Tag Archives: University of Windsor

Richard Van Duyne solves mystery of Renoir’s red with surface-enhanced Raman spectroscopy (SERS) and Canadian scientists uncover forgeries

The only things these two items have in common is that they are concerned with visual art. and with solving mysteries The first item concerns research by Richard Van Duyne into the nature of the red paint used in one of Renoir’s paintings. A February 14, 2014 news item on Azonano describes some of the art conservation work that Van Duyne’s (nanoish) technology has made possible along with details about this most recent work,

Scientists are using powerful analytical and imaging tools to study artworks from all ages, delving deep below the surface to reveal the process and materials used by some of the world’s greatest artists.

Northwestern University chemist Richard P. Van Duyne, in collaboration with conservation scientists at the Art Institute of Chicago, has been using a scientific method he discovered nearly four decades ago to investigate masterpieces by Pierre-Auguste Renoir, Winslow Homer and Mary Cassatt.

Van Duyne recently identified the chemical components of paint, now partially faded, used by Renoir in his oil painting “Madame Léon Clapisson.” Van Duyne discovered the artist used carmine lake, a brilliant but light-sensitive red pigment, on this colorful canvas. The scientific investigation is the cornerstone of a new exhibition at the Art Institute of Chicago.

The Art Institute of Chicago’s exhibition is called, Renoir’s True Colors: Science Solves a Mystery. being held from Feb. 12, 2014 – April 27, 2014. Here is an image of the Renoir painting in question and an image featuring the equipment being used,

Renoir-Madame-Leon-Clapisson.Art Institute of Chicago.

Renoir-Madame-Leon-Clapisson.Art Institute of Chicago.

Renoir and surface-enhanced Raman spectroscopy (SERS). Art Institute of Chicago

Renoir and surface-enhanced Raman spectroscopy (SERS). Art Institute of Chicago

The Feb. 13, 2014 Northwestern University news release (also on EurekAlert) by Megan Fellman, which originated the news item, gives a brief description of Van Duyne’s technique and its impact on conservation at the Art Institute of Chicago (Note: A link has been removed),

To see what the naked eye cannot see, Van Duyne used surface-enhanced Raman spectroscopy (SERS) to uncover details of Renoir’s paint. SERS, discovered by Van Duyne in 1977, is widely recognized as the most sensitive form of spectroscopy capable of identifying molecules.

Van Duyne and his colleagues’ detective work informed the production of a new digital visualization of the painting’s original colors by the Art Institute’s conservation department. The re-colorized reproduction and the original painting (presented in a case that offers 360-degree views) can be viewed side by side at the exhibition “Renoir’s True Colors: Science Solves a Mystery” through April 27 [2014] at the Art Institute.

I first wrote about Van Duyne’s technique in my wiki, The NanoTech Mysteries. From the Scientists get artful page (Note: A footnote was removed),

Richard Van Duyne, then a chemist at Northwestern University, developed the technique in 1977. Van Duyne’s technology, based on Raman spectroscopy which has been around since the 1920s, is called surface-enhanced Raman spectroscopy’ or SERS “[and] uses laser light and nanoparticles of precious metals to interact with molecules to show the chemical make-up of a particular dye.”

This next item is about forgery detection. A March 5, 2014 news release on EurekAlert describes the latest developments,

Gallery owners, private collectors, conservators, museums and art dealers face many problems in protecting and evaluating their collections such as determining origin, authenticity and discovery of forgery, as well as conservation issues. Today these problems are more accurately addressed through the application of modern, non-destructive, “hi-tech” techniques.

Dmitry Gavrilov, a PhD student in the Department of Physics at the University of Windsor (Windsor, Canada), along with Dr. Roman Gr. Maev, the Department of Physics Professor at the University of Windsor (Windsor, Canada) and Professor Dr. Darryl Almond of the University of Bath (Bath, UK) have been busy applying modern techniques to this age-old field. Infrared imaging, thermography, spectroscopy, UV fluorescence analysis, and acoustic microscopy are among the innovative approaches they are using to conduct pre-restoration analysis of works of art. Some fascinating results from their applications are published today in the Canadian Journal of Physics.

