Tag Archives: University of Saskatchewan (USask)

Key to developing stronger, ‘greener’ adhesives: fresh water oysters

A September 17, 2024 news item on phys.org highlights some research on creating ‘green’, i.e., environmentally friendly, glue,

Freshwater oysters produce an adhesive that may hold the secret to developing more environmentally friendly glues with applications from dental care to construction and shipping. An international research team recently used the Canadian Light Source (CLS) at the University of Saskatchewan (USask [Canada]) to determine what the unique adhesive is made of.

Thriving in African rivers and lakes, Etheria elliptica oysters produce a special material that helps them stick to wood or other oysters, creating complex underwater reefs. Never studied before, this oyster glue has characteristics rarely found in similar organisms: it’s made of a mineral called aragonite that the oyster arranges so that it is soft on the outside and progressively harder on the inside.

A September 17, 2024 Canadian Light Source (CLS) news release (also received via email) by Federica Gianelli provides more detail about the research,

“These oyster shells aren’t exactly like our teeth and our bones, but there are a lot of similarities,” says Rebecca Metzler, professor of physics at Colgate University in New York State. “And so, if the adhesive can work for the oyster shell, maybe it could work pretty well for what’s happening inside of us.”

Metzler and her team found that the oyster glue is so sticky because it combines the aragonite with special proteins that the oyster produces. This information could pave the way for the development of better synthetic, “green” glues that mimic the properties of the oyster’s adhesive.

“Because I’m looking at this biological tissue, I need a certain energy range, and the Canadian Light Source has that sweet spot of having both the microscope and the energy range,” says Metzler. “You can look at your sample, get the spectral data that you need to be able to answer questions about what is this made up of, and how these things are structured.”

Her team discovered that the oyster glue is made up of tiny particles of aragonite that clump together into crystals of random shapes, sizes and orientation, information, says Metzler, that can be used to create synthetic versions in a lab. This research, which also relied on data gathered at the Advanced Light Source (ALS) synchrotron [located at the Lawrence Berkeley National Laboratory in California, US] , is published in the journal Advanced Materials Interfaces.

What they’ve learned could have multiple applications, Metzler says. Glues synthesized from the oyster’s adhesive could be used to bind dental implants, replace glues currently used in the packaging industry with bio-degradable alternatives, or even build structures underwater.

Metzler’s research may also prove critical for the ecological conservation of Etheria elliptica oysters. With freshwater mussel populations declining globally, understanding how these organisms create underwater reefs is key to preserving habitats that ensure the oysters’ survival in a warming climate, as well as informing local populations about sustainable oyster harvesting.

Because the oysters used in Metzler’s study were collected years ago, a next step will be investigating the impact of climate change on more recent samples.

“Whether there’s been a change similar to what we’re seeing in other organisms, that would be another thing we’d be interested in trying to figure out.”

Here’s a link to and a citation for the paper,

Exploring the Mineral Composition, Structure, and Function of a Freshwater Bivalve Adhesive by Rebecca A. Metzler, Julia Zaborowsky, Leon Nichols, Jack Underhill, Jack Tregidga, Chelsea Rogers, Deniz Rende, Steven Bouillon, David P. Gillikin. Advanced Materials Interfaces Volume 11, Issue 17 June 17, 2024 2300954 DOI: https://doi.org/10.1002/admi.202300954 First published online: 03 May 2024

This paper is open access.

Rare earth elements (REE) and the Canadian Light Source

Unexpectedly, this story centers on coal and in this case, coal ash. A September 12, 2024 Canadian Light Source news release (also received via email)) by Brian Owens explains how coal ash is a source for rare earth elements (RRE), Note: A link has been removed,

As the world transitions away from fossil fuels, the demand for rare earth elements (REEs) is only going to increase. These elements are vital to the production of technologies that will make the transition to green energy possible. While REEs are not technically rare, large deposits are found in only a few locations around the world – mostly in China – and they are difficult to extract.

“If we want to switch to electric vehicles by 2035 and be net-zero by 2050 we’re going to need new sources of these metals,” says Brendan Bishop, a PhD candidate studying REEs at the University of Regina.

Bishop and his colleagues have been studying one potential new source of these valuable elements: the ash that is produced as waste from coal-fired power plants. Researchers have looked into REEs in coal waste in the United States and China, but there has been little work done on ash from Canadian coal.

The team analyzed samples of ash from coal plants in Alberta and Saskatchewan to determine how much REEs the ashes contained, and how they could be extracted. While the concentration of REEs in Canadian coal ash is on par with that found in ash from other parts of the world, questions remained about whether the REEs are dispersed evenly throughout the ash particles or concentrated in certain minerals found within the ashes.

Using the powerful X-ray beamlines at the Canadian Light Source (CLS) at the University of Saskatchewan (USask), Bishop probed the ash, in search of a rare earth element called yttrium. They found it was distributed in specific mineral phases within the ash particles, most often in the form of silicates or phosphates such as xenotime which remain unchanged when the coal is burned.  The work was published in Environmental Science and Technology.

