Tag Archives: University of Tampere

Adopting robots into a health care system, Finnish style

The Finns have been studying the implementation of a logistics robotic system in a hospital setting according to an August 30, 2017 news item on phys.org,

VTT Technical Research Centre of Finland studied the implementation of a logistics robot system at the Seinäjoki Central Hospital in South Ostrobothnia. The aim is to reduce transportation costs, improve the availability of supplies and alleviate congestion on hospital hallways by running deliveries around the clock on every day of the week. Joint planning and dialogue between the various occupational groups and stakeholders involved was necessary for a successful change process.

This study is part of a larger project as the August 30, 2017 VTT press release (also on EurekAlert), which originated the news item, makes clear,

As the population ages, the need for robotic services is on the increase. Adopting new technology to support care and nursing work is not straightforward, however. Autonomous service robots and robot systems raise questions about safety as well as about their impact on care quality and jobs, among others.

VTT has studied the implementation of a next-generation logistics robot system at the Seinäjoki Central Hospital. First steps are being taken in Finland to introduce automated delivery systems in hospitals, with Seinäjoki Central Hospital acting as one of the pioneers. The Seinäjoki hospital’s robot system will include a total of 5–8 automated delivery robots, two of which were deployed during the study.

With deliveries running 24/7, the system will help to improve the availability of supplies and alleviate congestion on hallways. Experiences gained during the first six months show that transport personnel expenses and the physical strain of transport work have been reduced. The personnel’s views on the delivery robots have developed favourably and other hospitals have shown plenty of interest in the Seinäjoki hospital’s experiences.

From the perspective of various occupational groups, adoption of the system has had a varied effect on their perceived level of sense of control and appreciation of their work, as well as competence requirements. This study by VTT, employing work research approaches and a systems-oriented view, highlights the importance of taking into account in the change process the interdependencies between various players, along with their roles in the hospital’s core task.

Careful planning, piloting and implementation are required to ensure that the adoption of new robots runs smoothly as a whole. “As the system is expanded with new robots and types of deliveries, even more guidance, communication and dialogue is needed. Joint planning that brings various players to the same table ensures that the system’s implementation goes as smoothly as possible, making it easier to achieve the desired overall benefits”, says Senior Scientist Inka Lappalainen of the ROSE project.

VTT’s study is part of the Robots and the Future of Welfare Services project (ROSE), running from 2015 to 2020. The project investigates Finland’s opportunities for adopting assisting robotics to support the ageing population’s independent living, wellbeing and care. There is also a blog post on the topic: http://roseproject.aalto.fi/fi/blog/32-blog8.

Roadmap

Intermediate results of the project are presented in the publication Robotics in Care Services: A Finnish Roadmap, providing recommendations for both policy making and research. The roadmap is available on the ROSE project website, at http://roseproject.aalto.fi/ or http://roseproject.aalto.fi/fi/blog/29-roadmap-blog-fi.

The roadmap has been compiled by the project consortium comprising Aalto University, the project’s coordinator, and research organisations Laurea University of Applied Sciences, Lappeenranta University of Technology, Tampere University of Technology, University of Tampere and VTT.

 Photo: a logistics robot at the Seinäjoki Central Hospital (photo Marketta Niemelä, VTT)

To make it easier for those without Finnish language reading skills, I have a link to the English language version of the ROSE website. In looking at the ROSE website’s video page, I found this amongst others,

This reminded me of an initiative in Canada introducing a robot designed for use in clinical settings. In a July 4, 2017 posting, I posed this question,

A Canadian project to introduce robots like Pepper into clinical settings (aside: can seniors’ facilities be far behind?) is the subject of a June 23, 2017 news item on phys.org, …

There’s also been some work on robots and seniors in Holland (Netherlands) and Japan although I don’t have any details.

I hear the proteins singing

Points to anyone who recognized the paraphrasing of the title for the well-loved, Canadian movie, “I heard the mermaids singing.” In this case, it’s all about protein folding and data sonification (from an Oct. 20, 2016 news item on phys.org),

Transforming data about the structure of proteins into melodies gives scientists a completely new way of analyzing the molecules that could reveal new insights into how they work – by listening to them. A new study published in the journal Heliyon shows how musical sounds can help scientists analyze data using their ears instead of their eyes.

The researchers, from the University of Tampere in Finland, Eastern Washington University in the US and the Francis Crick Institute in the UK, believe their technique could help scientists identify anomalies in proteins more easily.

