Tag Archives: University of Southampton

‘SWEET’ (smart, wearable, and eco-friendly electronic textiles)

I always appreciate a good acronym and this one is pretty good. (From my perspective, a good acronym is memorable and doesn’t involve tortured terminology such as CRISPR-Cas9, which stands for clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9).

On to ‘SWEET’ and a January 2, 2025 news item on ScienceDaily announcing a new UK study on wearable e-textiles,

A research team led by the University of Southampton and UWE Bristol [University of the West of England Bristol] has shown wearable electronic textiles (e-textiles) can be both sustainable and biodegradable.

A new study, which also involved the universities of Exeter, Cambridge, Leeds and Bath, describes and tests a new sustainable approach for fully inkjet-printed, eco-friendly e-textiles named ‘Smart, Wearable, and Eco-friendly Electronic Textiles’, or ‘SWEET’.

A January 2, 2025 University of Southampton press release (also on EurekAlert), which originated the news item, describes e-textiles and how this latest work represents a step forward in making them environmentally friendly,

E-textiles are those with embedded electrical components, such as sensors, batteries or lights. They might be used in fashion, for performance sportwear, or for medical purposes as garments that monitor people’s vital signs.

Such textiles need to be durable, safe to wear and comfortable, but also, in an industry which is increasingly concerned with clothing waste, they need to be kind to the environment when no longer required.

Professor Nazmul Karim at the University of Southampton’s Winchester School of Art, who led the study, explains: “Integrating electrical components into conventional textiles complicates the recycling of the material because it often contains metals, such as silver, that don’t easily biodegrade. Our potential ecofriendly approach for selecting sustainable materials and manufacturing overcomes this, enabling the fabric to decompose when it is disposed of.”

The team’s design has three layers, a sensing layer, a layer to interface with the sensors and a base fabric. It uses a textile called Tencel for the base, which is made from renewable wood and is biodegradable. The active electronics in the design are made from graphene, along with a polymer called PEDOT: PSS. These conductive materials are precision inkjet-printed onto the fabric.

The researchers tested samples of the material for continuous monitoring of human physiology using five volunteers. Swatches of the fabric, connected to monitoring equipment, were attached to gloves worn by the participants. Results confirmed the material can effectively and reliably measure both heart rate and temperature at the industry standard level.

Dr Shaila Afroj, an Associate Professor of Sustainable Materials from the University of Exeter and a co-author of the study, highlighted the importance of this performance: “Achieving reliable, industry-standard monitoring with eco-friendly materials is a significant milestone. It demonstrates that sustainability doesn’t have to come at the cost of functionality, especially in critical applications like healthcare.”

The project team then buried the e-textiles in soil to measure its biodegradable properties. After four months, the fabric had lost 48 percent of its weight and 98 percent of its strength, suggesting relatively rapid and also effective decomposition. Furthermore, a life cycle assessment revealed the graphene-based electrodes had up to 40 times less impact on the environment than standard electrodes.

Marzia Dulal from UWE Bristol, a Commonwealth PhD Scholar and the first author of the study, highlighted the environmental impact: “Our life cycle analysis shows that graphene-based e-textiles have a fraction of the environmental footprint compared to traditional electronics. This makes them a more responsible choice for industries looking to reduce their ecological impact.”

The ink-jet printing process is also a more sustainable approach for e-textile fabrications, depositing exact numbers of functional materials on textiles as needed, with almost no material waste and less use of water and energy than conventional screen printing.

Professor Karim concludes: “ Amid rising pollution from landfill sites, our study helps to address a lack of research in the area of biodegradation of e-textiles. These materials will become increasingly more important in our lives, particularly in the area of healthcare, so it’s really important we consider how to make them more eco-friendly, both in their manufacturing and disposal.”

The researchers hope they can now move forward with designing wearable garments made from SWEET for potential use in the healthcare sector, particularly in the area of early detection and prevention of heart-related diseases that 640 million people (source: BHF [British Heart Foundation]) suffer from worldwide.

Here’s a link to and a citation for the paper,

Sustainable, Wearable, and Eco-Friendly Electronic Textiles by Marzia Dulal, Harsh Rajesh Mansukhlal Modha, Jingqi Liu, Md Rashedul Islam, Chris Carr, Tawfique Hasan, Robin Michael Statham Thorn, Shaila Afroj, Nazmul Karim. Energy & Enviornmental Materials DOI: https://doi.org/10.1002/eem2.12854 First published: 18 December 2024

This paper is open access.

Bio-hybrid robotics (living robots) needs public debate and regulation

A July 23, 2024 University of Southampton (UK) press release (also on EurekAlert but published July 22, 2024) describes the emerging science/technology of bio-hybrid robotics and a recent study about the ethical issues raised, Note 1: bio-hybrid may also be written as biohybrid; Note 2: Links have been removed,

Development of ‘living robots’ needs regulation and public debate

Researchers are calling for regulation to guide the responsible and ethical development of bio-hybrid robotics – a ground-breaking science which fuses artificial components with living tissue and cells.

In a paper published in Proceedings of the National Academy of Sciences [PNAS] a multidisciplinary team from the University of Southampton and universities in the US and Spain set out the unique ethical issues this technology presents and the need for proper governance.