Bishop says this data can help inform development of an efficient and environmentally friendly process for recovering REEs from the ash. “This will be important when we develop a recovery process because extracting rare earth elements is technologically challenging,” he says. “In this case, since it’s in xenotime which is an ore mineral, maybe we can use an existing process and modify it for coal ash.”

The amount of REEs that could be extracted from coal ash will depend on the recovery process, says Bishop. But he thinks it could be a good short-to-medium-term source of the metals. The concentration is not particularly high, but that is offset by the fact that waste coal ash is plentiful. The concentration throughout the ash is also fairly homogenous, so no complicated grading is required as with mined ores. Once the extraction process is perfected, it will also be much faster than opening new mines, which often have gaps of up to 17 years between exploration and production.

Recovering REEs from the ash is also an important step toward a circular economy. Some ash is used in making concrete, but most just sits in landfills or tailings ponds near power plants. “It not only gets rid of an environmental liability, but it also gives us the metals we need for clean energy technologies,” says Bishop.

Here’s a link to and a citation for the paper,

Rare Earth Element Speciation in Coal and Coal Combustion Byproducts: A XANES and EXAFS Study by Brendan A. Bishop, Karthik Ramachandran Shivakumar, Jamie Schmidt, Ning Chen, Daniel S. Alessi, Leslie J. Robbins. Environ. Sci. Technol. 2024, 58, 32, 14565–14574 Published July 30, 2024 DOI: https://doi.org/10.1021/acs.est.4c04256 Copyright © 2024 American Chemical Society

This paper is behind a paywall.

Seeing signs of osteoarthritis before joint replacements necessary

A November 29, 2024 Canadian Light Source (CLS) news release (also received via email) by Brian Owens describes research that could benefit people who don’t know they have the beginning signs of osteoarthritis,

An imaging technique currently available only at synchrotrons like the Canadian Light Source at the University of Saskatchewan (USask) could one day enable doctors to detect osteoarthritis while patients can still be treated with medication – before they require joint replacement — thanks to research by USask scientist Brian Eames and colleagues.

In a pair of studies, Eames, a professor of Anatomy, Physiology, and Pharmacology in the USask College of Medicine, found that phase contrast imaging (PCI) detects very subtle changes in cartilage. He says the technique, which takes advantage of the high-energy light produced by the synchrotron, provides “fantastic” imaging of cartilage.

In the most recent study, Eames and colleagues (Daniel Chen, College of Engineering; Ali Honoramooz, Western College of Veterinary Medicine; Bill Dust, College of Medicine; and PhD student Hamed Alizadeh) used PCI to determine how well 3D-bioprinted cartilage could repair damaged joints. They compared the performance of cells impregnated in two different materials – one a squishy material called hydrogel and the other a hybrid construct combining hydrogel with a stiff plastic material. They hypothesized that the hybrid construct would shield the cells from forces in the recovering joint, so that the proper type of cartilage (hyaline) could form.

When they implanted these materials into animal joints, the researchers found that both helped new cartilage form, with the hydrogel doing slightly better by some measures. The hybrid, however, had one advantage: It formed less fibrocartilage, which was consistent with the team’s hypothesis. Fibrocartilage is a tougher form of cartilage that is created when joints are under stress. Having less fibrocartilage provides better joint function.

In an earlier study, Eames found that the superior resolution of PCI enabled more precise mapping of the articular cartilage surface than MRI – currently the “go to” imaging technique for osteoarthritis

Eames says that, while both sets of results are interesting, he’s more excited about the potential they hint at for bringing PCI into the clinical setting. PCI’s precision and ability to detect subtle changes “might be able to increase the ability to detect osteoarthritis earlier than regular clinical monitoring,” giving doctors more options for early treatment and researchers potential new targets for drug development.

While a football-field-sized synchrotron will never be a standard part of a hospital imaging suite, Eames says some companies are already working on ways to adapt the technology to make it portable for clinical use.

“The [CLS] is a nice test case for the technology that others can try to adapt for clinical use in humans,” he says.

Eames is seen discussing the work in this video,

Here are links to both papers mentioned in the news release, with the most recent work being first,

Comparison study on hyaline cartilage versus fibrocartilage formation in a pig model by using 3D-bioprinted hydrogel and hybrid constructs by Hamed Alizadeh Sardroud, Gustavo Dos Santos Rosa, William Dust, Tat-Chuan Cham, Gwen Roy, Sarah Bater, Alan Chicoine, Ali Honaramooz, Xiongbiao Chen and B Frank Eames. Biofabrication, 015014 Volume 17, Number 1 DOI 10.1088/1758-5090/ad88a6 Published 5 November 2024 • © 2024 The Author(s). Published by IOP Publishing Ltd

This paper is open access.

MRI overestimates articular cartilage thickness and volume compared to synchrotron radiation phase-contrast imaging by Suranjan Bairagi, Mohammad-Amin Abdollahifar, Oghenevwogaga J. Atake, William Dust, Sheldon Wiebe, George Belev, L. Dean Chapman, M. Adam Webb, Ning Zhu, David M. L. Cooper, B. Frank Eames. PLOS DOI: https://doi.org/10.1371/journal.pone.0291757 Published: October 3, 2023

This paper is open access.