An Oct. 20, 2016 Elsevier Publishing press release on EurekAlert, which originated the news item, expands on the theme,

“We are confident that people will eventually listen to data and draw important information from the experiences,” commented Dr. Jonathan Middleton, a composer and music scholar who is based at Eastern Washington University and in residence at the University of Tampere. “The ears might detect more than the eyes, and if the ears are doing some of the work, then the eyes will be free to look at other things.”

Proteins are molecules found in living things that have many different functions. Scientists usually study them visually and using data; with modern microscopy it is possible to directly see the structure of some proteins.

Using a technique called sonification, the researchers can now transform data about proteins into musical sounds, or melodies. They wanted to use this approach to ask three related questions: what can protein data sound like? Are there analytical benefits? And can we hear particular elements or anomalies in the data?

They found that a large proportion of people can recognize links between the melodies and more traditional visuals like models, graphs and tables; it seems hearing these visuals is easier than they expected. The melodies are also pleasant to listen to, encouraging scientists to listen to them more than once and therefore repeatedly analyze the proteins.

The sonifications are created using a combination of Dr. Middleton’s composing skills and algorithms, so that others can use a similar process with their own proteins. The multidisciplinary approach – combining bioinformatics and music informatics – provides a completely new perspective on a complex problem in biology.

“Protein fold assignment is a notoriously tricky area of research in molecular biology,” said Dr. Robert Bywater from the Francis Crick Institute. “One not only needs to identify the fold type but to look for clues as to its many functions. It is not a simple matter to unravel these overlapping messages. Music is seen as an aid towards achieving this unraveling.”

The researchers say their molecular melodies can be used almost immediately in teaching protein science, and after some practice, scientists will be able to use them to discriminate between different protein structures and spot irregularities like mutations.

Proteins are the first stop, but our knowledge of other molecules could also benefit from sonification; one day we may be able to listen to our genomes, and perhaps use this to understand the role of junk DNA [emphasis mine].

About 97% of our DNA (deoxyribonucleic acid) has been known for some decades as ‘junk DNA’. In roughly 2012, that was notion was challenged as Stephen S. Hall wrote in an Oct. 1, 2012 article (Hidden Treasures in Junk DNA; What was once known as junk DNA turns out to hold hidden treasures, says computational biologist Ewan Birney) for Scientific American.

Getting back to  2016, here’s a link to and a citation for ‘protein singing’,

Melody discrimination and protein fold classification by  Robert P. Bywater, Jonathan N. Middleton. Heliyon 20 Oct 2016, Volume 2, Issue 10 DOI: 10.1016/j.heliyon.2016.e0017

This paper is open access.

Here’s what the proteins sound like,

Supplementary Audio 3 for file for Supplementary Figure 2 1r75 OHEL sonification full score. [downloaded from the previously cited Heliyon paper]

Joanna Klein has written an Oct. 21, 2016 article for the New York Times providing a slightly different take on this research (Note: Links have been removed),

“It’s used for the concert hall. It’s used for sports. It’s used for worship. Why can’t we use it for our data?” said Jonathan Middleton, the composer at Eastern Washington University and the University of Tampere in Finland who worked with Dr. Bywater.

Proteins have been around for billions of years, but humans still haven’t come up with a good way to visualize them. Right now scientists can shoot a laser at a crystallized protein (which can distort its shape), measure the patterns it spits out and simulate what that protein looks like. These depictions are difficult to sift through and hard to remember.

“There’s no simple equation like e=mc2,” said Dr. Bywater. “You have to do a lot of spade work to predict a protein structure.”

Dr. Bywater had been interested in assigning sounds to proteins since the 1990s. After hearing a song Dr. Middleton had composed called “Redwood Symphony,” which opens with sounds derived from the tree’s DNA, he asked for his help.

Using a process called sonification (which is the same thing used to assign different ringtones to texts, emails or calls on your cellphone) the team took three proteins and turned their folding shapes — a coil, a turn and a strand — into musical melodies. Each shape was represented by a bunch of numbers, and those numbers were converted into a musical code. A combination of musical sounds represented each shape, resulting in a song of simple patterns that changed with the folds of the protein. Later they played those songs to a group of 38 people together with visuals of the proteins, and asked them to identify similarities and differences between them. The two were surprised that people didn’t really need the visuals to detect changes in the proteins.

Plus, I have more about data sonification in a Feb. 7, 2014 posting regarding a duet based on data from Voyager 1 & 2 spacecraft.

Finally, I hope my next Steep project will include  sonification of data on gold nanoparticles. I will keep you posted on any developments.