Combining living materials and organisms with synthetic robotic components might sound like something out of science fiction, but this emerging field is advancing rapidly. Bio-hybrid robots using living muscles can crawl, swim, grip, pump, and sense their surroundings. Sensors made from sensory cells or insect antennae have improved chemical sensing. Living neurons have even been used to control mobile robots.

Dr Rafael Mestre from the University of Southampton, who specialises in emergent technologies and is co-lead author of the paper, said: “The challenges in overseeing bio-hybrid robotics are not dissimilar to those encountered in the regulation of biomedical devices, stem cells and other disruptive technologies. But unlike purely mechanical or digital technologies, bio-hybrid robots blend biological and synthetic components in unprecedented ways. This presents unique possible benefits but also potential dangers.”

Research publications relating to bio-hybrid robotics have increased continuously over the last decade. But the authors found that of the more than 1,500 publications on the subject at the time, only five considered its ethical implications in depth.

The paper’s authors identified three areas where bio-hybrid robotics present unique ethical issues: Interactivity – how bio-robots interact with humans and the environment, Integrability – how and whether humans might assimilate bio-robots (such as bio-robotic organs or limbs), and Moral status.

In a series of thought experiments, they describe how a bio-robot for cleaning our oceans could disrupt the food chain, how a bio-hybrid robotic arm might exacerbate inequalities [emphasis mine], and how increasing sophisticated bio-hybrid assistants could raise questions about sentience and moral value.

“Bio-hybrid robots create unique ethical dilemmas,” says Aníbal M. Astobiza, an ethicist from the University of the Basque Country in Spain and co-lead author of the paper. “The living tissue used in their fabrication, potential for sentience, distinct environmental impact, unusual moral status, and capacity for biological evolution or adaptation create unique ethical dilemmas that extend beyond those of wholly artificial or biological technologies.”

The paper is the first from the Biohybrid Futures project led by Dr Rafael Mestre, in collaboration with the Rebooting Democracy project. Biohybrid Futures is setting out to develop a framework for the responsible research, application, and governance of bio-hybrid robotics.

The paper proposes several requirements for such a framework, including risk assessments, consideration of social implications, and increasing public awareness and understanding.

Dr Matt Ryan, a political scientist from the University of Southampton and a co-author on the paper, said: “If debates around embryonic stem cells, human cloning or artificial intelligence have taught us something, it is that humans rarely agree on the correct resolution of the moral dilemmas of emergent technologies.

“Compared to related technologies such as embryonic stem cells or artificial intelligence, bio-hybrid robotics has developed relatively unattended by the media, the public and policymakers, but it is no less significant. We want the public to be included in this conversation to ensure a democratic approach to the development and ethical evaluation of this technology.”

In addition to the need for a governance framework, the authors set out actions that the research community can take now to guide their research.

“Taking these steps should not be seen as prescriptive in any way, but as an opportunity to share responsibility, taking a heavy weight away from the researcher’s shoulders,” says Dr Victoria Webster-Wood, a biomechanical engineer from Carnegie Mellon University in the US and co-author on the paper.

“Research in bio-hybrid robotics has evolved in various directions. We need to align our efforts to fully unlock its potential.”

Here’s a link to and a citation for the paper,

Ethics and responsibility in biohybrid robotics research by Rafael Mestre, Aníbal M. Astobiza, Victoria A. Webster-Wood, Matt Ryan, and M. Taher A. Saif. PNAS 121 (31) e2310458121 July 23, 2024 DOI: https://doi.org/10.1073/pnas.2310458121

This paper is open access.

Cyborg or biohybrid robot?

Earlier, I highlighted “… how a bio-hybrid robotic arm might exacerbate inequalities …” because it suggests cyborgs, which are not mentioned in the press release or in the paper, This seems like an odd omission but, over the years, terminology does change although it’s not clear that’s the situation here.

I have two ‘definitions’, the first is from an October 21, 2019 article by Javier Yanes for OpenMind BBVA, Note: More about BBVA later,

The fusion between living organisms and artificial devices has become familiar to us through the concept of the cyborg (cybernetic organism). This approach consists of restoring or improving the capacities of the organic being, usually a human being, by means of technological devices. On the other hand, biohybrid robots are in some ways the opposite idea: using living tissues or cells to provide the machine with functions that would be difficult to achieve otherwise. The idea is that if soft robots seek to achieve this through synthetic materials, why not do so directly with living materials?

In contrast, there’s this from “Biohybrid robots: recent progress, challenges, and perspectives,” Note 1: Full citation for paper follows excerpt; Note 2: Links have been removed,

2.3. Cyborgs

Another approach to building biohybrid robots is the artificial enhancement of animals or using an entire animal body as a scaffold to manipulate robotically. The locomotion of these augmented animals can then be externally controlled, spanning three modes of locomotion: walking/running, flying, and swimming. Notably, these capabilities have been demonstrated in jellyfish (figure 4(A)) [139, 140], clams (figure 4(B)) [141], turtles (figure 4(C)) [142, 143], and insects, including locusts (figure 4(D)) [27, 144], beetles (figure 4(E)) [28, 145–158], cockroaches (figure 4(F)) [159–165], and moths [166–170].

….