More dirt from Saskatoon’s synchrotron (Canadian Light Source)

Apparently, dirt is not welcome at most synchrotrons (also known as light sources) as was noted in my November 13, 2022 posting about Saskatoon’s synchrotron being used to analyze some soil from Hawaii. This time, according to a September 4, 2024 Canadian Light Source (CLS) news release by Rowan Hollinger (also received via email), the soil is from Kansas and there appears to be a second synchroton involved in this research,

With carbon dioxide levels in the atmosphere increasing in recent decades, there is a growing urgency to find strategies for capturing and holding carbon.

Researchers from Kansas State University (K-State) are exploring how different farming practices can affect the amount of carbon that gets stored in soil. Using the Canadian Light Source (CLS) at the University of Saskatchewan (USask) and the Advanced Light Source in Berkeley, California, they analyzed soil from a cornfield in Kansas that had been farmed with no tilling for the past 22 years. During that time, the farm used a variety of different soil nitrogen management practices, including no fertilizer, chemical fertilizer, and manure/compost fertilizer.

“We were trying to understand what the mechanisms are behind increasing soil carbon storage using certain management practices,” says Dr. Ganga Hettiarachchi, professor of soil and environmental chemistry at Kansas State University. “We were looking at not just soil carbon, but other soil minerals that are going to help store carbon.”

As has been shown in other studies, the K-state researchers found that the soil enhanced (treated) with manure or compost fertilizer stores more carbon than soil that received either chemical fertilizer or no fertilizer. More exciting though, says Hettiarachchi, the ultrabright synchrotron light enabled them to see how the carbon gets stored: they found that it was preserved in pores and some carbon had attached itself to minerals in the soil.

The team also found that the soil treated with manure or compost contained more microbial carbon, an indication that these enhancements support more microorganisms and their activities in the soil. In addition, they identified special minerals in the soil, evidence Hettiarachchi says, that the treatments contribute to active chemical and biological processes.

“To my knowledge, this is the first direct evidence of mechanisms through which organic enhancements improve soil health, microbial diversity, and carbon sequestration.”

Because synchrotron imaging is non-destructive, the K-state researchers were able to observe what was going on in soil aggregate (clumps) without having to break up the soil; essentially, they were looking at the carbon chemistry in its natural state.

“Collectively, studies like this are going to help us to move forward to more sustainable, more regenerative agriculture practices that will protect our soils and environment as well as help feed growing populations, says Hettiarachchi. “As well, understanding the role of the different minerals, chemicals, and microbes involved will help improve models for predicting how different farming practices affect soil carbon storage.”

Here’s a link to and a citation for the paper,

Direct evidence on the impact of organic amendments on carbon stabilization in soil microaggregates by Pavithra S. Pitumpe Arachchige, Ganga M. Hettiarachchi, Charles W. Rice, James J. Dynes, Leila Maurmann, A. L. David Kilcoyne, Chammi P. Attanayake. Soil Science Society of America Journal (2024) DOI: https://doi.org/10.1002/saj2.20701 First published: 21 June 2024

This paper is behind a paywall.

Using copper to mitigate climate change?

A July 4, 2024 news item on phys.org announces research into copper that mitigates climate change,

Carbon in the atmosphere is a major driver of climate change. Now researchers from McGill University have designed a new catalyst for converting carbon dioxide (CO2) into methane—a cleaner source of energy—using tiny bits of copper called nanoclusters. While the traditional method of producing methane from fossil fuels introduces more CO2 into the atmosphere, the new process, electrocatalysis, does not.

A July 4, 2024 Canadian Light Source (CLS) news release (also received via email) by Rowan Hollinger, which originated the news item, delves further into the research, Note: A link has been removed,

“On sunny days you can use solar power, or when it’s a windy day you can use that wind to produce renewable electricity, but as soon as you produce that electricity you need to use it,” says Mahdi Salehi, Ph.D. candidate at the Electrocatalysis Lab at McGill University. “But in our case, we can use that renewable but intermittent electricity to store the energy in chemicals like methane.”

By using copper nanoclusters, says Salehi, carbon dioxide from the atmosphere can be transformed into methane and once the methane is used, any carbon dioxide released can be captured and “recycled” back into methane. This would create a closed “carbon loop” that does not emit new carbon dioxide into the atmosphere. The research, published recently in the journal Applied Catalysis B: Environment and Energy, was enabled by the Canadian Light Source (CLS) at the University of Saskatchewan (USask).

“In our simulations, we used copper catalysts with different sizes, from small ones with only 19 atoms to larger ones with 1000 atoms,” says Salehi. “We then tested them in the lab, focusing on how the sizes of the clusters influenced the reaction mechanism.”

“Our top finding was that extremely small copper nanoclusters are very effective at producing methane,” continues Salehi. “This was a significant discovery, indicating that the size and structure of the copper nanoclusters play a crucial role in the reaction’s outcome.”

The team plans to continue refining their catalyst to make it more efficient and investigate its large-scale, industrial applications. Their hope is that their findings will open new avenues for producing clean, sustainable energy.

