Tag Archives: US Army

Jiggly jell-o as a new hydrogen fuel catalyst

Jello [uploaded from https://www.organicauthority.com/eco-chic-table/new-jell-o-mold-jiggle-chic-holidays]

I’m quite intrigued by this ‘jell-o’ story. It’s hard to believe a childhood dessert might prove to have an application as a catalyst for producing hydrogen fuel. From a December 14, 2018 news item on Nanowerk,

A cheap and effective new catalyst developed by researchers at the University of California, Berkeley, can generate hydrogen fuel from water just as efficiently as platinum, currently the best — but also most expensive — water-splitting catalyst out there.

The catalyst, which is composed of nanometer-thin sheets of metal carbide, is manufactured using a self-assembly process that relies on a surprising ingredient: gelatin, the material that gives Jell-O its jiggle.

Two-dimensional metal carbides spark a reaction that splits water into oxygen and valuable hydrogen gas. Berkeley researchers have discovered an easy new recipe for cooking up these nanometer-thin sheets that is nearly as simple as making Jell-O from a box. (Xining Zang graphic, copyright Wiley)

A December 13, 2018 University of California at Berkeley (UC Berkeley) news release by Kara Manke (also on EurekAlert but published on Dec. 14, 2018), which originated the news item, provides more technical detail,

“Platinum is expensive, so it would be desirable to find other alternative materials to replace it,” said senior author Liwei Lin, professor of mechanical engineering at UC Berkeley. “We are actually using something similar to the Jell-O that you can eat as the foundation, and mixing it with some of the abundant earth elements to create an inexpensive new material for important catalytic reactions.”

The work appears in the Dec. 13 [2018] print edition of the journal Advanced Materials.

A zap of electricity can break apart the strong bonds that tie water molecules together, creating oxygen and hydrogen gas, the latter of which is an extremely valuable source of energy for powering hydrogen fuel cells. Hydrogen gas can also be used to help store energy from renewable yet intermittent energy sources like solar and wind power, which produce excess electricity when the sun shines or when the wind blows, but which go dormant on rainy or calm days.

A black and white image of metal carbide under high magnification.

When magnified, the two-dimensional metal carbides resemble sheets of cell[o]phane. (Xining Zang photo, copyright Wiley)

But simply sticking an electrode in a glass of water is an extremely inefficient method of generating hydrogen gas. For the past 20 years, scientists have been searching for catalysts that can speed up this reaction, making it practical for large-scale use.

“The traditional way of using water gas to generate hydrogen still dominates in industry. However, this method produces carbon dioxide as byproduct,” said first author Xining Zang, who conducted the research as a graduate student in mechanical engineering at UC Berkeley. “Electrocatalytic hydrogen generation is growing in the past decade, following the global demand to lower emissions. Developing a highly efficient and low-cost catalyst for electrohydrolysis will bring profound technical, economical and societal benefit.”

To create the catalyst, the researchers followed a recipe nearly as simple as making Jell-O from a box. They mixed gelatin and a metal ion — either molybdenum, tungsten or cobalt — with water, and then let the mixture dry.

“We believe that as gelatin dries, it self-assembles layer by layer,” Lin said. “The metal ion is carried by the gelatin, so when the gelatin self-assembles, your metal ion is also arranged into these flat layers, and these flat sheets are what give Jell-O its characteristic mirror-like surface.”

Heating the mixture to 600 degrees Celsius triggers the metal ion to react with the carbon atoms in the gelatin, forming large, nanometer-thin sheets of metal carbide. The unreacted gelatin burns away.

The researchers tested the efficiency of the catalysts by placing them in water and running an electric current through them. When stacked up against each other, molybdenum carbide split water the most efficiently, followed by tungsten carbide and then cobalt carbide, which didn’t form thin layers as well as the other two. Mixing molybdenum ions with a small amount of cobalt boosted the performance even more.

“It is possible that other forms of carbide may provide even better performance,” Lin said.

On the left, an illustration of blue spheres, representing gelatin molecules, arranged in a lattice shape. On the right, an illustration of thin sheets of metal carbide.

Molecules in gelatin naturally self-assemble in flat sheets, carrying the metal ions with them (left). Heating the mixture to 600 degrees Celsius burns off the gelatin, leaving nanometer-thin sheets of metal carbide. (Xining Zang illustration, copyright Wiley)

The two-dimensional shape of the catalyst is one of the reasons why it is so successful. That is because the water has to be in contact with the surface of the catalyst in order to do its job, and the large surface area of the sheets mean that the metal carbides are extremely efficient for their weight.

Because the recipe is so simple, it could easily be scaled up to produce large quantities of the catalyst, the researchers say.

“We found that the performance is very close to the best catalyst made of platinum and carbon, which is the gold standard in this area,” Lin said. “This means that we can replace the very expensive platinum with our material, which is made in a very scalable manufacturing process.”

Co-authors on the study are Lujie Yang, Buxuan Li and Minsong Wei of UC Berkeley, J. Nathan Hohman and Chenhui Zhu of Lawrence Berkeley National Lab; Wenshu Chen and Jiajun Gu of Shanghai Jiao Tong University; Xiaolong Zou and Jiaming Liang of the Shenzhen Institute; and Mohan Sanghasadasa of the U.S. Army RDECOM AMRDEC.

Here’s a link to and a citation for the paper,

Self‐Assembly of Large‐Area 2D Polycrystalline Transition Metal Carbides for Hydrogen Electrocatalysis by Xining Zang, Wenshu Chen, Xiaolong Zou, J. Nathan Hohman, Lujie Yang
Buxuan Li, Minsong Wei, Chenhui Zhu, Jiaming Liang, Mohan Sanghadasa, Jiajun Gu, Liwei Lin. Advanced Materials Volume30, Issue 50 December 13, 2018 1805188 DOI: https://doi.org/10.1002/adma.201805188 First published [online]: 09 October 2018

This paper is behind a paywall.

Graphene and smart textiles

Here’s one of the more recent efforts to create fibres that are electronic and capable of being woven into a smart textile. (Details about a previous effort can be found at the end of this post.) Now for this one, from a Dec. 3, 2018 news item on ScienceDaily,

The quest to create affordable, durable and mass-produced ‘smart textiles’ has been given fresh impetus through the use of the wonder material Graphene.

An international team of scientists, led by Professor Monica Craciun from the University of Exeter Engineering department, has pioneered a new technique to create fully electronic fibres that can be incorporated into the production of everyday clothing.

A Dec. 3, 2018 University of Exeter press release (also on EurekAlert), provides more detail about the problems associated with wearable electronics and the solution being offered (Note: A link has been removed),

Currently, wearable electronics are achieved by essentially gluing devices to fabrics, which can mean they are too rigid and susceptible to malfunctioning.

The new research instead integrates the electronic devices into the fabric of the material, by coating electronic fibres with light-weight, durable components that will allow images to be shown directly on the fabric.

The research team believe that the discovery could revolutionise the creation of wearable electronic devices for use in a range of every day applications, as well as health monitoring, such as heart rates and blood pressure, and medical diagnostics.