The advantages of using entire animals as cyborgs are multifold. For robotics, augmented animals possess inherent features that address some of the long-standing challenges within the field, including power consumption and damage tolerance, by taking advantage of animal metabolism [172], tissue healing, and other adaptive behaviors. In particular, biohybrid robotic jellyfish, composed of a self-contained microelectronic swim controller embedded into live Aurelia aurita moon jellyfish, consumed one to three orders of magnitude less power per mass than existing swimming robots [172], and cyborg insects can make use of the insect’s hemolymph directly as a fuel source [173].

So, sometimes there’s a distinction and sometimes there’s not. I take this to mean that the field is still emerging and that’s reflected in evolving terminology.

Here’s a link to and a citation for the paper,

Biohybrid robots: recent progress, challenges, and perspectives by Victoria A Webster-Wood, Maria Guix, Nicole W Xu, Bahareh Behkam, Hirotaka Sato, Deblina Sarkar, Samuel Sanchez, Masahiro Shimizu and Kevin Kit Parker. Bioinspiration & Biomimetics, Volume 18, Number 1 015001 DOI 10.1088/1748-3190/ac9c3b Published 8 November 2022 • © 2022 The Author(s). Published by IOP Publishing Ltd

This paper is open access.

A few notes about BBVA and other items

BBVA is Banco Bilbao Vizcaya Argentaria according to its Wikipedia entry, Note: Links have been removed,

Banco Bilbao Vizcaya Argentaria, S.A. (Spanish pronunciation: [ˈbaŋko βilˈβao βiθˈkaʝa aɾxenˈtaɾja]), better known by its initialism BBVA, is a Spanish multinational financial services company based in Madrid and Bilbao, Spain. It is one of the largest financial institutions in the world, and is present mainly in Spain, Portugal, Mexico, South America, Turkey, Italy and Romania.[2]

BBVA’s OpenMind is, from their About us page,

OpenMind: BBVA’s knowledge community

OpenMind is a non-profit project run by BBVA that aims to contribute to the generation and dissemination of knowledge about fundamental issues of our time, in an open and free way. The project is materialized in an online dissemination community.

Sharing knowledge for a better future.

At OpenMind we want to help people understand the main phenomena affecting our lives; the opportunities and challenges that we face in areas such as science, technology, humanities or economics. Analyzing the impact of scientific and technological advances on the future of the economy, society and our daily lives is the project’s main objective, which always starts on the premise that a broader and greater quality knowledge will help us to make better individual and collective decisions.

As for other items, you can find my latest (biorobotic, cyborg, or bionic depending what terminology you what to use) jellyfish story in this June 6, 2024 posting, the Biohybrid Futures project mentioned in the press release here, and also mentioned in the Rebooting Democracy project (unexpected in the context of an emerging science/technology) can be found here on this University of Southampton website.

Finally, you can find more on these stories (science/technology announcements and/or ethics research/issues) here by searching for ‘robots’ (tag and category), ‘cyborgs’ (tag), ‘machine/flesh’ (tag), ‘neuroprosthetic’ (tag), and human enhancement (category).

Measuring quantum gravity

It was about two years ago that a local (Vancouver, Canada) group of movers and shakers announced the launch of a Vancouver-based Quantum Gravity Institute at the Quantum Mechanics & Gravity conference (August 15 – 19, 2022) in my July 26, 2022 posting where I also provided an overview of the doings in the Canadian quantum scene. (I can’t find an online presence for the institute but there is the Vancouver-based Quantum Gravity Society which organized the 2022 conference and the institute.)

All of this being the buildup to a quantum gravity announcement in a February 23, 2024 news item on Nanowerk,

Scientists are a step closer to unravelling the mysterious forces of the universe after working out how to measure gravity on a microscopic level.

Experts have never fully understood how the force which was discovered by Isaac Newton works in the tiny quantum world.

Even Einstein was baffled by quantum gravity and, in his theory of general relativity, said there is no realistic experiment which could show a quantum version of gravity.

But now physicists at the University of Southampton [UK], working with scientists in Europe, have successfully detected a weak gravitational pull on a tiny particle using a new technique.

They claim it could pave the way to finding the elusive quantum gravity theory.

A February 26, 2024 University of Southampton press release, also on EurekAlert but published on February 23, 2024, delves further into quantum gravity,

The experiment, published in the Science Advances journal, used levitating magnets to detect gravity on microscopic particles – small enough to boarder on the quantum realm.

Lead author Tim Fuchs, from the University of Southampton, said the results could help experts find the missing puzzle piece in our picture of reality.

He added: “For a century, scientists have tried and failed to understand how gravity and quantum mechanics work together.

“Now we have successfully measured gravitational signals at a smallest mass ever recorded, it means we are one step closer to finally realising how it works in tandem.

“From here we will start scaling the source down using this technique until we reach the quantum world on both sides.

“By understanding quantum gravity, we could solve some of the mysteries of our universe – like how it began, what happens inside black holes, or uniting all forces into one big theory.”

The rules of the quantum realm are still not fully understood by science – but it is believed that particles and forces at a microscopic scale interact differently than regular-sized objects.

Academics from Southampton conducted the experiment with scientists at Leiden University in the Netherlands and the Institute for Photonics and Nanotechnologies in Italy, with funding from the EU Horizon Europe EIC Pathfinder grant (QuCoM).