Since the early 1900s, using infrared imaging in various wave bands, scientists have been able to see what parts of artworks have been retouched or altered and sometimes even reveal the artist’s original sketches beneath layers of the paint. Thermography is a relatively new approach in art analysis that allows for deep subsurface investigation to find defects and past reparations. To a conservator these new methods are key in saving priceless works from further damage.

Gavrilov explains, “We applied new approaches in processing thermographic data, materials spectra data, and also the technique referred to as craquelure pattern analysis. The latter is based on advanced morphological processing of images of surface cracks. These cracks, caused by a number of factors such as structure of canvas, paints and binders used, can uncover important clues on the origins of a painting.”

“Air-coupled acoustic imaging and acoustic microscopy are other innovative approaches which have been developed and introduced into art analysis by our team under supervision of Dr. Roman Gr. Maev. The technique has proven to be extremely sensitive to small layer detachments and allows for the detection of early stages of degradation. It is based on the same principles as medical and industrial ultrasound, namely, the sending a sound wave to the sample and receiving it back. ”

Spectroscopy is a technique that has been useful in the fight against art fraud. It can determine chemical composition of pigments and binders, which is essential information in the hands of an art specialist in revealing fakes. As described in the paper, “…according to the FBI, the value of art fraud, forgery and theft is up to $6 billion per year, which makes it the third most lucrative crime in the world after drug trafficking and the illegal weapons trade.”

One might wonder how these modern applications can be safe for delicate works of art when even flash photography is banned in art galleries. The authors discuss this and other safety concerns, describing both historic and modern-day implications of flash bulbs and exhibit illumination and scientific methods. As the paper concludes, the authors suggest that we can expect that the number of “hi-tech” techniques will only increase. In the future, art experts will likely have a variety of tools to help them solve many of the mysteries hiding beneath the layers.

Here’s a link to and a citation for the paper,

A review of imaging methods in analysis of works of art: Thermographic imaging method in art analysis by D. Gavrilov, R.Gr. Maev, and D.P. Almond. Canadian Journal of Physics, 10.1139/cjp-2013-0128

This paper is open access.

University of Windsor (Canada) chemists and molecular machines

Thanks to Instapundit (June 30, 2012 item) for the heads up regarding work being done at the University of Windsor (Ontario, Canada) by a team of chemists led by Nick Vukotic.

The University of Windsor News Daily’s June 16, 2012 item provides more detail (Note: I have removed links),

A graduate student and his team of researchers have turned the chemistry world on its ear by becoming the first ever to prove that tiny interlocked molecules can function inside solid materials, laying the important groundwork for the future creation of molecular machines.

“Until now, this has only ever been done in solution,” explained Chemistry & Biochemistry PhD student Nick Vukotic, lead author on a front page article recently published in the June issue of the journal Nature Chemistry. “We’re the first ones to put this into a solid state material.”

Here’s how they do it (from the UW June 16, 2012 item [links removed]),

The material Vukotic is referring to is UWDM-1, or University of Windsor Dynamic Material, a powdery substance that the team made which contains rotaxane molecules and binuclear copper centers.  The rotaxane molecules, which resemble a wheel around the outside of an axle, were synthesised in their lab. The group found that heating of these rotaxane molecules with a copper source resulted in the formation of a crystalline material which contained structured arrangement of the rotaxane molecules, spaced out by the binuclear copper centers.

“Basically, they self-assemble in to this arrangement,” said Vukotic, who works under the tutelage of chemistry professor Steve Loeb. Other team members include professor Rob Schurko, and post-doctoral fellows Kristopher Harris and Kelong Zhu.

Heating the material causes the wheels to rapidly rotate around the axles, while cooling the material causes the wheels to stop, he said. The entire process can’t be viewed with a microscope, so the motion was confirmed in Dr. Schurko’s lab using a process called nuclear magnetic resonance spectroscopy.

“You can actually measure the motion and you can do it unambiguously by placing an isotopic tag on the ring,” explained Dr. Harris, who helped oversee that verification process.

