Tag Archives: University of Sydney

Nanoscale elements that govern the behaviour of our teeth

Are we going to be adopting atomically correct dental hygiene practices in the future? It’s certainly a possibility given the latest Australian research announced in a Sept. 7, 2016 news item on Nanowerk (Note: A link has been removed),

With one in two Australian children reported to have tooth decay in their permanent teeth by age 12, researchers from the University of Sydney believe they have identified some nanoscale elements that govern the behaviour of our teeth.

Material and structures engineers worked with dentists and bioengineers to map the exact composition and structure of tooth enamel at the atomic scale.

Using a relatively new microscopy technique called atom probe tomography, their work produced the first-ever three-dimensional maps showing the positions of atoms critical in the decay process.

The new knowledge on atom composition at the nanolevel has the potential to aid oral health hygiene and caries prevention, and has been published today in the journal Science Advances(“Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel”).

A Sept. 8, 2016 University of Sydney press release, which originated the news item, expands on the theme (Note: A link has been removed),

Professor Julie Cairney, Material and Structures Engineer in the Faculty of Engineering and Information Technologies, said:

“The dental professionals have known that certain trace ions are important in the tough structure of tooth enamel but until now it had been impossible to map the ions in detail.

“The structure of human tooth enamel is extremely intricate and while we have known that magnesium, carbonate and fluoride ions influence enamel properties scientists have never been able to capture its structure at a high enough resolution or definition.”

“What we have found are the magnesium-rich regions between the hydroxyapatite nanorods that make up the enamel.”

“This means we have the first direct evidence of the existence of a proposed amorphous magnesium-rich calcium phosphate phase that plays an essential role in governing the behaviour of teeth. “

Co-lead researcher on the study, Dr Alexandre La Fontaine from the University’s Australian Centre for Microscopy and Microanalysis, said:

“We were also able to see nanoscale ‘clumps’ of organic material, which indicates that proteins and peptides are heterogeneously distributed within the enamel rather than present along all the nanorod interfaces, which was what was previously suggested.

“The mapping has the potential for new treatments designed around protecting against the dissolution of this specific amorphous phase.

“The new understanding of how enamel forms will also help in tooth remineralisation research.”

Here’s a link to and a citation for the paper,

Atomic-scale compositional mapping reveals Mg-rich amorphous calcium phosphate in human dental enamel by Alexandre La Fontaine, Alexander Zavgorodniy, Howgwei Liu, Rongkun Zheng, Michael Swain, and Julie Cairney. Science Advances  07 Sep 2016: Vol. 2, no. 9, e1601145 DOI: 10.1126/sciadv.1601145

This paper is open access.

Crowd computing for improved nanotechnology-enabled water filtration

This research is the product of a China/Israel/Switzerland collaboration on water filtration with involvement from the UK and Australia. Here’s some general information about the importance of water and about the collaboration in a July 5, 2015 news item on Nanowerk (Note: A link has been removed),

Nearly 800 million people worldwide don’t have access to safe drinking water, and some 2.5 billion people live in precariously unsanitary conditions, according to the Centers for Disease Control and Prevention. Together, unsafe drinking water and the inadequate supply of water for hygiene purposes contribute to almost 90% of all deaths from diarrheal diseases — and effective water sanitation interventions are still challenging scientists and engineers.

A new study published in Nature Nanotechnology (“Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction”) proposes a novel nanotechnology-based strategy to improve water filtration. The research project involves the minute vibrations of carbon nanotubes called “phonons,” which greatly enhance the diffusion of water through sanitation filters. The project was the joint effort of a Tsinghua University-Tel Aviv University research team and was led by Prof. Quanshui Zheng of the Tsinghua Center for Nano and Micro Mechanics and Prof. Michael Urbakh of the TAU School of Chemistry, both of the TAU-Tsinghua XIN Center, in collaboration with Prof. Francois Grey of the University of Geneva.

A July 5, 2015 American Friends of Tel Aviv University news release (also on EurekAlert), which originated the news item, provides more details about the work,

“We’ve discovered that very small vibrations help materials, whether wet or dry, slide more smoothly past each other,” said Prof. Urbakh. “Through phonon oscillations — vibrations of water-carrying nanotubes — water transport can be enhanced, and sanitation and desalination improved. Water filtration systems require a lot of energy due to friction at the nano-level. With these oscillations, however, we witnessed three times the efficiency of water transport, and, of course, a great deal of energy saved.”