Researcher Mahdi Salehi describes his work in a video provided by the Canadian Light Source (CLS),

Here’s a link to and a citation for the paper,

Copper nanoclusters: Selective CO2 to methane conversion beyond 1 A/cm² by Mahdi Salehi, Hasan Al-Mahayni, Amirhossein Farzi, Morgan McKee, Sepideh Kaviani, Elmira Pajootan, Roger Lin, Nikolay Kornienko, Ali Seifitokaldani. Applied Catalysis B: Environment and Energy Volume 353, 15 September 2024, 124061 DOI: https://doi.org/10.1016/j.apcatb.2024.124061 Available online 9 April 2024, Version of Record 12 April 2024.

This paper is open access. Under a Creative Commons license

Layer of tin could prevent short-circuiting in lithium-ion batteries

Lithium-ion batteries are everywhere; they can be found in cell phones, laptops, e-scooters, e-bikes, and more. There are also some well documented problems with the batteries including the danger of fire. With the proliferating use of lithium-ion batteries, it seems fires are becoming more frequent as Samantha Murphy Kelly documents in her Mach 9, 2023 article for CNN news online, Note: Links have been removed,

Lithium-ion batteries, found in many popular consumer products, are under scrutiny again following a massive fire this week in New York City thought to be caused by the battery that powered an electric scooter.

At least seven people have been injured in a five-alarm fire in the Bronx which required the attention of 200 firefighters. Officials believe the incident stemmed from a lithium-ion battery of a scooter found on the roof of an apartment building. In 2022, the the New York City Fire Department responded to more than 200 e-scooter and e-bike fires, which resulted in six fatalities.

“In all of these fires, these lithium-ion fires, it is not a slow burn; there’s not a small amount of fire, it literally explodes,” FDNY [Fire Dept. New York] Commissioner Laura Kavanagh told reporters. “It’s a tremendous volume of fire as soon as it happens, and it’s very difficult to extinguish and so it’s particularly dangerous.”

A residential fire earlier this week in Carlsbad, California, was suspected to be caused by an e-scooter lithium battery. On Tuesday [March 7, 2023], an alarming video surfaced of a Canadian homeowner running downstairs to find his electric bike battery exploding into flames. [emphasis mine] A fire at a multi-family home in Massachusetts last month is also under investigation for similar issues.

These incidents are becoming more common for a number of reasons. For starters, lithium-ion batteries are now in numerous consumer tech products,powering laptops, cameras, smartphones and more. They allow companies to squeeze hours of battery life into increasingly slim devices. But a combination of manufacturer issues, misuse and aging batteries can heighten the risk from the batteries, which use flammable materials.

“Lithium batteries are generally safe and unlikely to fail, but only so long as there are no defects and the batteries are not damaged or mistreated,” said Steve Kerber, vice president and executive director of Underwriters Laboratory’s (UL) Fire Safety Research Institute (FSRI). “The more batteries that surround us the more incidents we will see.”

In 2016, Samsung issued a global recall of the Galaxy Note 7 in 2016, citing “battery cell issues” that caused the device to catch fire and at times explode. [emphasis mine] HP and Sony later recalled lithium computer batteries for fire hazards, and about 500,000 hoverboards were recalled due to a risk of “catching fire and/or exploding,” according to the U.S. Consumer Product Safety Commission.

In 2020, the Federal Aviation Administration [emphasis mine] banned uninstalled lithium-ion metal batteries from being checked in luggage and said they must remain with a passenger in their carry-on baggage, if approved by the airline and between 101-160 watt hours. “Smoke and fire incidents involving lithium batteries can be mitigated by the cabin crew and passengers inside the aircraft cabin,” the FAA said.

Despite the concerns, lithium-ion batteries continue to be prevalent in many of today’s most popular gadgets. Some tech companies point to their abilities to charge faster, last longer and pack more power into a lighter package.

But not all lithium batteries are the same.

Kelly’s Mach 9, 2023 article describes the problems (e.g., a short circuit) that may cause fires and includes some recommendations for better safety and for what to do in the event of a lithium-ion battery fire.Her mention of Samsung and the fires brought back memories; it was mentioned here briefly in a December 21, 2016 post titled, “The volatile lithium-ion battery,” which mostly featured then recent research into the batteries and fires.

More recently, I’ve got an update of sorts on lithium-ion batteries and fires on airplanes, from the May/June 2024 posting of the National Business Aviation Association (NBAA) Insider,

A smoke, fire or extreme heat incident involving lithium ion batteries takes place aboard an aircraft more than once per week [emphases mine] on average in the U.S., making it imperative for operators to fully understand these dangerous events and to prepare crews with safety training.

At any given time, there could be more than 1,000 Li-ion powered devices on board an airliner, while an international business jet might easily be flying with a few dozen. Despite their popularity, few people realize the dangers posed by Li-ion batteries.

Hazards run the gamut, from overheating, to emitting smoke, to bursting into flames or even exploding – spewing bits of white hot gel in all directions. In fact, a Li-ion fire can begin as a seemingly harmless overheat and erupt into a serious hazard in a matter of seconds.

FAA [US Federal Aviation Administration] data shows the scope of the threat: In 2023, more than one Li-ion incident occurred aboard an aircraft each week. Specifically, the agency said there were 208 issues with lithium ion battery packs, 111 with e-cigarettes and vaping devices, 68 with cell phones and 60 with laptop computers. (The FAA doesn’t offer incident data by aircraft type.