The international collaborative research, which includes experts from the Centre for Graphene Science at the University of Exeter, the Universities of Aveiro and Lisbon in Portugal, and CenTexBel in Belgium, is published in the scientific journal Flexible Electronics.

Professor Craciun, co-author of the research said: “For truly wearable electronic devices to be achieved, it is vital that the components are able to be incorporated within the material, and not simply added to it.

Dr Elias Torres Alonso, Research Scientist at Graphenea and former PhD student in Professor Craciun’s team at Exeter added “This new research opens up the gateway for smart textiles to play a pivotal role in so many fields in the not-too-distant future.  By weaving the graphene fibres into the fabric, we have created a new technique to all the full integration of electronics into textiles. The only limits from now are really within our own imagination.”

At just one atom thick, graphene is the thinnest substance capable of conducting electricity. It is very flexible and is one of the strongest known materials. The race has been on for scientists and engineers to adapt graphene for the use in wearable electronic devices in recent years.

This new research used existing polypropylene fibres – typically used in a host of commercial applications in the textile industry – to attach the new, graphene-based electronic fibres to create touch-sensor and light-emitting devices.

The new technique means that the fabrics can incorporate truly wearable displays without the need for electrodes, wires of additional materials.

Professor Saverio Russo, co-author and from the University of Exeter Physics department, added: “The incorporation of electronic devices on fabrics is something that scientists have tried to produce for a number of years, and is a truly game-changing advancement for modern technology.”

Dr Ana Neves, co-author and also from Exeter’s Engineering department added “The key to this new technique is that the textile fibres are flexible, comfortable and light, while being durable enough to cope with the demands of modern life.”

In 2015, an international team of scientists, including Professor Craciun, Professor Russo and Dr Ana Neves from the University of Exeter, have pioneered a new technique to embed transparent, flexible graphene electrodes into fibres commonly associated with the textile industry.

Here’s a link to and a citation for the paper,

Graphene electronic fibres with touch-sensing and light-emitting functionalities for smart textiles by Elias Torres Alonso, Daniela P. Rodrigues, Mukond Khetani, Dong-Wook Shin, Adolfo De Sanctis, Hugo Joulie, Isabel de Schrijver, Anna Baldycheva, Helena Alves, Ana I. S. Neves, Saverio Russo & Monica F. Craciun. Flexible Electronicsvolume 2, Article number: 25 (2018) DOI: https://doi.org/10.1038/s41528-018-0040-2 Published 25 September 2018

This paper is open access.

I have an earlier post about an effort to weave electronics into textiles for soldiers, from an April 5, 2012 posting,

I gather that today’s soldier (aka, warfighter)  is carrying as many batteries as weapons. Apparently, the average soldier carries a couple of kilos worth of batteries and cables to keep their various pieces of equipment operational. The UK’s Centre for Defence Enterprise (part of the Ministry of Defence) has announced that this situation is about to change as a consequence of a recently funded research project with a company called Intelligent Textiles. From Bob Yirka’s April 3, 2012 news item for physorg.com,

To get rid of the cables, a company called Intelligent Textiles has come up with a type of yarn that can conduct electricity, which can be woven directly into the fabric of the uniform. And because they allow the uniform itself to become one large conductive unit, the need for multiple batteries can be eliminated as well.

I dug down to find more information about this UK initiative and the Intelligent Textiles company but the trail seems to end in 2015. Still, I did find a Canadian connection (for those who don’t know I’m a Canuck) and more about Intelligent Textile’s work with the British military in this Sept. 21, 2015 article by Barry Collins for alphr.com (Note: Links have been removed),

A two-person firm operating from a small workshop in Staines-upon-Thames, Intelligent Textiles has recently landed a multimillion-pound deal with the US Department of Defense, and is working with the Ministry of Defence (MoD) to bring its potentially life-saving technology to British soldiers. Not bad for a company that only a few years ago was selling novelty cushions.

Intelligent Textiles was born in 2002, almost by accident. Asha Peta Thompson, an arts student at Central Saint Martins, had been using textiles to teach children with special needs. That work led to a research grant from Brunel University, where she was part of a team tasked with creating a “talking jacket” for the disabled. The garment was designed to help cerebral palsy sufferers to communicate, by pressing a button on the jacket to say “my name is Peter”, for example, instead of having a Stephen Hawking-like communicator in front of them.

Another member of that Brunel team was engineering lecturer Dr Stan Swallow, who was providing the electronics expertise for the project. Pretty soon, the pair realised the prototype waistcoat they were working on wasn’t going to work: it was cumbersome, stuffed with wires, and difficult to manufacture. “That’s when we had the idea that we could weave tiny mechanical switches into the surface of the fabric,” said Thompson.

The conductive weave had several advantages over packing electronics into garments. “It reduces the amount of cables,” said Thompson. “It can be worn and it’s also washable, so it’s more durable. It doesn’t break; it can be worn next to the skin; it’s soft. It has all the qualities of a piece of fabric, so it’s a way of repackaging the electronics in a way that’s more user-friendly and more comfortable.” The key to Intelligent Textiles’ product isn’t so much the nature of the raw materials used, but the way they’re woven together. “All our patents are in how we weave the fabric,” Thompson explained. “We weave two conductive yarns to make a tiny mechanical switch that is perfectly separated or perfectly connected. We can weave an electronic circuit board into the fabric itself.”

Intelligent Textiles’ big break into the military market came when they met a British textiles firm that was supplying camouflage gear to the Canadian armed forces. [emphasis mine] The firm was attending an exhibition in Canada and invited the Intelligent Textiles duo to join them. “We showed a heated glove and an iPod controller,” said Thompson. “The Canadians said ‘that’s really fantastic, but all we need is power. Do you think you could weave a piece of fabric that distributes power?’ We said, ‘we’re already doing it’.”Before long it wasn’t only power that the Canadians wanted transmitted through the fabric, but data.

“The problem a soldier faces at the moment is that he’s carrying 60 AA batteries [to power all the equipment he carries],” said Thompson. “He doesn’t know what state of charge those batteries are at, and they’re incredibly heavy. He also has wires and cables running around the system. He has snag hazards – when he’s going into a firefight, he can get caught on door handles and branches, so cables are a real no-no.”

The Canadians invited the pair to speak at a NATO conference, where they were approached by military brass with more familiar accents. “It was there that we were spotted by the British MoD, who said ‘wow, this is a British technology but you’re being funded by Canada’,” said Thompson. That led to £235,000 of funding from the Centre for Defence Enterprise (CDE) – the money they needed to develop a fabric wiring system that runs all the way through the soldier’s vest, helmet and backpack.

There are more details about the 2015 state of affairs, textiles-wise, in a March 11, 2015 article by Richard Trenholm for CNET.com (Note: A link has been removed),

Speaking at the Wearable Technology Show here, Swallow describes IT [Intelligent Textiles]L as a textile company that “pretends to be a military company…it’s funny how you slip into these domains.”