The research team managed to demonstrate how, under the right conditions, such vibrations produce a 300% improvement in the rate of water diffusion by using computers to simulate the flow of water molecules flowing through nanotubes. The results have important implications for desalination processes and energy conservation, e.g. improving the energy efficiency for desalination using reverse osmosis membranes with pores at the nanoscale level, or energy conservation, e.g. membranes with boron nitride nanotubes.

Crowdsourcing the solution

The project, initiated by IBM’s World Community Grid, was an experiment in crowdsourced computing — carried out by over 150,000 volunteers who contributed their own computing power to the research.

“Our project won the privilege of using IBM’s world community grid, an open platform of users from all around the world, to run our program and obtain precise results,” said Prof. Urbakh. “This was the first project of this kind in Israel, and we could never have managed with just four students in the lab. We would have required the equivalent of nearly 40,000 years of processing power on a single computer. Instead we had the benefit of some 150,000 computing volunteers from all around the world, who downloaded and ran the project on their laptops and desktop computers.

“Crowdsourced computing is playing an increasingly major role in scientific breakthroughs,” Prof. Urbakh continued. “As our research shows, the range of questions that can benefit from public participation is growing all the time.”

The computer simulations were designed by Ming Ma, who graduated from Tsinghua University and is doing his postdoctoral research in Prof. Urbakh’s group at TAU. Ming catalyzed the international collaboration. “The students from Tsinghua are remarkable. The project represents the very positive cooperation between the two universities, which is taking place at XIN and because of XIN,” said Prof. Urbakh.

Other partners in this international project include researchers at the London Centre for Nanotechnology of University College London; the University of Geneva; the University of Sydney and Monash University in Australia; and the Xi’an Jiaotong University in China. The researchers are currently in discussions with companies interested in harnessing the oscillation knowhow for various commercial projects.

 

Here’s a link to and a citation for the paper,

Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction by Ming Ma, François Grey, Luming Shen, Michael Urbakh, Shuai Wu,    Jefferson Zhe Liu, Yilun Liu, & Quanshui Zheng. Nature Nanotechnology (2015) doi:10.1038/nnano.2015.134 Published online 06 July 2015

This paper is behind a paywall.

Final comment, I find it surprising that they used labour and computing power from 150,000 volunteers and didn’t offer open access to the paper. Perhaps the volunteers got their own copy? I certainly hope so.

Nanotechnology risk perceptions in 2015 from Australia

I haven’t stumbled across a study on the perceptions of risk and nanotechnology in quite a while.  Before commenting on this latest research from the University of Sydney, here’s a link to and a citation for this new Australian study, which is an open access paper,

Perceptions of risk from nanotechnologies and trust in stakeholders: a cross sectional study of public, academic, government and business attitudes by Adam Capon, James Gillespie, Margaret Rolfe, and Wayne Smith. BMC Public Health 2015, 15:424 Published April 26, 2015  DOI: 10.1186/s12889-015-1795-1

According to the authors, this is the first study that surveyed the general public, academics, government officials, and business people with an eye to distinguishing any differences that might exist in their attitudes,

Our study proposes to extend and develop the knowledge base regarding perceptions of risk from nanotechnology and trust by stakeholders. To do this we use a standardised questionnaire across all the stakeholders surveyed. Secondly we examine stakeholder groups beyond highly published scientists and people attending nano conferences/working in nano laboratories that had previously been surveyed to include academic, government and business stakeholders. These three groups were chosen not just for their expertise, but because they represent the interplay of stakeholders most likely to shape policy in this field. Thirdly we seek and report on views of general risk perception (to health) and for specific products (food, cosmetics and sunscreens, medicines, pesticides, tennis racquets and computers) which broadly represent Australian regulatory arms [22]. Finally we explore several trust actors (health department, scientists, journalists and politicians), all of who have the ability to shape policy.