Their study used a sophisticated setup involving superconducting devices, known as traps, with magnetic fields, sensitive detectors and advanced vibration isolation.

It measured a weak pull, just 30aN, on a tiny particle 0.43mg in size by levitating it in freezing temperatures a hundredth of a degree above absolute zero – about minus-273 degrees Celsius.

The results open the door for future experiments between even smaller objects and forces, said Professor of Physics Hendrik Ulbricht also at the University of Southampton.

He added: “We are pushing the boundaries of science that could lead to new discoveries about gravity and the quantum world.

“Our new technique that uses extremely cold temperatures and devices to isolate vibration of the particle will likely prove the way forward for measuring quantum gravity.

“Unravelling these mysteries will help us unlock more secrets about the universe’s very fabric, from the tiniest particles to the grandest cosmic structures.”

Here’s a link to and a citation for the paper,

Measuring gravity with milligram levitated masses by Tim M. Fuchs, Dennis G. Uitenbroek, Jaimy Plugge, Noud van Halteren, Jean-Paul van Soest, Andrea Vinante, Hendrik Ulbricht, and Tjerk H. Oosterkamp. Science Advances 23 Feb 2024 Vol 10, Issue 8 DOI: 10.1126/sciadv.adk2949

This paper is open access.

Recruiting for a citizen science project: become a Black Hole Hunter

A January 17, 2024 news item on phys.org announced a citizen science recruitment drive for more Black Hole Hunters,

Could you help scientists uncover the mysterious world of invisible black holes? Become a Black Hole Hunter and you’ll be taking part in scientific research that has the potential to reveal more about one of space’s most intriguing aspects.

All you will need is a smartphone, tablet or other computer, some guidance on how to spot the tell-tale clues, and a bit of time.

By volunteering to take part in this online citizen science project, you’ll be assisting astrophysicists Dr. Matt Middleton and Adam McMaster from the University of Southampton, and Dr. Hugh Dickinson from the Open University, with their research into elusive black holes.

A January 17, 2024 University of Southampton press release (also on EurekAlert), which originated the news item, gives more details about black holes and what citizen scientists will be doing during this new phase of the project,

Dr Middleton said: “Black holes are invisible. Their gravitational pull is so strong that not even light can escape, making them incredibly hard to see, even with specialist equipment.

“But that gravitational pull is also how we can detect them because it’s so strong that it can bend and focus light, acting like a lens that magnifies light from stars. We can detect this magnification and that’s how we know a black hole exists.

“We know our galaxy is teeming with black holes, but we’ve only found a handful. You could help us change that.”

Volunteers will be asked to search through telescope data and indicate anything that could reveal the presence of a black hole.

Adam added: “Anyone of any age can do this, and you don’t need to be an expert to take part. All you really need is an interest in space and as little or as much time as you can give for looking at the graphs and helping us spot the patterns that could reveal a black hole.

“Your work will directly contribute to real scientific research and you’ll be helping to make the invisible become visible.”

Black Hole Hunters previously analysed data from a ground-based telescope but the project is moving on – and up. It’s relaunching with a new set of data to analyse from a space-based telescope, called TESS.

Dr Hugh Dickinson, of The Open University, said: “We’re really excited to see the launch of this new Black Hole Hunter project.

“Using the amazing data from the TESS satellite means that there’s a good chance that one or more citizen scientists will be able to spot one of the elusive gravitational lensing events that we’re looking for.”

To get involved go to: Black Hole Hunters

The researchers are offering a training tutorial and a practice tutorial prior to getting started.

Connecting biological and artificial neurons (in UK, Switzerland, & Italy) over the web

Caption: The virtual lab connecting Southampton, Zurich and Padova. Credit: University of Southampton

A February 26, 2020 University of Southampton press release (also on EurekAlert) describes this work,

Research on novel nanoelectronics devices led by the University of Southampton enabled brain neurons and artificial neurons to communicate with each other. This study has for the first time shown how three key emerging technologies can work together: brain-computer interfaces, artificial neural networks and advanced memory technologies (also known as memristors). The discovery opens the door to further significant developments in neural and artificial intelligence research.

Brain functions are made possible by circuits of spiking neurons, connected together by microscopic, but highly complex links called ‘synapses’. In this new study, published in the scientific journal Nature Scientific Reports, the scientists created a hybrid neural network where biological and artificial neurons in different parts of the world were able to communicate with each other over the internet through a hub of artificial synapses made using cutting-edge nanotechnology. This is the first time the three components have come together in a unified network.

During the study, researchers based at the University of Padova in Italy cultivated rat neurons in their laboratory, whilst partners from the University of Zurich and ETH Zurich created artificial neurons on Silicon microchips. The virtual laboratory was brought together via an elaborate setup controlling nanoelectronic synapses developed at the University of Southampton. These synaptic devices are known as memristors.

The Southampton based researchers captured spiking events being sent over the internet from the biological neurons in Italy and then distributed them to the memristive synapses. Responses were then sent onward to the artificial neurons in Zurich also in the form of spiking activity. The process simultaneously works in reverse too; from Zurich to Padova. Thus, artificial and biological neurons were able to communicate bidirectionally and in real time.