One domain where this high-tech fabric has seen frontline action is in the Canadian military’s IAV Stryker armoured personnel carrier. ITL developed a full QWERTY keyboard in a single piece of fabric for use in the Stryker, replacing a traditional hardware keyboard that involved 100 components. Multiple components allow for repair, but ITL knits in redundancy so the fabric can “degrade gracefully”. The keyboard works the same as the traditional hardware, with the bonus that it’s less likely to fall on a soldier’s head, and with just one glaring downside: troops can no longer use it as a step for getting in and out of the vehicle.

An armoured car with knitted controls is one thing, but where the technology comes into its own is when used about the person. ITL has worked on vests like the JTAC, a system “for the guys who call down airstrikes” and need “extra computing oomph.” Then there’s SWIPES, a part of the US military’s Nett Warrior system — which uses a chest-mounted Samsung Galaxy Note 2 smartphone — and British military company BAE’s Broadsword system.

ITL is currently working on Spirit, a “truly wearable system” for the US Army and United States Marine Corps. It’s designed to be modular, scalable, intuitive and invisible.

While this isn’t an ITL product, this video about Broadsword technology from BAE does give you some idea of what wearable technology for soldiers is like,

baesystemsinc

Uploaded on Jul 8, 2014

Broadsword™ delivers groundbreaking technology to the 21st Century warfighter through interconnecting components that inductively transfer power and data via The Spine™, a revolutionary e-textile that can be inserted into any garment. This next-generation soldier system offers enhanced situational awareness when used with the BAE Systems’ Q-Warrior® see-through display.

If anyone should have the latest news about Intelligent Textile’s efforts, please do share in the comments section.

I do have one other posting about textiles and the military, which is dated May 9, 2012, but while it does reference US efforts it is not directly related to weaving electronics into solder’s (warfighter’s) gear.

You can find CenTexBel (Belgian Textile Rsearch Centre) here and Graphenea here. Both are mentioned in the University of Exeter press release.

Having a blast with aluminum nanoparticles

A June 11, 2018 news item on Nanowerk announces ‘explosive’ research from the US Army Research Laboratory (ARL),

Army scientists proved a decades-old prediction that mixing TNT and novel aluminum nanoparticles can significantly enhance energetic performance. This explosive discovery is expected to extend the reach of U.S. Army firepower in battle.

Researchers from the U.S. Army Research Laboratory and Texas Tech University demonstrated up to 30-percent enhancement in the detonation velocity of the explosive TNT by adding novel aluminum nanoparticles in which the native alumina shell has been replaced with an oxidizing salt called AIH, or aluminum iodate hexahydrate.

A June 7, 2018 ARL news release (published on EurekAlert on June 11, 2018), which originated the news item, provides more detail,

The structure of the AIH-coated aluminum nanoparticles was revealed for the very first time through high resolution transmission electron (TEM) microscopy performed by ARL’s Dr. Chi-Chin Wu, a materials researcher who leads the plasma research for the lab’s Energetic Materials Science Branch in the Lethality Division [emphasis mine] of Weapons and Materials Research Directorate.

Wu said this revolutionary research offers the potential for the exploitation of aluminum and potentially other metallic nanoparticles in explosive formulations to extend the range and destructive power of Army weapons systems, a key objective of the Army’s “Long Range Precision Fires” modernization priority.

“We believe these results show tremendous promise for enhancing the detonation performance of conventional military explosives with aluminum nanoparticles for the first time,” said ARL’s Dr. Jennifer Gottfried, a physical chemist who collaborated on the research.

“It is very exciting to advance science to a point where we can harness more chemical energy from metal particles at faster timescales. This is an exciting time for transforming energy generation technology,” said Dr. Michelle L. Pantoya, the J. W. Wright Regents Chair in Mechanical Engineering and Professor at Texas Tech University.

The team found that the crystalline aluminum core was effectively protected against unwanted oxidation by the AIH shell, which appears as protruding nodules on the aluminum surface. The enhanced reactivity due to this unique morphological feature and novel core-shell structure was demonstrated by laser-induced air shock from energetic materials experiments, an innovative laboratory-scale energetic testing method developed by Gottfried. This technique involves impacting the sample with a high-energy, focused laser pulse to violently break apart the explosive molecules. The interaction of the laser with the material forms a laser-induced plasma and produces a shock wave that expands into the surrounding air. The energy released from an explosive sample can then be experimentally determined by measuring the laser-induced shock velocity with a high-speed camera.

It was predicted decades ago that aluminum nanoparticles have the potential to enhance the energetic performance of explosives and propellants because of their high energy content and potential for rapid burning. This is because they have exceptionally large surface areas compared to their total volume and a very large heat of reaction. However, the surface of the aluminum nanoparticles is naturally oxidized in air to form a thick alumina shell, typically 20% by weight, which not only lowers the energy content of the nanoparticles by reducing the amount of active aluminum, it also slows the rate of energy release because it acts as a barrier to the reaction of the aluminum with the explosive. Therefore, replacing the oxide shell, as successfully achieved by TTU, can significantly improve the explosive performance.

These preliminary joint efforts have also led to a formal research collaboration under an ARL Director’s Research Award, the fiscal 2018 External Collaboration Initiative between Wu and TTU.

After publishing two papers in high-impact scientific journals in the past year, the team is poised to pursue additional energetics research with aluminum nanoparticles by working with the U.S. Army Research, Development and Engineering Command at Picatinny Arsenal, New Jersey, and the Air Force Research Laboratory.

A ‘lethality division’, eh?

Here’s a link to and a citation for the paper,

Improving the Explosive Performance of Aluminum Nanoparticles with Aluminum Iodate Hexahydrate (AIH) by Jennifer L. Gottfried, Dylan K. Smith, Chi-Chin Wu, & Michelle L. Pantoya. Scientific Reports volume 8, Article number: 8036 (2018) DOI:10.1038/s41598-018-26390-9 Published online May 23, 2018

This paper is open access.

How to get people to trust artificial intelligence

Vyacheslav Polonski’s (University of Oxford researcher) January 10, 2018 piece (originally published Jan. 9, 2018 on The Conversation) on phys.org isn’t a gossip article although there are parts that could be read that way. Before getting to what I consider the juicy bits (Note: Links have been removed),

Artificial intelligence [AI] can already predict the future. Police forces are using it to map when and where crime is likely to occur [Note: See my Nov. 23, 2017 posting about predictive policing in Vancouver for details about the first Canadian municipality to introduce the technology]. Doctors can use it to predict when a patient is most likely to have a heart attack or stroke. Researchers are even trying to give AI imagination so it can plan for unexpected consequences.

Many decisions in our lives require a good forecast, and AI agents are almost always better at forecasting than their human counterparts. Yet for all these technological advances, we still seem to deeply lack confidence in AI predictions. Recent cases show that people don’t like relying on AI and prefer to trust human experts, even if these experts are wrong.