Our study aims to test six hypotheses. First, very little targeted research has been undertaken on differing stakeholder views of risks from nanotechnology. To explore this we hypothesise that public perceptions of risks from nanotechnology will be greater than those held by ‘experts’. Second, existing studies suggest that food and health applications of nanotechnology are likely to arouse more controversy [23]. We will test the hypothesis that the public, academics, government and business respondents will all perceive a higher level of risk in nanotechnologies that penetrate or have close and prolonged contact with the body. Three, there is inconsistent evidence that increased familiarity with nanotechnology is associated with differing perceptions of nanotechnologies [24]. Our third hypothesis proposes that public self-reported familiarity with nanotechnology will be associated with a reduction in risk perception. This relationship will be found with each of the nano products in the study. Four, the public holds less trust in the government agencies with responsibility for regulating nanotechnology than that expressed by people working in nanotechnology based industries/researching nanotechnology [23]. Our fourth hypothesis tests the evidence for this proposition. We hypothesise that the trust the public vests in scientists, the health department, journalists and politicians will be less than those held by business, academic, and government respondents who have an interest in nanotechnology.

The last two hypotheses expand on hypothesis four, examining the trust of the public in greater detail. Studies have shown that the Australian public are more likely to trust scientists and scientific institutions, followed by government agencies with industry and mass media holding the least amount of trust [25],[26]. In our fifth hypothesis we test the proposition that the public will have greatest trust in scientists, followed by the health department with trust in journalists and politicians below these two. Finally, public trust in business leaders [27], science and consumer protection agencies [28] and government agencies [29] have all been associated with decreased nano risk perception. Examining other stakeholders, the greater trust that people working in nanotechnology based industries or researching nanotechnology had with scientists and government agencies, the less they perceived risk from nanotechnology [23],[30]. Our sixth hypothesis is that significant negative associations exist between the trust the public vest in scientists, health department, journalists and politicians and perceived risk of nanotechnology, both when this risk is considered to health and across all risk applications. Understanding this relationship between trust and risk perception is an important avenue for risk communication and education.

As interesting as I find methodology I’m going to skip most of it and focus on the sample size and demographics,

The surveys consisted of 1355 public, 301 academic, 19 government and 21 business responses. Gender representation of the weighted public survey population was comparable to the June 2012 Australian population estimates of approximately 50% male and female. Gender representationa for academic and business responses was more likely to be male (≈70%) while the gender of government respondents was almost evenly balanced.

Three hundred and ninety eight public respondents (30%) were categorised as having no familiarity with nanotechnology, while 528 (39%) were categorised as having some familiarity and 422 (31%) as having moderate familiarity with nanotechnology.

Amongst the academic responses, the best represented area of research (38%) was in the field of nanomaterials. Nanocharacterisation, nanofabrication, nanobiotechnology/nanomedicine, nanoscale theory/computation, nanophotonics, and nanoelectronics/nanomagnetics represented between 15% to 4% per discipline in descending order. The least represented discipline was translational nanoresearch (2%), of which half were involved in nanotoxicology and the other either in ethical or social research on risk/public attitudes/public impact or did not provide a sub specialisation. Of the business responses the greatest percentage of business involvement was in nanomaterial manufacture, importation or research (33% – 23%). Importation of products containing nanomaterials, waste collection/processing and legal issues had little representation. The highest representation of government respondents was health and safety (37%) followed by communication/social impact (26%), business development (16%) and environment (11%).

The analysis of the results is well worth reading,

The Australian public perceives greater risks from manufactured nanomaterials and shows less trust in scientists and the health department to provide protection from possible health effects than academic, business and government stakeholders in the nanotechnology sector. Food applications and cosmetics/sunscreens loom high on the list of public concerns, although medicines and pesticides are also causes of public concern. Policy makers should be aware of these risk and trust disparities and address public sentiment by treating nanotechnology applications in the higher risk areas with greater caution. Risk communication is best placed in the hands of trusted scientists.

I am a little surprised that no mention was made of the nanosunscreen situation of 2012 where a research study found that 13% (originally reported as 17%) of Australians surveyed said they didn’t use any sunscreens due to fear of nanoparticles. I have the story in my Feb. 9, 2012 posting. Be sure to read through to the end as there were a couple of updates.