Themis Prodromakis, Professor of Nanotechnology and Director of the Centre for Electronics Frontiers at the University of Southampton said “One of the biggest challenges in conducting research of this kind and at this level has been integrating such distinct cutting edge technologies and specialist expertise that are not typically found under one roof. By creating a virtual lab we have been able to achieve this.”

The researchers now anticipate that their approach will ignite interest from a range of scientific disciplines and accelerate the pace of innovation and scientific advancement in the field of neural interfaces research. In particular, the ability to seamlessly connect disparate technologies across the globe is a step towards the democratisation of these technologies, removing a significant barrier to collaboration.

Professor Prodromakis added “We are very excited with this new development. On one side it sets the basis for a novel scenario that was never encountered during natural evolution, where biological and artificial neurons are linked together and communicate across global networks; laying the foundations for the Internet of Neuro-electronics. On the other hand, it brings new prospects to neuroprosthetic technologies, paving the way towards research into replacing dysfunctional parts of the brain with AI [artificial intelligence] chips.”

I’m fascinated by this work and after taking a look at the paper, I have to say, the paper is surprisingly accessible. In other words, I think I get the general picture. For example (from the Introduction to the paper; citation and link follow further down),

… To emulate plasticity, the memristor MR1 is operated as a two-terminal device through a control system that receives pre- and post-synaptic depolarisations from one silicon neuron (ANpre) and one biological neuron (BN), respectively. …

If I understand this properly, they’ve integrated a biological neuron and an artificial neuron in a single system across three countries.

For those who care to venture forth, here’s a link and a citation for the paper,

Memristive synapses connect brain and silicon spiking neurons by Alexantrou Serb, Andrea Corna, Richard George, Ali Khiat, Federico Rocchi, Marco Reato, Marta Maschietto, Christian Mayr, Giacomo Indiveri, Stefano Vassanelli & Themistoklis Prodromakis. Scientific Reports volume 10, Article number: 2590 (2020) DOI: https://doi.org/10.1038/s41598-020-58831-9 Published 25 February 2020

The paper is open access.

The memristor as the ‘missing link’ in bioelectronic medicine?

The last time I featured memrisors and a neuronal network it was in an April 22, 2016 posting about Russian research in that field. This latest work comes from the UK’s University of Southampton. From a Sept. 27, 2016 news item on phys.org,

New research, led by the University of Southampton, has demonstrated that a nanoscale device, called a memristor, could be the ‘missing link’ in the development of implants that use electrical signals from the brain to help treat medical conditions.

Monitoring neuronal cell activity is fundamental to neuroscience and the development of neuroprosthetics – biomedically engineered devices that are driven by neural activity. However, a persistent problem is the device being able to process the neural data in real-time, which imposes restrictive requirements on bandwidth, energy and computation capacity.

In a new study, published in Nature Communications, the researchers showed that memristors could provide real-time processing of neuronal signals (spiking events) leading to efficient data compression and the potential to develop more precise and affordable neuroprosthetics and bioelectronic medicines.

A Sept. 27, 2016 University of Southampton press release, which originated the news item, expands on the theme,

Memristors are electrical components that limit or regulate the flow of electrical current in a circuit and can remember the amount of charge that was flowing through it and retain the data, even when the power is turned off.

Lead author Isha Gupta, Postgraduate Research Student at the University of Southampton, said: “Our work can significantly contribute towards further enhancing the understanding of neuroscience, developing neuroprosthetics and bio-electronic medicines by building tools essential for interpreting the big data in a more effective way.”

The research team developed a nanoscale Memristive Integrating Sensor (MIS) into which they fed a series of voltage-time samples, which replicated neuronal electrical activity.

Acting like synapses in the brain, the metal-oxide MIS was able to encode and compress (up to 200 times) neuronal spiking activity recorded by multi-electrode arrays. Besides addressing the bandwidth constraints, this approach was also very power efficient – the power needed per recording channel was up to 100 times less when compared to current best practice.

Co-author Dr Themis Prodromakis, Reader in Nanoelectronics and EPSRC Fellow in Electronics and Computer Science at the University of Southampton said: “We are thrilled that we succeeded in demonstrating that these emerging nanoscale devices, despite being rather simple in architecture, possess ultra-rich dynamics that can be harnessed beyond the obvious memory applications to address the fundamental constraints in bandwidth and power that currently prohibit scaling neural interfaces beyond 1,000 recording channels.”

The Prodromakis Group at the University of Southampton is acknowledged as world-leading in this field, collaborating among others with Leon Chua (a Diamond Jubilee Visiting Academic at the University of Southampton), who theoretically predicted the existence of memristors in 1971.

Here’s a link to and a citation for the paper,

Real-time encoding and compression of neuronal spikes by metal-oxide memristors by Isha Gupta, Alexantrou Serb, Ali Khiat, Ralf Zeitler, Stefano Vassanelli, & Themistoklis Prodromakis. Nature Communications 7, Article number: 12805 doi:10.1038/ncomms12805 Published  26 September 2016

This is an open access paper.

For anyone who’s interested in better understanding memristors, there’s an interview with Forrest H Bennett III in my April 7, 2010 posting and you can always check Wikipedia.