The part (juicy bits) that satisfied some of my long held curiosity was this section on Watson and its life as a medical adjunct (Note: Links have been removed),

IBM’s attempt to promote its supercomputer programme to cancer doctors (Watson for Onology) was a PR [public relations] disaster. The AI promised to deliver top-quality recommendations on the treatment of 12 cancers that accounted for 80% of the world’s cases. As of today, over 14,000 patients worldwide have received advice based on its calculations.

But when doctors first interacted with Watson they found themselves in a rather difficult situation. On the one hand, if Watson provided guidance about a treatment that coincided with their own opinions, physicians did not see much value in Watson’s recommendations. The supercomputer was simply telling them what they already know, and these recommendations did not change the actual treatment. This may have given doctors some peace of mind, providing them with more confidence in their own decisions. But IBM has yet to provide evidence that Watson actually improves cancer survival rates.

On the other hand, if Watson generated a recommendation that contradicted the experts’ opinion, doctors would typically conclude that Watson wasn’t competent. And the machine wouldn’t be able to explain why its treatment was plausible because its machine learning algorithms were simply too complex to be fully understood by humans. Consequently, this has caused even more mistrust and disbelief, leading many doctors to ignore the seemingly outlandish AI recommendations and stick to their own expertise.

As a result, IBM Watson’s premier medical partner, the MD Anderson Cancer Center, recently announced it was dropping the programme. Similarly, a Danish hospital reportedly abandoned the AI programme after discovering that its cancer doctors disagreed with Watson in over two thirds of cases.

The problem with Watson for Oncology was that doctors simply didn’t trust it. Human trust is often based on our understanding of how other people think and having experience of their reliability. …

It seems to me there might be a bit more to the doctors’ trust issues and I was surprised it didn’t seem to have occurred to Polonski. Then I did some digging (from Polonski’s webpage on the Oxford Internet Institute website),

Vyacheslav Polonski (@slavacm) is a DPhil [PhD] student at the Oxford Internet Institute. His research interests are located at the intersection of network science, media studies and social psychology. Vyacheslav’s doctoral research examines the adoption and use of social network sites, focusing on the effects of social influence, social cognition and identity construction.

Vyacheslav is a Visiting Fellow at Harvard University and a Global Shaper at the World Economic Forum. He was awarded the Master of Science degree with Distinction in the Social Science of the Internet from the University of Oxford in 2013. He also obtained the Bachelor of Science degree with First Class Honours in Management from the London School of Economics and Political Science (LSE) in 2012.

Vyacheslav was honoured at the British Council International Student of the Year 2011 awards, and was named UK’s Student of the Year 2012 and national winner of the Future Business Leader of the Year 2012 awards by TARGETjobs.

Previously, he has worked as a management consultant at Roland Berger Strategy Consultants and gained further work experience at the World Economic Forum, PwC, Mars, Bertelsmann and Amazon.com. Besides, he was involved in several start-ups as part of the 2012 cohort of Entrepreneur First and as part of the founding team of the London office of Rocket Internet. Vyacheslav was the junior editor of the bi-lingual book ‘Inspire a Nation‘ about Barack Obama’s first presidential election campaign. In 2013, he was invited to be a keynote speaker at the inaugural TEDx conference of IE University in Spain to discuss the role of a networked mindset in everyday life.

Vyacheslav is fluent in German, English and Russian, and is passionate about new technologies, social entrepreneurship, philanthropy, philosophy and modern art.

Research interests

Network science, social network analysis, online communities, agency and structure, group dynamics, social interaction, big data, critical mass, network effects, knowledge networks, information diffusion, product adoption

Positions held at the OII

  • DPhil student, October 2013 –
  • MSc Student, October 2012 – August 2013

Polonski doesn’t seem to have any experience dealing with, participating in, or studying the medical community. Getting a doctor to admit that his or her approach to a particular patient’s condition was wrong or misguided runs counter to their training and, by extension, the institution of medicine. Also, one of the biggest problems in any field is getting people to change and it’s not always about trust. In this instance, you’re asking a doctor to back someone else’s opinion after he or she has rendered theirs. This is difficult even when the other party is another human doctor let alone a form of artificial intelligence.

If you want to get a sense of just how hard it is to get someone to back down after they’ve committed to a position, read this January 10, 2018 essay by Lara Bazelon, an associate professor at the University of San Francisco School of Law. This is just one of the cases (Note: Links have been removed),

Davontae Sanford was 14 years old when he confessed to murdering four people in a drug house on Detroit’s East Side. Left alone with detectives in a late-night interrogation, Sanford says he broke down after being told he could go home if he gave them “something.” On the advice of a lawyer whose license was later suspended for misconduct, Sanders pleaded guilty in the middle of his March 2008 trial and received a sentence of 39 to 92 years in prison.

Sixteen days after Sanford was sentenced, a hit man named Vincent Smothers told the police he had carried out 12 contract killings, including the four Sanford had pleaded guilty to committing. Smothers explained that he’d worked with an accomplice, Ernest Davis, and he provided a wealth of corroborating details to back up his account. Smothers told police where they could find one of the weapons used in the murders; the gun was recovered and ballistics matched it to the crime scene. He also told the police he had used a different gun in several of the other murders, which ballistics tests confirmed. Once Smothers’ confession was corroborated, it was clear Sanford was innocent. Smothers made this point explicitly in an 2015 affidavit, emphasizing that Sanford hadn’t been involved in the crimes “in any way.”

Guess what happened? (Note: Links have been removed),

But Smothers and Davis were never charged. Neither was Leroy Payne, the man Smothers alleged had paid him to commit the murders. …

Davontae Sanford, meanwhile, remained behind bars, locked up for crimes he very clearly didn’t commit.

Police failed to turn over all the relevant information in Smothers’ confession to Sanford’s legal team, as the law required them to do. When that information was leaked in 2009, Sanford’s attorneys sought to reverse his conviction on the basis of actual innocence. Wayne County Prosecutor Kym Worthy fought back, opposing the motion all the way to the Michigan Supreme Court. In 2014, the court sided with Worthy, ruling that actual innocence was not a valid reason to withdraw a guilty plea [emphasis mine]. Sanford would remain in prison for another two years.

Doctors are just as invested in their opinions and professional judgments as lawyers  (just like  the prosecutor and the judges on the Michigan Supreme Court) are.

There is one more problem. From the doctor’s (or anyone else’s perspective), if the AI is making the decisions, why do he/she need to be there? At best it’s as if AI were turning the doctor into its servant or, at worst, replacing the doctor. Polonski alludes to the problem in one of his solutions to the ‘trust’ issue (Note: A link has been removed),

Research suggests involving people more in the AI decision-making process could also improve trust and allow the AI to learn from human experience. For example,one study showed people were given the freedom to slightly modify an algorithm felt more satisfied with its decisions, more likely to believe it was superior and more likely to use it in the future.

Having input into the AI decision-making process somewhat addresses one of the problems but the commitment to one’s own judgment even when there is overwhelming evidence to the contrary is a perennially thorny problem. The legal case mentioned here earlier is clearly one where the contrarian is wrong but it’s not always that obvious. As well, sometimes, people who hold out against the majority are right.