A rose by any other name: water pinning nanostructures and wettability

There are two items about rose petals as bioinspiration for research in this posting. The first being the most recent research where scientists in Singapore have made an ultrathin film modeled on rose petals. From an Aug. 13, 2014 news item on Nanowerk (Note: A link has been removed),

A*STAR [based in Singapore] researchers have used nanoimprinting methods to make patterned polymeric films with surface topography inspired by that of a rose petal, producing a range of transparent films with high water pinning forces (“Bioinspired Ultrahigh Water Pinning Nanostructures”).

An Aug. 13, 2014 A*STAR news highlight, which originated the news item, describes the nature of the research,

A surface to which a water droplet adheres, even when it is turned upside down, is described as having strong water pinning characteristics. A rose petal and a lotus leaf are both superhydrophobic, yet dissimilarities in their water pinning properties cause a water droplet to stick to a rose petal but roll off a lotus leaf. The two leaf types differ in their micro- and nanoscale surface topography and it is these topographical details that alter the water pinning force. The rose petal has almost uniformly distributed, conical-shaped microscale protrusions with nanoscale folds on these protrusions, while the lotus leaf has randomly distributed microscale protrusions.

The imprinted surfaces developed by Jaslyn Law and colleagues at the A*STAR Institute of Materials Research and Engineering and the Singapore University of Technology and Design have uniformly distributed patterns of nanoscale protrusions that are either conical or parabolic in shape. The researchers found that the water pinning forces on these continuously patterned surfaces were much greater than on non-patterned surfaces and surfaces composed of isolated nanopillared structures or nanoscale gratings. They could then achieve high water pinning forces by patterning the nanoprotrusions onto polymeric films with a range of different non-patterned hydrophobicities, including polycarbonate, poly(methyl methacrylate) and polydimethylsiloxane (see image).

“Other methods that recreate the water pinning effect have used actual rose petals as the mold, but unless special care is taken, there are likely to be defects and inconsistencies in the recreated pattern,” says co-author Andrew Ng. “While bottom-up approaches for making patterns — for example, laser ablation, liquid flame spray or chemical vapor deposition — are more consistent, these methods are limited in the types of patterns that can be used and the scale at which a substrate can be patterned.”

In contrast, nanoimprinting methods are capable of fabricating versatile and large-scale surfaces, and can be combined with roll-to-roll techniques, hence potentially enabling more commercial applications.

The patterned polycarbonate surfaces were also shown to reduce the ‘coffee-ring’ effect: the unevenly deposited film left behind upon the evaporation of a solute-laden droplet. This mitigation of the coffee-ring effect may assist microfluidic technologies and, more generally, the patterned surfaces could be used in arid regions for dew collection or in anti-drip applications such as in greenhouses.

The study which was published online in Dec. 2013, was featured in a Jan. 22, 2014 article by Katherine Bourzac for C&EN (Chemistry and Engineering News),

In the early morning, dew clings to rose petals; when the sun rises, the dewdrops act like tiny lenses, making diffraction patterns that attract pollinating insects, says Jaslyn Bee Khuan Law, a materials scientist at the Agency for Science, Technology, and Research (A*STAR), in Singapore. A drop of water will cling to a rose petal even when it’s tilted or held upside down. The petals can hold onto these droplets because their surfaces consist of closely packed conical structures a few micrometers across. These microscale surface patterns tweak the surface tension of the water droplets, causing them to cling to the petals.

But none of these fabrication methods are amenable to large-scale, low-cost manufacturing, preventing commercialization of the water-clinging surfaces. So Law turned to a specialty of her lab: nanoimprint lithography. This printing method utilizes metal or silicon drums molded with nanoscale features on their surfaces. When the molds are heated and pressed against sheets of plastic, the plastic is embossed with the nanoscale pattern. This roll-to-roll printing process resembles the way newspapers are printed. It’s capable of producing large-area films in a short amount of time.