5D data storage is forever

Combine nanostructured glass and femtosecond laser writing with five-dimensional digital data and you can wave goodbye to any anxieties about losing information. Researchers at Southampton University (UK) made the announcement in a Feb. 15, 2016 news item on ScienceDaily,

Scientists at the University of Southampton have made a major step forward in the development of digital data storage that is capable of surviving for billions of years.

Using nanostructured glass, scientists from the University’s Optoelectronics Research Centre (ORC) have developed the recording and retrieval processes of five dimensional (5D) digital data by femtosecond laser writing.

A Feb. 15, 2016 University of Southampton press release (also on EurekAlert), which originated the news item, offers more detail,

The storage allows unprecedented properties including 360 TB [Terabyte]/disc data capacity, thermal stability up to 1,000°C and virtually unlimited lifetime at room temperature (13.8 billion years at 190°C ) opening a new era of eternal data archiving. As a very stable and safe form of portable memory, the technology could be highly useful for organisations with big archives, such as national archives, museums and libraries, to preserve their information and records.

The technology was first experimentally demonstrated in 2013 when a 300 kb [kilobit] digital copy of a text file was successfully recorded in 5D.

Now, major documents from human history such as [the] Universal Declaration of Human Rights (UDHR), Newton’s Opticks, Magna Carta and Kings [sic] James Bible, have been saved as digital copies that could survive the human race. A copy of the UDHR encoded to 5D data storage was recently presented to UNESCO by the ORC at the International Year of Light (IYL) closing ceremony in Mexico.

The documents were recorded using ultrafast laser, producing extremely short and intense pulses of light. The file is written in three layers of nanostructured dots separated by five micrometres (one millionth of a metre).

The self-assembled nanostructures change the way light travels through glass, modifying polarisation of light that can then be read by combination of optical microscope and a polariser, similar to that found in Polaroid sunglasses.

Coined as the ‘Superman memory crystal’, as the glass memory has been compared to the “memory crystals” used in the Superman films, the data is recorded via self-assembled nanostructures created in fused quartz. The information encoding is realised in five dimensions: the size and orientation in addition to the three dimensional position of these nanostructures.

Professor Peter Kazansky, from the ORC, says: “It is thrilling to think that we have created the technology to preserve documents and information and store it in space for future generations. This technology can secure the last evidence of our civilisation: all we’ve learnt will not be forgotten.”

The researchers will present their research at the photonics industry’s renowned SPIE—The International Society for Optical Engineering Conference in San Francisco, USA this week. The invited paper, ‘5D Data Storage by Ultrafast Laser Writing in Glass’ will be presented on Wednesday 17 February [2016].

The team are now looking for industry partners to further develop and commercialise this ground-breaking new technology.

I have written a number of pieces about digitization, data storage, and memory such as this Jan. 30, 2014 post titled, Does digitizing material mean it’s safe? A tale of Canada’s Fisheries and Oceans scientific libraries. If you scroll down about 50% of the way, you’ll find some material that provides an overview.

Universal Declaration of Human Rights recorded into 5D optical data

Universal Declaration of Human Rights recorded into 5D optical data

 

Lloyd’s Register and nanotechnology-enabled safety on the high seas, on land, and in the air

On seeing the name Lloyd’s Register and noting the funding is for a university in the UK, Lloyd’s of London, the venerable insurance company leaped to mind. Although there is a connection of sorts, it is somewhat attenuated. First, here’s the news from a Sept. 4, 2015 news item on Azonano,

The University of Southampton has been awarded a multi-million grant from Lloyd’s Register Foundation to bring together some of the world’s brightest early career researchers to find new ways of using nanotechnologies to improve safety at sea, on land and in the air.

A Sept. 3, 2015 University of Southampton press release, which originated the news item, describes plans for the funding,

Dr Themis Prodromakis, from the Nanoelectronics and Nanotechnologies Group at Southampton, is leading the £3m programme, which will receive match funding from partner organisations. He says: “Researchers are always looking for funding for high risk, high reward ideas. They want to collaborate with the best scientists and engineers in the world and gain access to state-of-art facilities. The Lloyd’s Register Foundation International COnsortium in Nanotechnologies (ICON) [Note: This is not to be confused with the now defunct {since Sept. 2014} International Council on Nanotechnology {ICON} at Rice University in Texas, US] will assemble the world’s leading universities, research institutions and innovative companies to help them tackle many of today’s most challenging issues by recruiting talented PhD students from every continent.”

Applications will soon be invited from scientists and engineers keen to pioneer research across a range of industries. Nanotechnologies are already widely used, for example in smart phones, cameras and gadgets. Breakthroughs already being developed include cars, boats and planes built from lightweight materials stronger than steel with new functions such as self-cleaning and repairing; flexible textiles that can become rigid and shockproof to protect the wearer; sensors in hostile environments such as the deep ocean and space; tiny implants for real-time monitoring to aid diagnoses for doctors; and smart devices that harvest energy from their environment.

ICON will support more than 50 PhD students to undertake research at leading global universities, aided by matched funding. They will work together with partners from industry on interdisciplinary projects and access world-leading facilities, such as the £120m Southampton Nanofabrication Centre. The doctoral researchers will meet every year to present their findings and share ideas and concepts, becoming part of a global doctoral cohort addressing the Foundation’s safety mission.