Thankfully, the data shows the chances of encountering an unstable mobile device aboard a business aircraft are small. But so is the possibility of a passenger experiencing a heart attack – yet many business aircraft carry defibrillators.

The threat with lithium ion batteries is known as thermal runaway. When a Li-ion battery overheats due to some previous damage that creates a short circuit [emphasis mine], the unit continues a catastrophic internal chain reaction until it melts or catches fire.

Short circuits, lithium ion batteries, and the University of Alberta

A July 31, 2024 Canadian Light Source (CLS) news release (also received via email) by Greg Basky announces the University of Alberta research,

Lithium-ion batteries have a lot of advantages. They charge quickly, have a high energy density, and can be repeatedly charged and discharged.

They do have one significant shortcoming, however: they’re prone to short-circuiting.  This occurs when a connection forms between the two electrodes inside the cell. A short circuit can result in a sudden loss of voltage or the rapid discharge of high current, both causing the battery to fail. In extreme cases, a short circuit can cause a cell to overheat, start on fire, or even explode. Video: Thin layer of tin prevents short-circuiting in lithium-ion batteries

A leading cause of short circuits are rough, tree-like crystal structures called dendrites that can form on the surface of one of the electrodes. When dendrites grow all the way across the cell and make contact with the other electrode, a short circuit can occur.

Using the Canadian Light Source (CLS) at the University of Saskatchewan (USask), researchers from the University of Alberta (UAlberta) have come up with a promising approach to prevent formation of dendrites in solid-state lithium-ion batteries. They found that adding a tin-rich layer between the electrode and the electrolyte helps spread the lithium around when it’s being deposited on the battery, creating a smooth surface that suppresses the formation of dendrites. The results are published in the journal ACS Applied Materials and Interfaces [ACS is American Chemical Society]. The team also found that the cell modified with the tin-rich structure can operate at a much higher current and withstand many more charging-discharging cycles than a regular cell.

Researcher Lingzi Sang, an assistant professor in UAlberta’s Faculty of Science (Chemistry), says the CLS played a key role in the research. “The HXMA beamline enabled us to see at a material’s structural level what was happening on the surface of the lithium in an operating battery,” says Sang. “As a chemist, what I find the most intriguing is we were able to access the exact tin structure that we introduced to the interface which can suppress dendrites and fix this short-circuiting problem.” In a related paper the team published earlier this year, they showed that adding a protective layer of tin also suppressed the formation of dendrites in liquid-electrolyte-based lithium-ion batteries.

This novel approach holds considerable potential for industrial applications, according to Sand. “Our next step is to try to find a sustainable, cost-effective approach to applying the protective layer in battery production.”

Here’s a link to and a citation for the latest paper,

Dual-Component Interlayer Enables Uniform Lithium Deposition and Dendrite Suppression for Solid-State Batteries by Xiang You, Ning Chen, Geng Xie, Shihong Xu, Sayed Youssef Sayed, and Lingzi Sang. ACS Appl. Mater. Interfaces 2024, 16, 27, 35761–35770 DOI: https://doi.org/10.1021/acsami.4c05227 Published June 21, 2024 Copyright © 2024 American Chemical Society

This paper is behind a paywall.

Organoids with four different types of brain cells from the University of Saskatchewan (USask)

While a USask-designed “mini-brain” synthetic organoid might look like a tiny wad of chewing gum, it could be a gamechanger for Alzheimer’s research (credit: USask/David Stobbe)

A May 14, 2024 news item on ScienceDaily announces research from the University of Saskatchewan that could improve diagnosis and treatment for Alzheimer’s disease,

Using an innovative new method, a University of Saskatchewan (USask) researcher is building tiny pseudo-organs from stem cells to help diagnose and treat Alzheimer’s.

When Dr. Tyler Wenzel (PhD) first came up with the idea of building a miniature brain from stem cells, he never could have predicted how well his creations would work.

Now, Wenzel’s “mini-brain” could revolutionize the way Alzheimer’s and other brain-related diseases are diagnosed and treated.

“Never in our wildest dreams did we think that our crazy idea would work,” he said. “These could be used as a diagnostic tool, built from blood.”

A May 14, 2024 University of Saskatchewan news release (also on EurekAlert), which originated the news item, provides more technical details, Note: A link has been removed,

Wenzel, a postdoctoral fellow in the College of Medicine’s Department of Psychiatry, developed the idea for the “mini-brain” – or more formally, a one-of-a-kind cerebral organoid model – while working under the supervision of Dr. Darrell Mousseau (PhD).

Human stem cells can be manipulated to develop into practically any other cell in the body. Using stem cells taken from human blood, Wenzel was able to create a tiny artificial organ – roughly three millimetres across and resembling visually what Wenzel described as a piece of chewed gum someone has tried to smooth out again.

These “mini-brains” are built by creating stem cells from a blood sample, and then transforming these stem cells into functioning brain cells. Using small synthetic organoids for research is not a novel concept – but the “mini-brains” developed in Wenzel’s lab are unique. As outlined in Wenzel’s recent published article in Frontiers of Cellular Neuroscience, the brains from Wenzel’s lab are comprised of four different types of brain cells while most brain organoids are comprised of only neurons.