US Army

Getting back to building trust, it turns out the US Army Research Laboratory is also interested in transparency where AI is concerned (from a January 11, 2018 US Army news release on EurekAlert),

U.S. Army Research Laboratory [ARL] scientists developed ways to improve collaboration between humans and artificially intelligent agents in two projects recently completed for the Autonomy Research Pilot Initiative supported by the Office of Secretary of Defense. They did so by enhancing the agent transparency [emphasis mine], which refers to a robot, unmanned vehicle, or software agent’s ability to convey to humans its intent, performance, future plans, and reasoning process.

“As machine agents become more sophisticated and independent, it is critical for their human counterparts to understand their intent, behaviors, reasoning process behind those behaviors, and expected outcomes so the humans can properly calibrate their trust [emphasis mine] in the systems and make appropriate decisions,” explained ARL’s Dr. Jessie Chen, senior research psychologist.

The U.S. Defense Science Board, in a 2016 report, identified six barriers to human trust in autonomous systems, with ‘low observability, predictability, directability and auditability’ as well as ‘low mutual understanding of common goals’ being among the key issues.

In order to address these issues, Chen and her colleagues developed the Situation awareness-based Agent Transparency, or SAT, model and measured its effectiveness on human-agent team performance in a series of human factors studies supported by the ARPI. The SAT model deals with the information requirements from an agent to its human collaborator in order for the human to obtain effective situation awareness of the agent in its tasking environment. At the first SAT level, the agent provides the operator with the basic information about its current state and goals, intentions, and plans. At the second level, the agent reveals its reasoning process as well as the constraints/affordances that the agent considers when planning its actions. At the third SAT level, the agent provides the operator with information regarding its projection of future states, predicted consequences, likelihood of success/failure, and any uncertainty associated with the aforementioned projections.

In one of the ARPI projects, IMPACT, a research program on human-agent teaming for management of multiple heterogeneous unmanned vehicles, ARL’s experimental effort focused on examining the effects of levels of agent transparency, based on the SAT model, on human operators’ decision making during military scenarios. The results of a series of human factors experiments collectively suggest that transparency on the part of the agent benefits the human’s decision making and thus the overall human-agent team performance. More specifically, researchers said the human’s trust in the agent was significantly better calibrated — accepting the agent’s plan when it is correct and rejecting it when it is incorrect– when the agent had a higher level of transparency.

The other project related to agent transparency that Chen and her colleagues performed under the ARPI was Autonomous Squad Member, on which ARL collaborated with Naval Research Laboratory scientists. The ASM is a small ground robot that interacts with and communicates with an infantry squad. As part of the overall ASM program, Chen’s group developed transparency visualization concepts, which they used to investigate the effects of agent transparency levels on operator performance. Informed by the SAT model, the ASM’s user interface features an at a glance transparency module where user-tested iconographic representations of the agent’s plans, motivator, and projected outcomes are used to promote transparent interaction with the agent. A series of human factors studies on the ASM’s user interface have investigated the effects of agent transparency on the human teammate’s situation awareness, trust in the ASM, and workload. The results, consistent with the IMPACT project’s findings, demonstrated the positive effects of agent transparency on the human’s task performance without increase of perceived workload. The research participants also reported that they felt the ASM as more trustworthy, intelligent, and human-like when it conveyed greater levels of transparency.

Chen and her colleagues are currently expanding the SAT model into bidirectional transparency between the human and the agent.

“Bidirectional transparency, although conceptually straightforward–human and agent being mutually transparent about their reasoning process–can be quite challenging to implement in real time. However, transparency on the part of the human should support the agent’s planning and performance–just as agent transparency can support the human’s situation awareness and task performance, which we have demonstrated in our studies,” Chen hypothesized.

The challenge is to design the user interfaces, which can include visual, auditory, and other modalities, that can support bidirectional transparency dynamically, in real time, while not overwhelming the human with too much information and burden.

Interesting, yes? Here’s a link and a citation for the paper,

Situation Awareness-based Agent Transparency and Human-Autonomy Teaming Effectiveness by Jessie Y.C. Chen, Shan G. Lakhmani, Kimberly Stowers, Anthony R. Selkowitz, Julia L. Wright, and Michael Barnes. Theoretical Issues in Ergonomics Science May 2018. DOI 10.1080/1463922X.2017.1315750

This paper is behind a paywall.

Australian peacock spiders, photonic nanostructures, and making money

Researcher Bor-Kai Hsiung’s work has graced this blog before but the topic was tarantulas and their structural colour. This time, it’s all about Australian peacock spiders and their structural colour according to a December 22, 2017 news item on ScienceDaily,

Even if you are arachnophobic, you probably have seen pictures or videos of Australian peacock spiders (Maratus spp.). These tiny spiders are only 1-5 mm long but are famous for their flamboyant courtship displays featuring diverse and intricate body colorations, patterns, and movements.

The spiders extremely large anterior median eyes have excellent color vision and combine with their bright colors to make peacock spiders cute enough to cure most people of their arachnophobia. But these displays aren’t just pretty to look at, they also inspire new ways for humans to produce color in technology.

One species of peacock spider — the rainbow peacock spider (Maratus robinsoni) is particularly neat, because it showcases an intense rainbow iridescent signal in males’ courtship displays to the females. This is the first known instance in nature of males using an entire rainbow of colors to entice females. Dr. Bor-Kai Hsiung led an international team of researchers from the US (UAkron, Cal Tech, UC San Diego, UNL [University of Nebraska-Lincoln]), Belgium (Ghent University), Netherlands (UGroningen), and Australia to discover how rainbow peacock spiders produce this unique multi-color iridescent signal.

A December 22, 2017 Ghent University (Belgium) press release on Alpha Galileo, which originated the news item, provides more technical detail,

Using a diverse array of research techniques, including light and electron microscopy, hyperspectral imaging, imaging scatterometry, nano 3D printing and optical modeling, the team found the origin of this intense rainbow iridescence emerged from specialized abdominal scales of the spiders. These scales have an airfoil-like microscopic 3D contour with nanoscale diffraction grating structures on the surface.

The interaction between the surface nano-diffraction grating and the microscopic curvature of the scales enables separation and isolation of light into its component wavelengths at finer angles and smaller distances than are possible with current manmade engineering technologies.

Inspiration from these super iridescent scales can be used to overcome current limitations in spectral manipulation, and to further reduce the size of optical spectrometers for applications where fine-scale spectral resolution is required in a very small package, notably instruments on space missions, or wearable chemical detection systems. And it could have a wide array of implications to fields ranging from life sciences and biotechnologies to material sciences and engineering.