This image may help you better visualize these molecular machines,

This schematic shows how the various elements assemble themselves into mechanically interlocked molecules. (Courtesy University of Windsor)

James Lewis over at the Foresight Institute blog, where they have a very strong interest in molecular machines, commented in a June 26, 2012 posting,

A key component of exploratory engineering studies for molecular manufacturing or productive nanosystems is the ability to model molecular systems reliably. Modeling motions of molecules in solution is very difficult. A method to produce molecular machines in a solid state environment is a huge step forward.

Russian nanotechnology corporation (RUSNANO) develops joint Canada-Russian fund with VentureLink Funds

RUSNANO (Russian Corporation of Nanotechnologies) executives Mr. Alexander Losyukov, Mr. Kyrill Frolov and Mr. Rail Rafikov have signed an agreement with John Varghese, CEO and Managing Partner of Toronto based venture capital firm, VentureLink Funds. RUSNANO first visited and surveyed the Canadian nanotechnology scene in April 2009 (noted in my April 14, 2009 posting). From the Sept. 13, 2010 news item on Nanowerk,

During their visit [Sept. 7,2010], the delegation successfully concluded in-depth discussions with Mr. Varghese that commenced early in 2010. The goal of the meetings was to establish the basis on which to create a Canada-Russia Nanotechnology Venture Capital Fund co-founded by RUSNANO and Mr. Varghese in Canada. The Fund’s investment interests will mainly focus on nanotechnology based products and applications in the areas of information technology for Nano based applications, energy production and storage, (including renewable and clean energy sources), advanced materials, biomaterials, and other select sectors. The Fund will not be seeking out defense related projects.

Subject to certain conditions, RUSNANO has signed a ground breaking Memorandum of Understanding committing to be a very significant lead order and partner in this new Nano Fund. Final corporate approvals are expected prior to the end of 2010, allowing this Fund to be operational in 2011.

Richard Blackwell writing for the Globe & Mail newspaper notes (from his Sept. 13, 2010 article),

VentureLink managing partner John Varghese said Rusano is searching the world for advances in the field – a rapidly advancing technology that engineers materials at the atomic and molecular scale to create new products for medicine, electronics and energy production – and will provide most of the fund’s initial capital.

High net worth individuals in Canada will also be approached to invest, and the goal is to create a fund in the $100-million to $200-million range, Mr. Varghese said.

The advantage for Canadian companies in the sector is that Rusnano will help them find markets for their products in Russia.

According to the Nanowerk news item, Professor Roman Maev, at the University of Windsor (Ontario), was instrumental in developing this partnership. From Dr. Maev’s University of Windsor web page,

Dr. Roman Maev is the Chairholder of the NSERC/Chrysler/University of Windsor Industrial Research Chair in Applied Solid State Physics and Material Characterization. He came to Canada in 1994, through Inter-Governmental Canada-Russia technology exchange program. One year later Dr. Maev was appointed as a Full Faculty Professor in the School of Physical Sciences at University of Windsor and in 1997 he established the Center of Imaging Research and Advanced Material Characterization at University of Windsor.

In addition to some federal support, there appears to be substantive support from the province of Ontario (from the Sept. 13, 2010 news item on Azonano),

During their visit, RUSNANO also met with the Honourable Sandra Pupatello, Minister of Economic Development and Trade and with senior officials of the Ministry of Research and Innovation, to discuss this new initiative supporting the development of technology transfer partnerships between RUSNANO and Canadian companies. …

Those activities will be based upon regular consultations and coordination with various departments and agencies within the Federal and Provincial Government, including the Ontario Ministry of Economic Development & Trade and the Ministry of Research and Innovation.

“During our meetings, Minister Pupatello stated that Canada wants to go global. Well, Russia also wants to go global, thus we have a good platform to be partners. A partner that shares similar goals allows for unification of efforts. Political will, combined with the appropriate business environment and the right team makes this the ideal time to start this initiative” proudly stated Losyukov.

I was a little surprised that I found no mention of this development on the Nano, Nanotechnology Network of Ontario website as it seems quite a feather in the province’s, if not the organization’s, cap.