In testing, Wenzel’s “mini-brains” more accurately reflect a fully-fledged adult human brain, so they can be used to more closely examine neurological conditions of adult patients, such as Alzheimer disease.

And for those “mini-brains” created from the stem cells of individuals who have Alzheimer’s, Wenzel determined that the artificial organ displayed the pathology of Alzheimer’s – just on a smaller scale.

“If stem cells have the capacity to become any cell in the human body, the question then came ‘could we create something that resembles an entire organ?’” Wenzel said. “While we were developing it, I had the crazy idea that if these truly are human brains, if a patient had a disease like Alzheimer’s and we grew their ‘mini-brain,’ in theory that tiny brain would have Alzheimer’s.”

Wenzel said this technology has the potential to change the way health services are provided to those with Alzheimer’s, particularly in rural and remote communities. This groundbreaking research has already received support from the Alzheimer Society of Canada.

If Wenzel and his colleagues can create a consistent way to diagnose and treat neurological conditions like Alzheimer’s using only a small blood sample – which has a relatively long shelf life and can be couriered – instead of requiring patients to travel to hospitals or specialized clinics, it could be a tremendous resource savings for the healthcare system and a burden off of patients.

“In theory, if this tool works the way we think it does, we could just get a blood sample shipped from La Loche or La Ronge to the university and diagnose you like that,” he said.

The early proof-of-concept work on the “mini-brains” has been extremely promising – which means the next step for Wenzel is expanding the testing to a larger pool of patients.

The researchers are also interested in trying to expand the scope of the “mini-brain” research. According to Wenzel, if they can confirm the “mini-brains” accurately reflect other brain diseases or neurological conditions, they could potentially be used to speed up diagnoses or test the efficacy of drugs on patients.

As an example, Wenzel pointed to the substantial wait times to see a psychiatrist in Saskatchewan. If the “mini-brains” could be used to test which antidepressant works best on a patient suffering from depression, it could dramatically reduce the time required to see a doctor and receive a prescription.

A former high school science teacher who made the move into the world of research and academia, Wenzel said it’s the “nature of research” to come up with a hypothesis and hit close to the mark in an experiment that excites him his work.

The astounding success of the early “mini-brains,” however, has been so staggering that Wenzel admitted he still struggles to wrap his own brain around it.

“I’m still in disbelief, but it’s also extremely motivating that something like this happened,” Wenzel said. “It gives me something that I think will impact society and have actual relevance and create some change … it has a strong potential to shift the landscape of medicine.”

Here’s a link to and a citation for the paper,

Brain organoids engineered to give rise to glia and neural networks after 90 days in culture exhibit human-specific proteoforms by Tyler J. Wenzel, Darrell D. Mousseau. Front. Cell. Neurosci., Volume 18 – 2024 DOI: https://doi.org/10.3389/fncel.2024.1383688 Published: 08 May 2024

This paper is open access.

(nano) Rust and magnets from the Canadian Light Source

An October 5, 2023 news item on phys.org highlights research from the Canadian Light Source (CLS, also known as, the synchrotron located in Saskatoon, Saskatchewan), Note: A link has been removed,

Every motor we use needs a magnet. University of Manitoba researcher Rachel Nickel is studying how rust could make those magnets cheaper and easier to produce.

Her most recent paper, published in the journal Nano Letters, explores a unique type of iron oxide nanoparticle. This material has special magnetic and electric features that could make it useful. It even has potential as a permanent magnet, which we use in car and airplane motors.

What sets it apart from other magnets is that it’s made from two of the most common elements found on earth: iron and oxygen. Right now, we use magnets made out of some of the rarest elements on the planet.

An October 5, 2023 CLS news release (also received via email) by Victoria Martinez, which originated the news item, provides more detail,

“The ability to produce magnets without rare earth elements [emphasis mine] is incredibly exciting,” says Nickel. “Almost everything that we use that has a motor where we need to start a motion relies on a permanent magnet”.

Researchers only started to understand this unique type of rust, called epsilon iron oxide, in the last 20 years.

“Now, what’s special about epsilon iron oxide is it only exists in the nanoscale,” says Nickel. “It’s basically fancy dust. But it is fancy dust with such incredible potential.”

In order to use it in everyday technology, researchers like Nickel need to understand its structure. To study epsilon iron oxide’s structure in different sizes, Nickel and colleagues collected data at the Advanced Photon Source (APS) in Illinois, thanks to the facility’s partnership with the Canadian Light Source (CLS) at the University of Saskatchewan. As the particle sizes change, the magnetic and electric traits of epsilon iron oxide change; the researchers began to see unusual electronic behaviour in their samples at larger sizes.

Nickel hopes to continue research on these particles, pursuing some of the stranger magnetic and electric properties.

“The more we are able to investigate these systems and the more we have access to facilities to investigate these systems, the more we can learn about the world around us and develop it into new and transformative technologies,” she says.

This work was funded through the Natural Sciences and Engineering Research Council of Canada and the Canada Foundation for Innovation.