Here’s a video of an Australian rainbow peacock spider,

Here’s more from the YouTube description published on April 13, 2017 by Peacockspiderman,

Scenes of Maratus robinsoni, a spider Peter Robinson discovered and David Hill and I named it after him in 2012. You can read our description on pages 36-41 in Peckhamia 103.2, which can be downloaded from the Peckhamia website http://peckhamia.com/peckhamia_number…. This is one of the two smallest species of peacock spider (2.5 mm long) and the only spider we know of in which colour changes occur every time it moves, this video was created to document this. Music: ‘Be Still’ by Johannes Bornlöf licensed through my MCN ‘Brave Bison’ from ‘Epidemic Sound’ For licensing inquiries please contact Brave Bison licensing@bravebison.io

The University of California at San Diego also published a December 22, 2017 news release about this work, which covers some of the same ground while providing a few new tidbits of information,

Brightly colored Australian peacock spiders (Maratus spp.) captivate even the most arachnophobic viewers with their flamboyant courtship displays featuring diverse and intricate body colorations, patterns, and movements – all packed into miniature bodies measuring less than five millimeters in size for many species. However, these displays are not just pretty to look at. They also inspire new ways for humans to produce color in technology.

One species of peacock spider – the rainbow peacock spider (Maratus robinsoni) – is particularly impressive, because it showcases an intense rainbow iridescent signal in males’ courtship displays to females. This is the first known instance in nature of males using an entire rainbow of colors to entice females to mate. But how do males make their rainbows? A new study published in Nature Communications looked to answer that question.

Figuring out the answers was inherently interdisciplinary so Bor-Kai Hsiung, a postdoctoral scholar at Scripps Institution of Oceanography at the University of California San Diego, assembled an international team that included biologists, physicists and engineers. Starting while he was a Ph.D. student at The University of Akron under the mentorship of Todd Blackledge and Matthew Shawkey, the team included researchers from UA, Scripps Oceanography, California Institute of Technology, and University of Nebraska-Lincoln, the University of Ghent in Belgium, University of Groningen in Netherlands, and Australia to discover how rainbow peacock spiders produce this unique iridescent signal.

The team investigated the spider’s photonic structures using techniques that included light and electron microscopy, hyperspectral imaging, imaging scatterometry and optical modeling to generate hypotheses about how the spider’s scale generate such intense rainbows. The team then used cutting-edge nano 3D printing to fabricate different prototypes to test and validate their hypotheses. In the end, they found that the intense rainbow iridescence emerged from specialized abdominal scales on the spiders. These scales combine an airfoil-like microscopic 3D contour with nanoscale diffraction grating structures on the surface. It is the interaction between the surface nano-diffraction grating and the microscopic curvature of the scales that enables separation and isolation of light into its component wavelengths at finer angles and smaller distances than are possible with current engineering technologies.

“Who knew that such a small critter would create such an intense iridescence using extremely sophisticated mechanisms that will inspire optical engineers,” said Dimitri Deheyn, Hsuing’s advisor at Scripps Oceanography and a coauthor of the study.

For Hsiung, the finding wasn’t quite so unexpected.

“One of the main questions that I wanted to address in my Ph.D. dissertation was ‘how does nature modulate iridescence?’ From a biomimicry perspective, to fully understand and address a question, one has to take extremes from both ends into consideration. I purposefully chose to study these tiny spiders with intense iridescence after having investigated the non-iridescent blue tarantulas,” said Hsiung.

The mechanism behind these tiny rainbows may inspire new color technology, but would not have been discovered without research combining basic natural history with physics and engineering, the researchers said.

“Nanoscale 3D printing allowed us to experimentally validate our models, which was really exciting,” said Shawkey. “We hope that these techniques will become common in the future.”

“As an engineer, what I found fascinating about these spider structural colors is how these long evolved complex structures can still outperform human engineering,” said Radwanul Hasan Siddique, a postdoctoral scholar at Caltech and study coauthor. “Even with high-end fabrication techniques, we could not replicate the exact structures. I wonder how the spiders assemble these fancy structural patterns in the first place!”

Inspiration from these super iridescent spider scales can be used to overcome current limitations in spectral manipulation, and to reduce the size of optical spectrometers for applications where fine-scale spectral resolution is required in a very small package, notably instruments on space missions, or wearable chemical detection systems.

In the end, peacock spiders don’t just produce nature’s smallest rainbows.They could also have implications for a wide array of fields ranging from life sciences and biotechnologies to material sciences and engineering.

Before citing the paper and providing a link, here’s a story by Robert F. Service for Science magazine about attempts to capitalize on ‘spider technology’, in this case spider silk,

The hype over spider silk has been building since 1710. That was the year François Xavier Bon de Saint Hilaire, president of the Royal Society of Sciences in Montpellier, France, wrote to his colleagues, “You will be surpriz’d to hear, that Spiders make a Silk, as beautiful, strong and glossy, as common Silk.” Modern pitches boast that spider silk is five times stronger than steel yet more flexible than rubber. If it could be made into ropes, a macroscale web would be able to snare a jetliner.

The key word is “if.” Researchers first cloned a spider silk gene in 1990, in hopes of incorporating it into other organisms to produce the silk. (Spiders can’t be farmed like silkworms because they are territorial and cannibalistic.) Today, Escherichia coli bacteria, yeasts, plants, silkworms, and even goats have been genetically engineered to churn out spider silk proteins, though the proteins are often shorter and simpler than the spiders’ own. Companies have managed to spin those proteins into enough high-strength thread to produce a few prototype garments, including a running shoe by Adidas and a lightweight parka by The North Face. But so far, companies have struggled to mass produce these supersilks.

Some executives say that may finally be about to change. One Emeryville, California-based startup, Bolt Threads, says it has perfected growing spider silk proteins in yeast and is poised to turn out tons of spider silk thread per year. In Lansing, Michigan, Kraig Biocraft Laboratories says it needs only to finalize negotiations with silkworm farms in Vietnam to produce mass quantities of a combination spider/silkworm silk, which the U.S. Army is now testing for ballistics protection. …

I encourage you to read Service’s article in its entirety if the commercialization prospects for spider silk interest you as it includes gems such as this,

Spider silk proteins are already making their retail debut—but in cosmetics and medical devices, not high-strength fibers. AMSilk grows spider silk proteins in E. coli and dries the purified protein into powders or mixes it into gels, for use as additives for personal care products, such as moisture-retaining skin lotions. The silk proteins supposedly help the lotions form a very smooth, but breathable, layer over the skin. Römer says the company now sells tons of its purified silk protein ingredients every year.

Finally, here’s a citation for and a link to the paper about Australian peacock spiders and nanophotonics,

Rainbow peacock spiders inspire miniature super-iridescent optics by Bor-Kai Hsiung, Radwanul Hasan Siddique, Doekele G. Stavenga, Jürgen C. Otto, Michael C. Allen, Ying Liu, Yong-Feng Lu, Dimitri D. Deheyn, Matthew D. Shawkey, & Todd A. Blackledge. Nature Communications 8, Article number: 2278 (2017) doi:10.1038/s41467-017-02451-x Published online: 22 December 2017

This paper is open access.