Professor Richard Clegg, Managing Director of Lloyd’s Register Foundation, said: “We are pleased to support the University of Southampton in developing this global cohort of scientists. Their research will develop applications to further the Foundation’s safety goals whilst also providing training and building technical capacity in support of our educational mission. The doctoral students joining this consortium will gain an understanding of how their research can benefit society whilst developing international research networks at an early stage in their careers.”

“The support of Lloyd’s Register Foundation is key to our mission,” adds Dr Prodromakis. “Lloyd’s Register itself is well-known for promoting safety worldwide for more than 250 years. Its Global Technology Centre is now based in Southampton and its Foundation has become a catalyst to support research, training and education for the benefit of society. We are delighted to work alongside them.”

As for the connection between Lloyd’s Register and Lloyd’s of London, let’s start with the Lloyd’s Register Wikipedia entry (Note: Links have been removed),

The organisation’s name came from the 17th-century coffee house in London [emphasis mine] frequented by merchants, marine underwriters, and others, all associated with shipping. The coffee house owner, Edward Lloyd [emphasis mine], helped them to exchange information by circulating a printed sheet of all the news he heard. In 1760, the Register Society was formed by the customers of the coffee house who assembled the Register of Shipping, the first known register of its type. Between 1800 and 1833, a dispute between shipowners and underwriters caused them to publish a list each—the “Red Book” and the “Green Book”.[3] This brought both parties to the verge of bankruptcy. Agreement was reached in 1834 when they united to form Lloyd’s Register of British and Foreign Shipping, establishing a General Committee and charitable values. In 1914, with an increasingly international outlook, the organisation changed its name to Lloyd’s Register of Shipping.

Now here’s what Lloyd’s of London has to say on its History webpage,

In the 17th century, London’s importance as a trade centre led to an increasing demand for ship and cargo insurance. Edward Lloyd’s coffee house [emphasis mine] became recognised as the place for obtaining marine insurance and this is where the Lloyd’s that we know today began.

From those beginnings in a coffee house in 1688, Lloyd’s has been a pioneer in insurance and has grown over 325 years to become the world’s leading market for specialist insurance

Today, Lloyd’s Register describes itself this way (from the Lloyd’s Register homepage),

Lloyd’s Register (LR) is a global engineering, technical and business services organisation wholly owned by the Lloyd’s Register Foundation, a UK charity dedicated to research and education in science and engineering. Founded in 1760 as a marine classification society, LR now operates across many industry sectors, with over 9,000 employees based in 78 countries.

We have a long-standing reputation for integrity, impartiality and technical excellence. Our compliance, risk and technical consultancy services give clients confidence that their assets and businesses are safe, sustainable and dependable. Through our global technology centres and research network, we are at the forefront of understanding the application of new science and technology to future-proof our clients’ businesses.

Well, future-proofing sounds good doesn’t it? It seems like a way of saying you might be able to ‘insure’ yourself against future turmoil.

Brain-like computing with optical fibres

Researchers from Singapore and the United Kingdom are exploring an optical fibre approach to brain-like computing (aka neuromorphic computing) as opposed to approaches featuring a memristor or other devices such as a nanoionic device that I’ve written about previously. A March 10, 2015 news item on Nanowerk describes this new approach,

Computers that function like the human brain could soon become a reality thanks to new research using optical fibres made of speciality glass.

Researchers from the Optoelectronics Research Centre (ORC) at the University of Southampton, UK, and Centre for Disruptive Photonic Technologies (CDPT) at the Nanyang Technological University (NTU), Singapore, have demonstrated how neural networks and synapses in the brain can be reproduced, with optical pulses as information carriers, using special fibres made from glasses that are sensitive to light, known as chalcogenides.

“The project, funded under Singapore’s Agency for Science, Technology and Research (A*STAR) Advanced Optics in Engineering programme, was conducted within The Photonics Institute (TPI), a recently established dual institute between NTU and the ORC.”

A March 10, 2015 University of Southampton press release (also on EurekAlert), which originated the news item, describes the nature of the problem that the scientists are trying address (Note: A link has been removed),

Co-author Professor Dan Hewak from the ORC, says: “Since the dawn of the computer age, scientists have sought ways to mimic the behaviour of the human brain, replacing neurons and our nervous system with electronic switches and memory. Now instead of electrons, light and optical fibres also show promise in achieving a brain-like computer. The cognitive functionality of central neurons underlies the adaptable nature and information processing capability of our brains.”

In the last decade, neuromorphic computing research has advanced software and electronic hardware that mimic brain functions and signal protocols, aimed at improving the efficiency and adaptability of conventional computers.

However, compared to our biological systems, today’s computers are more than a million times less efficient. Simulating five seconds of brain activity takes 500 seconds and needs 1.4 MW of power, compared to the small number of calories burned by the human brain.

Using conventional fibre drawing techniques, microfibers can be produced from chalcogenide (glasses based on sulphur) that possess a variety of broadband photoinduced effects, which allow the fibres to be switched on and off. This optical switching or light switching light, can be exploited for a variety of next generation computing applications capable of processing vast amounts of data in a much more energy-efficient manner.