For anyone not familiar with the rare earths situation, they’re not all that rare but they are difficult to mine in most regions of the world. China has some of the most accessible rare earth sites in the world. Consequently, they hold a dominant position in the market. Regardless of who has dominance, this is never a good situation and many countries and their researchers are looking at alternatives to rare earths.

Here’s a link to and a citation for the paper,

Nanoscale Size Effects on Push–Pull Fe–O Hybridization through the Multiferroic Transition of Perovskite ϵ-Fe2O3 by Rachel Nickel, Josh Gibbs, Jacob Burgess, Padraic Shafer, Debora Motta Meira, Chengjun Sun, and Johan van Lierop. Nano Lett. 2023, 23, 17, 7845–7851 DOI: https://doi.org/10.1021/acs.nanolett.3c01512 Publication Date: August 25, 2023 Copyright © 2023 American Chemical Society

This paper is behind a paywall.

Students from Nakoda Oyade Education Centre and scientists at the Canadian Light Source (CLS) use science to help bison

It’s known as Paskwâwimostos – ᐸᐢᑳᐧᐃᐧᒧᐢᑐᐢ – The Bison Project and is being conducted at Canada’s only synchrotron, the Canadian Light Source (CLS) in Saskatoon, Saskatchewan. Here’s more from a November 24, 2022 CLS news release (also received via email), Note: Links have been removed,

Bison have long held a prominent place in the culture of the Carry the Kettle Nakoda Nation, located about 100 kms east of Regina. The once-abundant animals were a vital source of food and furs for the ancestors of today’s Carry the Kettle people.

Now, high school students from Nakoda Oyade Education Centre at Carry the Kettle are using synchrotron imaging to study the health of a local bison herd, with an eye to protecting and growing their numbers.

Armin Eashappie, a student involved in the Bison Project, says the work she and her classmates are doing is a chance to give back to an animal that was once integral to the very existence of her community. “We don’t want them to go extinct, says Eashappie. “They helped us with everything. We got our tools, our clothes, our food from them. We used every single part of the buffalo, nothing was left behind…they
even helped us make our homes – the teepees – we used the hides to cover them up.”

Eashappie’s classmate, Leslie Kaysaywaysemat, says that if their team can identify items the bison are eating that are not good for their health, these could potentially be replaced by other, healthier items. “We want to preserve them and make sure all generations can see how magnificent these creatures are,” he says.

The students, who are participating in the CLS’s Bison Project, gathered samples of bison hair, soil from where the animals graze, and plants they feed on, then analyzed them using the IDEAS beamline at the CLS. The Bison Project, coordinated by the Education group of the CLS, integrates Traditional Knowledge and mainstream science in a transformative research experience for First Nation, Métis, and Inuit
students.

Timothy Eashappie, Elder for the Bison Project, says it’s “awesome” that the students can use the Canadian Light Source machine to learn more about an animal that his people have long taken care of on the prairies. “That’s how we define ourselves – as
Buffalo People,” says Eashappie. “Since the beginning of time, they gave themselves to us, and now these young people are finding out how important these buffalo are to them, because it preserves their language, their culture, and their way of life. And now it’s our turn to take care of the bison.”

Once they’ve completed their analysis, the students will share their findings with the Chief and Council for Carry the Kettle.

The Canadian Light Source (CLS) is a national research facility of the University of Saskatchewan and one of the largest science projects in Canada’s history. More than 1,000 academic, government and industry scientists from around the world use the CLS every year in innovative health, agriculture, environment, and advanced materials research.

The Canada Foundation for Innovation [CFI], Natural Sciences and Engineering Research Council [NSERC], Canadian Institutes of Health Research [CIHR], the Government of Saskatchewan, and the University of Saskatchewan fund CLS operations.

You can find more about the CLS Bison Project here,

The Bison Project integrates Traditional Knowledge (TK) and mainstream Science in an experience that engages First Nation, Métis, and Inuit (FNMI) teachers, students, and communities. The Bison Project creates a unique opportunity to incorporate land-based hunting and herd management, synchrotron science, mainstream science principles and TK.

I found a bit more information about bison and their return in a November 23, 2020 article by Mark A. Bonta for The Daylighter,

For ecologists and environmentalists, it’s more than just a story about the return of a keystone species. 

The bison, it turns out, is an animal that maintains and restores the prairie.

Ecological restoration

Unlike cattle, bison are wallowers, so these powerful animals’ efforts to rid themselves of insect parasites, by rubbing their hide and rolling around on the ground, actually create permanent depressions, called bison wallows, in the landscape. 

These create fertile ground for diverse plant species — and the animals that rely on them. 

Bison also rub against woody plants and kill them off, keeping the prairies open, while their dung fertilizes the soil.

Iconic species like the greater prairie-chicken and the prairie dog all benefit from the restoration of bison. 

Bison herds have also proved highly adaptive to the “new,” post-colonial ecology of the Great Plains.

They are adapting to hunting season, for example, by delaying their migration. This keeps them out of harm’s way — but also increases the risk of human-bison conflicts.

Bonta’s article provides a little more detail about the mixed feelings that the return of the bison have engendered.

