Tag Archives: US Department of Energy

The nuclear fusion energy race

In addition to the competition to develop commercial quantum computing, there’s the competition to develop commercial nuclear fusion energy. I have four stories about nuclear fusion, one from Spain, one from Chine, one from the US, and one from Vancouver. There are also a couple of segues into history and the recently (April 2, 2025) announced US tariffs (chaos has since ensued as these have become ‘on again/off again’ tariffs) but the bulk of this posting is focused on the latest (January – early April 2025) in fusion energy.

Fission nuclear energy, where atoms are split, is better known; fusion nuclear energy is released when a star is formed. For anyone unfamiliar with the word tokamak as applied to nuclear fusion (which is mentioned in all the stories), you can find out more in the Tokamak Wikipedia entry.

Spain

A January 21, 2025 news item on phys.org announces the first plasma generated by a tokamak,

In a pioneering approach to achieve fusion energy, the SMART device has successfully generated its first tokamak plasma. This step brings the international fusion community closer to achieving sustainable, clean, and virtually limitless energy through controlled fusion reactions.

A January 21, 2025 University of Seville press release on EurekAlert, which originated the news item, provides some explanations and more detail about the work, Note: Links have been removed,

The SMART tokamak, a state-of-the-art experimental fusion device designed, constructed and operated by the Plasma Science and Fusion Technology Laboratory of the University of Seville, is a worldwide unique spherical tokamak due to its flexible shaping capabilities. SMART has been designed to demonstrate the unique physics and engineering properties of Negative Triangularity shaped plasmas towards compact fusion power plants based on Spherical Tokamaks.

Prof. Manuel García Muñoz, Principal Investigator of the SMART tokamak, stated: “This is an important achievement for the entire team as we are now entering the operational phase of SMART. The SMART approach is a potential game changer with attractive fusion performance and power handling for future compact fusion reactors. We have exciting times ahead!
Prof. Eleonora Viezzer, co-PI of the SMART project, adds: “We were all very excited to see the first magnetically confined plasma and are looking forward to exploiting the capabilities of the SMART device together with the international scientific community. SMART has awoken great interest worldwide.

When negative becomes positive and compact

The triangularity describes the shape of the plasma. Most tokamaks operate with positive triangularity, meaning that the plasma shape looks like a D. When the D is mirrored (as shown in the figure on the right), the plasma has negative triangularity.

Negative triangularity plasma shapes feature enhanced performance as it suppresses instabilities that expel particles and energy from the plasma, preventing severe damage to the tokamak wall. Besides offering high fusion performance, negative triangularity also feature attractive power handling solutions, given that it covers a larger divertor area for distributing the heat exhaust. This also facilitates the engineering design for future compact fusion power plants.

Fusion2Grid aimed at developing the foundation for the most compact fusion power plant

SMART is the first step in the Fusion2Grid strategy led by the PSFT team and, in collaboration with the international fusion community, is aimed at the most compact and most efficient magnetically confined fusion power plant based on Negative Triangularity shaped Spherical Tokamaks.

SMART will be the first compact spherical tokamak operating at fusion temperatures with negative triangularity shaped plasmas.

The objective of SMART is to provide the physics and engineering basis for the most compact design of a fusion power plant based on high-field Spherical Tokamaks combined with Negative Triangularity. The solenoid-driven plasma represents a major achievement in the timeline of getting SMART online and advancing towards the most compact fusion device.

The Plasma Science and Fusion Technology Lab of the University of Seville hosts the SMall Aspect Ratio Tokamak (SMART) and leads several worldwide efforts on energetic particles and plasma transport and stability towards the development of magnetically confined fusion energy.

Here’s a link to and a citation for the paper,

Performance prediction applying different reduced turbulence models to the SMART tokamak by D.J. Cruz-Zabala, M. Podestàa, F. Polib, S.M. Kaye, M. Garcia-Munoz, E. Viezzer and J.W. Berkery. Nuclear Fusion, Volume 64, Number 12DOI 10.1088/1741-4326/ad8a70 Published 7 November 2024 © 2024 The Author(s). Published by IOP Publishing Ltd on behalf of the IAEA (International Atomic Energy Agency)

This paper is open access.

China

Caption: The Experimental Advanced Superconducting Tokamak achieved a remarkable scientific milestone by maintaining steady-state high-confinement plasma operation for an impressive 1,066 seconds. Credit: Image by HFIPS ( Hefei Institutes of Physical Science at the Chinese Academy of Sciences)

China has made a business announcement and there is no academic paper mentioned in their January 21, 2025 press release on EurekAlert (also available on phys.org as a January 21, 2025 news item), Note: A link has been removed,

The Experimental Advanced Superconducting Tokamak (EAST), commonly known as China’s “artificial sun,” has achieved a remarkable scientific milestone by maintaining steady-state high-confinement plasma operation for an impressive 1,066 seconds. This accomplishment, reached on Monday, sets a new world record and marks a significant breakthrough in the pursuit of fusion power generation.