As for Bor-Kai Hsiung’s other mentions here:

How tarantulas get blue (December 7, 2015 posting)

Noniridescent photonics inspired by tarantulas (October 19, 2016 posting)

More on the blue tarantula noniridescent photonics (December 28, 2016 posting)

Tune in, turn on, and drop out—LSD and psychedelic talk at Vancouver’s (Canada) Café Scientifique on March 31, 2015

There seems to be a lot of interest in psychedelics these days and not least here in Vancouver. Next Tuesday, March 31, 2015 Cafe Scientifique, held in the back room of The Railway Club (2nd floor of 579 Dunsmuir St. [at Seymour St.], will be hosting a talk on LSD (from the March 16, 2015 announcement,

Our speaker for the evening will be Dr. Michael Hughesa Research Associate in the Department of Medical Genetics at UBC (University of British Columbia) …

Psychedelic Medicine: The History & Science of LSD in the Clinic

Ergot is a fungus that grows on rye and other grains that has been blamed (rightly or wrongly) for episodes of mass hysteria throughout history. Lysergic acid diethylamide (LSD) was first synthesized from ergot in 1938 by a Swiss chemist named Albert Hoffman, who, at the height of World War II, also discovered (somewhat mysteriously) its psychedelic properties. LSD soon came to the attention of the U.S. Army who quickly proceeds to buy up all the supply – primarily to keep it out of the hands of its enemies. Throughout the Cold War, elements in U.S. defense and security agencies engage in experiments by secretly slipping LSD to citizens with dangerous (and sometimes comical) consequences with the goal of perfecting brainwashing and mind control. Canadian scientists at McGill participated in some of these studies, thinking they could use LSD to cure psychoses. These unethical and largely unscientific experiments were akin to psychological torture. Meanwhile, the public discovered the recreational benefits of LSD and the hippie movement adopted the drug as a symbol and vehicle to enlightenment. Largely for this reason, in the early ‘70s LSD was classified as a Schedule-1 drug in the U.S. restricted legal access stopped most research and hopes of the clinical benefits of LSD was abandoned and all but forgotten. Recently, scientists, mostly working outside of the U.S. and Canada, have rediscovered LSD’s efficacy for the treatment of psychiatric disorders including post-traumatic stress syndrome (PTSD) and existential fear in terminally ill patients. Are we ready for a new wave of ethical human research to (re)-discover the clinical benefits of LSD? Take a journey through the strange history of LSD research and learn about its potential applications in medicine. What a long, strange trip it’s been.

Hughes works as a team member in the Hematopoietic Cell Development laboratory at the University of British Columbia’s (UBC) Biomedical Research Centre.

Last week on March 18, 2015, The UBC Neuroscience Graduate Student Association hosted a screening of Neurons to Nirvana: Understanding Psychedelic Medicines at the Pacific Cinematheque theatre in Vancouver (Note: Links have been removed),

A thought-provoking and visually-stunning documentary that explores the potential of five powerful psychedelic substances (LSD, psilocybin, MDMA, ayahuasca, and cannabis) as psychotherapeutic medicines. Despite the potential promise shown by such drugs in research conducted in the 1950s, the increasingly restrictive anti-drug policies of successive governments effectively shut down further enquiry. As one of the many world-renowned researchers, writers, psychologists, and scientists interviewed in the film says: “The government does not allow this research to take place, and then says there’s no research to support it. It’s beyond hypocrisy.” The film is a cogent call to put irrational, fear-based beliefs aside in order to allow clinical, evidence-based research into psychedelics in areas such as addictions, PTSD, anxiety, depression, and end-of-life care.

– – – – – – – – – – – – – – – – – –

Post-screening discussion with co-director Oliver Hockenhull and Mark Haden.

A teacher and essayist as well as a filmmaker, Oliver Hockenhull has presented at numerous universities in Canada, the US, and Europe. He has blended the documentary, essay, and experimental genres in such previous works as Aldous Huxley: The Gravity of Light (1996), Building Heaven, Remembering Earth (1999), and Evo (2002).

Mark Haden worked for Vancouver Coastal Health Addiction Services for 28 years and is now an Adjunct Professor at the UBC School of Population and Public Health. He is a pivotal voice in the drug policy reform movement, providing viable models for reforming drug education and regulating markets for currently illegal substances. Mark is also the Chair of the Board of MAPS Canada (Multidisciplinary Association for Psychedelic Studies).

Moderated by Dr. Harry Karlinsky, Clinical Professor, Department of Psychiatry, University of British Columbia.

Perhaps popular demand will lead to another showing. In the meantime, there’s Hughes’ talk and if his description is indicative it should be fascinating.

For anyone who did not recognize it,  ‘tune in, turn on, and drop out’, is a phrase that Timothy Leary, the high priest of psychedelics, psychologist, and former lecturer at Harvard University popularized during the 1960s and 70s. According to the ‘tune in, turn on, and drop out‘ entry in Wikipedia, the phrase was given to Leary by Canadian media theorist, Marshall McLuhan.

ETA March 27, 2015 at 1610 PDT: I just received a newsletter from Canada’s National Film Board where the feature item is this,

All About Acid: Hofmann’s Potion

Open your mind with this powerful feature documentary that retraces the history of LSD, a substance first used to treat addiction and mental illness that became the self-understanding tool of a generation.

For more on Hofmann’s Potion, read Meet the Lab Coat-Clad Granddaddies of LSD on the NFB/ blog.

Watch Now

* ‘tun’ changed to ‘turn’ (sigh) March 27, 2015 at 1615 PDT

US Air Force wants to merge classical and quantum physics

The US Air Force wants to merge classical and quantum physics for practical purposes according to a May 5, 2014 news item on Azonano,

The Air Force Office of Scientific Research has selected the Harvard School of Engineering and Applied Sciences (SEAS) to lead a multidisciplinary effort that will merge research in classical and quantum physics and accelerate the development of advanced optical technologies.

Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, will lead this Multidisciplinary University Research Initiative [MURI] with a world-class team of collaborators from Harvard, Columbia University, Purdue University, Stanford University, the University of Pennsylvania, Lund University, and the University of Southampton.

The grant is expected to advance physics and materials science in directions that could lead to very sophisticated lenses, communication technologies, quantum information devices, and imaging technologies.

“This is one of the world’s strongest possible teams,” said Capasso. “I am proud to lead this group of people, who are internationally renowned experts in their fields, and I believe we can really break new ground.”

A May 1, 2014 Harvard University School of Engineering and Applied Sciences news release, which originated the news item, provides a description of project focus: nanophotonics and metamaterials along with some details of Capasso’s work in these areas (Note: Links have been removed),

The premise of nanophotonics is that light can interact with matter in unusual ways when the material incorporates tiny metallic or dielectric features that are separated by a distance shorter than the wavelength of the light. Metamaterials are engineered materials that exploit these phenomena, producing strange effects, enabling light to bend unnaturally, twist into a vortex, or disappear entirely. Yet the fabrication of thick, or bulk, metamaterials—that manipulate light as it passes through the material—has proven very challenging.

Recent research by Capasso and others in the field has demonstrated that with the right device structure, the critical manipulations can actually be confined to the very surface of the material—what they have dubbed a “metasurface.” These metasurfaces can impart an instantaneous shift in the phase, amplitude, and polarization of light, effectively controlling optical properties on demand. Importantly, they can be created in the lab using fairly common fabrication techniques.