Co-author Dr Behrad Gholipour explains: “By going back to biological systems for inspiration and using mass-manufacturable photonic platforms, such as chalcogenide fibres, we can start to improve the speed and efficiency of conventional computing architectures, while introducing adaptability and learning into the next generation of devices.”

By exploiting the material properties of the chalcogenides fibres, the team led by Professor Cesare Soci at NTU have demonstrated a range of optical equivalents of brain functions. These include holding a neural resting state and simulating the changes in electrical activity in a nerve cell as it is stimulated. In the proposed optical version of this brain function, the changing properties of the glass act as the varying electrical activity in a nerve cell, and light provides the stimulus to change these properties. This enables switching of a light signal, which is the equivalent to a nerve cell firing.

The research paves the way for scalable brain-like computing systems that enable ‘photonic neurons’ with ultrafast signal transmission speeds, higher bandwidth and lower power consumption than their biological and electronic counterparts.

Professor Cesare Soci said: “This work implies that ‘cognitive’ photonic devices and networks can be effectively used to develop non-Boolean computing and decision-making paradigms that mimic brain functionalities and signal protocols, to overcome bandwidth and power bottlenecks of traditional data processing.”

Here’s a link to and a citation for the paper,

Amorphous Metal-Sulphide Microfibers Enable Photonic Synapses for Brain-Like Computing by Behrad Gholipour, Paul Bastock, Chris Craig, Khouler Khan, Dan Hewak. and Cesare Soci. Advanced Optical Materials DOI: 10.1002/adom.201400472
Article first published online: 15 JAN 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

For anyone interested in memristors and nanoionic devices, here are a few posts (from this blog) to get you started:

Memristors, memcapacitors, and meminductors for faster computers (June 30, 2014)

This second one offers more details and links to previous pieces,

Memristor, memristor! What is happening? News from the University of Michigan and HP Laboratories (June 25, 2014)

This post is more of a survey including memristors, nanoionic devices, ‘brain jelly, and more,

Brain-on-a-chip 2014 survey/overview (April 7, 2014)

One comment, this brain-on-a-chip is not to be confused with ‘organs-on-a-chip’ projects which are attempting to simulate human organs (Including the brain) so chemicals and drugs can be tested.

Feathered flight and nanoscale research

Today (Oct. 24, 2014) is a day for flight as I posted this earlier, NASA, super-black nanotechnology, and an International Space Station livestreamed event. With that in mind, here’s an Oct. 23, 2014 news item on Nanowerk about feathers,

Scientists from the University of Southampton [UK] have revealed that feather shafts are made of a multi-layered fibrous composite material, much like carbon fibre, which allows the feather to bend and twist to cope with the stresses of flight.

Since their appearance over 150 million years ago, feather shafts (rachises) have evolved to be some of the lightest, strongest and most fatigue resistant natural structures. However, relatively little work has been done on their morphology, especially from a mechanical perspective and never at the nanoscale.

An Oct. 22, 2014 University of Southampton news release, which originated the news item, describes the study, which may have paleontological implications, in more detail,

The study, which is published by the Royal Society in the journal Interface, is the first to use nano-indentation, a materials testing technique, on feathers. It reveals the number, proportion and relative orientation of rachis layers is not fixed, as previously thought, and varies according to flight style.

Christian Laurent, from Ocean and Earth Science at the University of Southampton, lead author of the study, says: “We started looking at the shape of the rachis and how it changes along the length of it to accommodate different stresses. Then we realised that we had no idea how elastic it was, so we indented some sample feathers.

“Previously, the only mechanical work on feathers was done in the 1970s but under the assumption that the material properties of feathers are the same when tested in different directions, known as isotropic – our work has now invalidated this.”

The researchers tested the material properties of feathers from three birds of different species with markedly different flight styles; the Mute Swan (Cygnus olor), the Bald Eagle (Haliaeetus leucocephalus) and the partridge (Perdix perdix).

Christian, who led the study as part of his research degree (MRes) in Vertebrate Palaeontology, adds: “Our results indicate that the number, and the relative thickness, of layers around the circumference of the rachis and along the feather’s length are not fixed, and may vary either in order to cope with the stresses of flight particular to the bird or to the lineage that the individual belongs to.”

The researchers soon hope to fully model feather functions and link morphological aspects to particular flight styles and lineages, which has several palaeontogical implications and engineering applications.

Christian says: “We hope to be able to scan fossil feathers and finally answer a number of questions – What flew first? Did flight start from the trees down, or from the ground up? Could Archaeopteryx fly? Was Archaeopteryx the first flying bird?

“In terms of engineering, we hope to apply our future findings in materials science to yacht masts and propeller blades, and to apply the aeronautical findings to build better micro air vehicles in a collaboration [with] engineers at the University.”

Here’s a link to and a citation for the paper,

Nanomechanical properties of bird feather rachises: exploring naturally occurring fibre reinforced laminar composites by Christian M. Laurent, Colin Palmer, Richard P. Boardman, Gareth Dyke, and Richard B. Cook. J. R. Soc. [Journal of the Royal Society] Interface 6 December 2014 vol. 11 no. 101 20140961 doi: 10.1098/​rsif.2014.0961  Published 22 October 2014

This is an open access paper.