Illustrating math at the University of Saskatchewan (Canada)

Art and math intersect in Dr. Steven Rayan’s work on quantum materials at the University of Saskatchewan (USask).

An illustration by Elliot Kienzle (undergraduate research assistant, quanTA Centre, USask) of a hyperbolic crystal in action

A May 2, 2022 USask news release (also received via email) describes Rayan’s work in more detail,

Art and mathematics may go hand-in-hand when building new and better materials for use in quantum computing and other quantum applications, according to University of Saskatchewan (USask) mathematician Dr. Steven Rayan (PhD).

Quantum materials are what futuristic dreams are made of. Such materials are able to efficiently conduct and insulate electric currents – the everyday equivalent of never having a lightbulb flicker. Quantum materials may be the fabric of tomorrow’s supercomputers, ones that can quickly and accurately analyze and solve problems to a degree far beyond what was previously thought possible.

“Before the 1700s, people were amazed that metals could be melted down and reshaped to suit their needs, be it the need for building materials or for tools. There was no thought that, perhaps, metals were capable of something much more — such as conducting electricity,” said Rayan, an associate professor of mathematics and statistics in the USask College of Arts and Science who also serves as the director of the USask Centre for Quantum Topology and its Applications (quanTA).

“Today, we’re at a similar juncture. We may be impressed with what materials are capable of right now, but tomorrow’s materials will redefine our expectations. We are standing at a doorway and on the other side of it is a whole new world of materials capable of things that we previously could not imagine.”

Many conducting materials exhibit a crystal-like structure that consists of tiny cells repeating over and over. Previous research published in Science Advances had highlighted Rayan and University of Alberta physicist Dr. Joseph Maciejko’s (PhD) success in defining a new type of quantum material that does not follow a typical crystal structure but instead consists of “hyperbolic” crystals that are warped and curved. 

“This is an immense paradigm shift in the understanding of what it means to be a ‘material’,” said Rayan.

It is expected that hyperbolic materials will exhibit the perfect conductivity of current quantum materials, but at slightly higher temperatures. Today’s quantum materials often need to be supercooled to extremely low temperatures to reach their full potential. Maintaining such temperatures is an obstacle to implementing widespread quantum computing, which has the potential to impact information security, drug design, vaccine development, and other crucial tasks. Hyperbolic materials may be part of the solution to this problem.

Hyperbolic materials may also be the key to new types of sensors and medical imaging devices, such as magnetic resonance imaging (MRI) machines that take advantage of quantum effects in order to be more lightweight for use in rural or remote environments.

USask recently named Quantum Innovation as one of its three new signature areas of research [Note: Link removed] to respond to emerging questions and needs in the pursuit of new knowledge.

“All of this comes at the right time, as new technologies like quantum computers, quantum sensors, and next-generation fuel cells are putting new demands on materials and exposing the limits of existing components,” said Rayan.

This year has seen two new articles by Rayan together with co-authors extending previous research of hyperbolic materials. The first is written with Maciejko and appears in the prestigious journal Proceedings of the National Academy of Sciences (PNAS). The second has been written with University of Maryland undergraduate student Elliot Kienzle, who served as a USask quanTA research assistant under Rayan’s supervision in summer of 2021.

In these two articles, the power of mathematics used to study quantum and hyperbolic crystals is significantly extended through the use of tools from geometry. These tools have not typically been applied to the study of materials. The results will make it much easier for scientists experimenting with hyperbolic materials to make accurate predictions about how they will behave as electrical conductors.

Reflecting on the initial breakthrough of considering hyperbolic geometry rather than ordinary geometry, Rayan said, “What is interesting is that these warped crystals have appeared in mathematics for over 100 years as well as in art – for instance, in the beautiful woodcuts of M.C. Escher – and it is very satisfying to see these ideas practically applied in science.”

The work also intersects with art in another way. The article with Kienzle, which was released in pre-publication form on February 1, 2022 [sic], was accompanied by exclusive hand drawings provided by Kienzle. With concepts in mathematics and physics often being difficult to visualize, the artwork helps the work to come to life and invites everyone to learn about the function and power of quantum materials. 

The artwork, which is unusual for mathematics or physics papers, has garnered a lot of positive attention on social media.

“Elliot is tremendously talented not only as an emerging researcher in mathematics and physics, but also as an artist,” said Rayan. “His illustrations have added a new dimension to our work, and I hope that this is the start of a new trend in these types of papers where the quality and creativity of illustrations are as important as the correctness of equations.”

Here are links to and citations for both of Rayan’s most recent papers,

Hyperbolic band theory through Higgs bundles by Elliot Kienzle and Steven Rayan. arXiv:2201.12689 (or arXiv:2201.12689v1 [math-ph] for this version) DOI: https://doi.org/10.48550/arXiv.2201.1268 Submitted on 30 Jan 2022

This paper is open access and open for peer review.

Automorphic Bloch theorems for hyperbolic lattices by Joseph Maciejko and Steven Rayan. PNAS February 25, 2022 | 119 (9) e2116869119 DOI: https://doi.org/10.1073/pnas.2116869119

This peer-reviewed paper is behind a paywall.