At Harvard, the research has produced devices like an extremely thin, flat lens, and a material that absorbs 99.75% of infrared light. But, so far, such devices have been built to order—brilliantly suited to a single task, but not tunable.

This project, however,is focused on the future (Note: Links have been removed),

“Can we make a rapidly configurable metasurface so that we can change it in real time and quickly? That’s really a visionary frontier,” said Capasso. “We want to go all the way from the fundamental physics to the material building blocks and then the actual devices, to arrive at some sort of system demonstration.”

The proposed research also goes further. A key thrust of the project involves combining nanophotonics with research in quantum photonics. By exploiting the quantum effects of luminescent atomic impurities in diamond, for example, physicists and engineers have shown that light can be captured, stored, manipulated, and emitted as a controlled stream of single photons. These types of devices are essential building blocks for the realization of secure quantum communication systems and quantum computers. By coupling these quantum systems with metasurfaces—creating so-called quantum metasurfaces—the team believes it is possible to achieve an unprecedented level of control over the emission of photons.

“Just 20 years ago, the notion that photons could be manipulated at the subwavelength scale was thought to be some exotic thing, far fetched and of very limited use,” said Capasso. “But basic research opens up new avenues. In hindsight we know that new discoveries tend to lead to other technology developments in unexpected ways.”

The research team includes experts in theoretical physics, metamaterials, nanophotonic circuitry, quantum devices, plasmonics, nanofabrication, and computational modeling. Co-principal investigator Marko Lončar is the Tiantsai Lin Professor of Electrical Engineering at Harvard SEAS. Co-PI Nanfang Yu, Ph.D. ’09, developed expertise in metasurfaces as a student in Capasso’s Harvard laboratory; he is now an assistant professor of applied physics at Columbia. Additional co-PIs include Alexandra Boltasseva and Vladimir Shalaev at Purdue, Mark Brongersma at Stanford, and Nader Engheta at the University of Pennsylvania. Lars Samuelson (Lund University) and Nikolay Zheludev (University of Southampton) will also participate.

The bulk of the funding will support talented graduate students at the lead institutions.

The project, titled “Active Metasurfaces for Advanced Wavefront Engineering and Waveguiding,” is among 24 planned MURI awards selected from 361 white papers and 88 detailed proposals evaluated by a panel of experts; each award is subject to successful negotiation. The anticipated amount of the Harvard-led grant is up to $6.5 million for three to five years.

For anyone who’s not familiar (that includes me, anyway) with MURI awards, there’s this from Wikipedia (Note: links have been removed),

Multidisciplinary University Research Initiative (MURI) is a basic research program sponsored by the US Department of Defense (DoD). Currently each MURI award is about $1.5 million a year for five years.

I gather that in addition to the Air Force, the Army and the Navy also award MURI funds.

Brains in the US Congress

Tomorrow, May 24, 2012, Jean Paul Allain, associate professor of nuclear engineering at Purdue University (Illinois) will be speaking to members of the US Congress about repairing brain injuries using nanotechnology-enabled bioactive coatings for stents. From the May 21, 2012 news item on Nanowerk,

“Stents coated with a bioactive coating might be inserted at the site of an aneurism to help heal the inside lining of the blood vessel,” said Jean Paul Allain, an associate professor of nuclear engineering. “Aneurisms are saclike bulges in blood vessels caused by weakening of artery walls. We’re talking about using a regenerative approach, attracting cells to reconstruct the arterial wall.”

He will speak before Congress on Thursday (May 24) during the first Brain Mapping Day to discuss the promise of nanotechnology in treating brain injury and disease.

The May 21, 2012 news release (by Emil Venere) for Purdue University offers insight into some of the difficulties of dealing with aneurysms using today’s technologies,

Currently, aneurisms are treated either by performing brain surgery, opening the skull and clipping the sac, or by inserting a catheter through an artery into the brain and implanting a metallic coil into the balloon-like sac.

Both procedures risk major complications, including massive bleeding or the formation of potentially fatal blood clots.

“The survival rate is about 50/50 or worse, and those who do survive could be impaired,” said Allain, who holds a courtesy appointment with materials engineering and is affiliated with the Birck Nanotechnology Center in Purdue’s Discovery Park.

Allain goes on to explain how his team’s research addresses these issues (from the May 21, 2012 Purdue University news release),

Cells needed to repair blood vessels are influenced by both the surface texture – features such as bumps and irregular shapes as tiny as 10 nanometers wide – as well as the surface chemistry of the stent materials.

“We are learning how to regulate cell proliferation and growth by tailoring both the function of surface chemistry and topology,” Allain said. “There is correlation between surface chemistry and how cells send signals back and forth for proliferation. So the surface needs to be tailored to promote regenerative healing.”

The facility being used to irradiate the stents – the Radiation Surface Science and Engineering Laboratory in Purdue’s School of Nuclear Engineering – also is used for work aimed at developing linings for experimental nuclear fusion reactors for power generation.

Irradiating materials with the ion beams causes surface features to “self-organize” and also influences the surface chemistry, Allain said.

The stents are made of nonmagnetic materials, such as stainless steel and an alloy of nickel and titanium. Only a certain part of the stents is rendered magnetic to precisely direct the proliferation of cells to repair a blood vessel where it begins bulging to form the aneurism.

Researchers will study the stents using blood from pigs during the first phase in collaboration with the Walter Reed National Military Medical Center.

The stent coating’s surface is “functionalized” so that it interacts properly with the blood-vessel tissue. Some of the cells are magnetic naturally, and “magnetic nanoparticles” would be injected into the bloodstream to speed tissue regeneration. Researchers also are aiming to engineer the stents so that they show up in medical imaging to reveal how the coatings hold up in the bloodstream.

The research is led by Allain and co-principal investigator Lisa Reece of the Birck Nanotechnology Center. This effort has spawned new collaborations with researchers around the world including those at Universidad de Antioquía, University of Queensland. The research also involves doctoral students Ravi Kempaiah and Emily Walker.

The work is funded with a three-year, $1.5 million grant from the U.S. Army. Cells needed to repair blood vessels are influenced by both the surface texture – features such as bumps and irregular shapes as tiny as 10 nanometers wide – as well as the surface chemistry of the stent materials.

As I find the international flavour to the pursuit of science quite engaging, I want to highlight this bit in the May 21, 2012 news item on Nanowerk which mentions a few other collaborators on this project,

Purdue researchers are working with Col. Rocco Armonda, Dr. Teodoro Tigno and other neurosurgeons at Walter Reed National Military Medical Center in Bethesda, Md. Collaborations also are planned with research scientists from the University of Queensland in Australia, Universidad de Antioquía and Universidad de Los Andes, both in Colombia.

The US Congress is not the only place to hear about this work, Allain will also be speaking in Toronto at the 9th Annual World Congress of Society for Brain Mapping & Therapeutics (SBMT) being held June 2 – 4, 2012.