Water droplets easily slid off plastic films patterned with simple nanoscale gratings; isolated nanoscale pillars hung onto water slightly better. But the films with the best properties consisted of tightly packed cones about 300 nm tall. Plastic patterned with these structures could hold onto water droplets as massive as 69 mg. The team could print a 110- by 65-mm sheet of this plastic film at a speed of 10 m per minute. Currently, the dimensions of the films are limited by the size of the premade molds, Law says.

While the Singapore group has made good progress on manufacturing these materials, very basic, vexing questions about how water clings to these surfaces remain, Hayes says. For example, very small changes in the surface’s roughness can switch it from water-pinning to super hydrophobic, and researchers don’t have a detailed understanding of why.

Here’s a link to and a citation for the paper,

Bioinspired Ultrahigh Water Pinning Nanostructures by Jaslyn Bee Khuan Law, Andrew Ming Hua Ng, Ai Yu He, and Hong Yee Low. Langmuir, 2014, 30 (1), pp 325–331 DOI: 10.1021/la4034996 Publication Date (Web): December 20, 2013
Copyright © 2013 American Chemical Society

This paper appears to be open access (I was able to access it by clicking on the HTML option).

Finally, here’s an image supplied by the A*Star researchers to illustrate their work,

[downloaded from http://pubs.acs.org/doi/full/10.1021/la4034996]

[downloaded from http://pubs.acs.org/doi/full/10.1021/la4034996]

This second rose petal item comes from Australia and dates from Fall 2013. From a Sept. 18, 2013 news item on ScienceDaily,

A new nanostructured material with applications that could include reducing condensation in airplane cabins and enabling certain medical tests without the need for high tech laboratories has been developed by researchers at the University of Sydney [Australia].

“The newly discovered material uses raspberry particles — so-called because of their appearance — which can trap tiny water droplets and prevent them from rolling off surfaces, even when that surface is turned upside down,” said Dr Andrew Telford from the University’s School of Chemistry and lead author of the research recently published in the journal, Chemistry of Materials.

The ability to immobilise [pin] very small droplets on a surface is, according to Dr Telford, a significant achievement with innumerable potential applications.

A Sept. 17, 2013 University of Sydney news release, which originated the news item, provides more insight into the research where the scientists have focused on ‘raspberry particles’ which could also be described as the ‘conical structures’ mentioned in the A*STAR work to achieve what appear to be similar ends,

Raspberry particles mimic the surface structure of some rose petals.

“Water droplets bead up in a spherical shape on top of rose petals,” Dr Telford said. “This is a sign the flower is highly water repellent.”

The reasons for this are complex and largely due to the special structure of the rose petal’s surface. The research team replicated the rose petal by assembling raspberry particles in the lab using spherical micro- and nanoparticles.

The result is that water droplets bead up when placed on films of the raspberry particles and they’re not able to drip down from it, even when turned upside down.

“Raspberry particle films can be described as sticky tape for water droplets,” Dr Telford said.

This could be useful in preventing condensation issues in airplane cabins. It could also help rapidly process simple medical tests on free-standing droplets, with the potential for very high turnover of tests with inexpensive equipment and in remote areas.

Other exciting applications are under study: if we use this nanotechnology to control how a surface is structured we can influence how it will interact with water.

“This means we will be able to design a surface that does whatever you need it to do.

“We could also design a surface that stays dry forever, never needs cleaning or able to repel bacteria or even prevent mould and fungi growth.

“We could then tweak the same structure by changing its composition so it forces water to spread very quickly.

“This could be used on quick-dry walls and roofs which would also help to cool down houses.

“This can only be achieved with a very clear understanding of the science behind the chemical properties and construction of the surface,” he said.

The discovery is also potentially viable commercially.

“Our team’s discovery is the first that allows for the preparation of raspberry particles on an industrial scale and we are now in a position where we can prepare large quantities of these particles without the need to build special plants or equipment,” Dr Telford said.

Here’s a link to and a citation for the Australian paper,

Mimicking the Wettability of the Rose Petal using Self-assembly of Waterborne Polymer Particles by A. M. Telford, B. S. Hawkett, C. Such, and C. Neto. Chem. Mater., 2013, 25 (17), pp 3472–3479 DOI: 10.1021/cm4016386 Publication Date (Web): July 23, 2013
Copyright © 2013 American Chemical Society

This paper is behind a paywall.