest deal with the US National Science Foundation in an August 31, 2015 email University of Wisconsin-Madison (UWM) news release,

The Center for Sustainable Nanotechnology, a multi-institutional research center based at the University of Wisconsin-Madison, has inked a new contract with the National Science Foundation (NSF) that will provide nearly $20 million in support over the next five years.

Directed by UW-Madison chemistry Professor Robert Hamers, the center focuses on the molecular mechanisms by which nanoparticles interact with biological systems.

Nanotechnology involves the use of materials at the smallest scale, including the manipulation of individual atoms and molecules. Products that use nanoscale materials range from beer bottles and car wax to solar cells and electric and hybrid car batteries. If you read your books on a Kindle, a semiconducting material manufactured at the nanoscale underpins the high-resolution screen.

While there are already hundreds of products that use nanomaterials in various ways, much remains unknown about how these modern materials and the tiny particles they are composed of interact with the environment and living things.

“The purpose of the center is to explore how we can make sure these nanotechnologies come to fruition with little or no environmental impact,” explains Hamers. “We’re looking at nanoparticles in emerging technologies.”

In addition to UW-Madison, scientists from UW-Milwaukee, the University of Minnesota, the University of Illinois, Northwestern University and the Pacific Northwest National Laboratory have been involved in the center’s first phase of research. Joining the center for the next five-year phase are Tuskegee University, Johns Hopkins University, the University of Iowa, Augsburg College, Georgia Tech and the University of Maryland, Baltimore County.

At UW-Madison, Hamers leads efforts in synthesis and molecular characterization of nanomaterials. soil science Professor Joel Pedersen and chemistry Professor Qiang Cui lead groups exploring the biological and computational aspects of how nanomaterials affect life.

Much remains to be learned about how nanoparticles affect the environment and the multitude of organisms – from bacteria to plants, animals and people – that may be exposed to them.

“Some of the big questions we’re asking are: How is this going to impact bacteria and other organisms in the environment? What do these particles do? How do they interact with organisms?” says Hamers.

For instance, bacteria, the vast majority of which are beneficial or benign organisms, tend to be “sticky” and nanoparticles might cling to the microorganisms and have unintended biological effects.

“There are many different mechanisms by which these particles can do things,” Hamers adds. “The challenge is we don’t know what these nanoparticles do if they’re released into the environment.”

To get at the challenge, Hamers and his UW-Madison colleagues are drilling down to investigate the molecular-level chemical and physical principles that dictate how nanoparticles interact with living things.
Pedersen’s group, for example, is studying the complexities of how nanoparticles interact with cells and, in particular, their surface membranes.

“To enter a cell, a nanoparticle has to interact with a membrane,” notes Pedersen. “The simplest thing that can happen is the particle sticks to the cell. But it might cause toxicity or make a hole in the membrane.”

Pedersen’s group can make model cell membranes in the lab using the same lipids and proteins that are the building blocks of nature’s cells. By exposing the lab-made membranes to nanomaterials now used commercially, Pedersen and his colleagues can see how the membrane-particle interaction unfolds at the molecular level – the scale necessary to begin to understand the biological effects of the particles.

Such studies, Hamers argues, promise a science-based understanding that can help ensure the technology leaves a minimal environmental footprint by identifying issues before they manifest themselves in the manufacturing, use or recycling of products that contain nanotechnology-inspired materials.

To help fulfill that part of the mission, the center has established working relationships with several companies to conduct research on materials in the very early stages of development.

“We’re taking a look-ahead view. We’re trying to get into the technological design cycle,” Hamers says. “The idea is to use scientific understanding to develop a predictive ability to guide technology and guide people who are designing and using these materials.”

What with this initiative and the LCnano Network at Arizona State University (my April 8, 2014 posting; scroll down about 50% of the way), it seems that environmental and health and safety studies of nanomaterials are kicking into a higher gear as commercialization efforts intensify.

Who would buy foods that were nanotechnology-enabled or genetically modified?

A research survey conducted by scientists at North Carolina State University (NCSU) and the University of Minnesota suggests that under certain conditions, consumers in the US would be likely to purchase nanotechnology-enabled or genetically modified food. From a Dec. 2, 2014 news item on Nanowerk,

New research from North Carolina State University and the University of Minnesota shows that the majority of consumers will accept the presence of nanotechnology or genetic modification (GM) technology in foods – but only if the technology enhances the nutrition or improves the safety of the food.

A Dec. 2, 2014 NCSU news release (also on EurekAlert), which originated the news item, notes that while many people will pay more to avoid nanotechnology-enabled or genetically modified food there is an exception of sorts,

“In general, people are willing to pay more to avoid GM or nanotech in foods, and people were more averse to GM tech than to nanotech,” says Dr. Jennifer Kuzma, senior author of a paper on the research and co-director of the Genetic Engineering in Society Center at NC State. “However, it’s not really that simple. There were some qualifiers, indicating that many people would be willing to buy GM or nanotech in foods if there were health or safety benefits.”

The researchers conducted a nationally representative survey of 1,117 U.S. consumers. Participants were asked to answer an array of questions that explored their willingness to purchase foods that contained GM tech and foods that contained nanotech. The questions also explored the price of the various foods and whether participants would buy foods that contained nanotech or GM tech if the foods had enhanced nutrition, improved taste, improved food safety, or if the production of the food had environmental benefits.

The researchers found that survey participants could be broken into four groups.

Eighteen percent of participants belonged to a group labeled the “new technology rejecters,” which would not by GM or nanotech foods under any circumstances. Nineteen percent of participants belonged to a group labeled the “technology averse,” which would buy GM or nanotech foods only if those products conveyed food safety benefits. Twenty-three percent of participants were “price oriented,” basing their shopping decisions primarily on the cost of the food – regardless of the presence of GM or nanotech. And 40 percent of participants were “benefit oriented,” meaning they would buy GM or nanotech foods if the foods had enhanced nutrition or food safety.

“This tells us that GM or nanotech food products have greater potential to be viable in the marketplace if companies focus on developing products that have safety and nutrition benefits – because a majority of consumers would be willing to buy those products,” Kuzma says.

“From a policy standpoint, it also argues that GM and nanotech foods should be labeled, so that the technology rejecters can avoid them,” Kuzma adds.

Here’s a link to and a citation for the paper,

Heterogeneous Consumer Preferences for Nanotechnology and Genetic-modification Technology in Food Products by Chengyan Yue, Shuoli Zhao, and Jennifer Kuzma. Journal of Agricultural Economics DOI: 10.1111/1477-9552.12090 Article first published online: 12 NOV 2014

© 2014 The Agricultural Economics Society

This paper is behind a paywall.

I have mentioned Jennifer Kuzma’s work previously in an Oct. 29, 2013 posting titled, Nano info on food labels wanted by public in the US?