The duration of 1,066 seconds is a critical advancement in fusion research. This milestone, achieved by the Institute of Plasma Physics (ASIPP) at Hefei Institutes of Physical Scienece [sic] (HFIPS) of the Chinese Academy of Sciences, far surpasses the previous world record of 403 seconds, also set by EAST in 2023.

The ultimate goal of developing an artificial sun is to replicate the nuclear fusion processes that occurr [sci] in the sun, providing humanity with a limitless and clean energy source, and enabling exploration beyond our solar system.

Scientists worldwide have dedicated over 70 years to this ambitious goal. However, generating electricity from a nuclear fusion device involves overcoming key challenges, including reaching temperatures exceeding 100 million degrees Celsius, maintaining stable long-term operation, and ensuring precise control of the fusion process.

“A fusion device must achieve stable operation at high efficiency for thousands of seconds to enable the self-sustaining circulation of plasma, which is essential for the continuous power generation of future fusion plants,” said SONG Yuntao, ASIPP director and also vice president of HFIPS. He said that the recent record is monumental, marking a critical step toward realizing a functional fusion reactor.

According to GONG Xianzu, head of the EAST Physics and Experimental Operations division, several systems of the EAST device have been upgraded since the last round of experiments. For example, the heating system, which previously operated at the equivalent power of nearly 70,000 household microwave ovens, has now doubled its power output while maintaining stability and continuity.

Since its inception in 2006, EAST has served as an open testing platform for both Chinese and international scientists to conduct fusion-related experiments and research.

China officially joined the International Thermonuclear Experimental Reactor (ITER) program in 2006 as its seventh member. Under the agreement, China is responsible for approximately 9 percent of the project’s construction and operation, with ASIPP serving as the primary institution for the Chinese mission.

ITER, currently under construction in southern France, is set to become the world’s largest magnetic confinement plasma physics experiment and the largest experimental tokamak nuclear fusion reactor upon completion.

In recent years, EAST has consistently achieved groundbreaking advancements in high-confinement mode, a fundamental operational mode for experimental fusion reactors like ITER and the future China Fusion Engineering Test Reactor (CFETR). These accomplishments provide invaluable insights and references for the global development of fusion reactors.

“We hope to expand international collaboration via EAST and bring fusion energy into practical use for humanity,” said SONG.

In Hefei, Anhui Province, China, where EAST is loacated [sic], a new generation of experimental fusion research facilities is currently under construction. These facilities aim to further accelerate the development and application of fusion energy.

I always feel a little less confident about the information when there are mistakes. Three typos in the same press release? Maybe someone forgot to give it a final once over?

US

Despite the Cambridge University Press mention, this March 27, 2025 Cambridge University Press press release (also on EurekAlert) is about a US development,

Successfully harnessing the power of fusion energy could lead to cleaner and safer energy for all – and contribute substantially to combatting [UK spelling] the climate crisis. Towards this goal, Type One Energy has published a comprehensive, self-consistent, and robust physics basis for a practical fusion pilot power plant.  

This groundbreaking research is presented in a series of six peer-reviewed scientific papers in a special issue of the prestigious Journal of Plasma Physics (JPP), published by Cambridge University Press. 

The articles serve as the foundation for the company’s first fusion power plant project, which Type One Energy is developing with the Tennessee Valley Authority utility in the United States.  

Alex Schekochihin, Professor of Theoretical Physics at the University of Oxford and Editor of the JPP, spoke with enthusiasm about this development: 

“JPP is very proud to provide a platform for rigorous peer review and publication of the papers presenting the physics basis of the Infinity Two stellarator — an innovative and ground-breaking addition to the expanding family of proposed fusion power plant designs.  

“Fusion science and technology are experiencing a period of very rapid development, driven by both public and private enthusiasm for fusion power. In this environment of creative and entrepreneurial ferment, it is crucial that new ideas and designs are both publicly shared and thoroughly scrutinised by the scientific community — Type One Energy and JPP are setting the gold standard for how this is done (as we did with Commonwealth Fusion Systems 5 years ago for their SPARC physics basis).” 

The new physics design basis for the pilot power plant is a robust effort to consider realistically the complex relationship between challenging, competing requirements that all need to function together for fusion energy to be possible.  

This new physics solution also builds on the operating characteristics of high-performing stellarator fusion technology – a stellarator being a machine that uses complex, helical magnetic fields to confine the plasma, thereby enabling scientists to control it and create suitable conditions for fusion. This technology is already being used with success on the world’s largest research stellarator, the Wendelstein 7-X, located in Germany, but the challenge embraced by Type One Energy’s new design is how to scale it up to a pilot plant. 

Building the future of energy 

Functional fusion technology could offer limitless clean energy. As global energy demands increase and energy security is front of mind, too, this new physics design basis comes at an excellent time.  

Christofer Mowry, CEO of Type One Energy, is cognisant of the landmark nature of his company’s achievement and proud of its strong, real-world foundations. 

“The physics basis for our new fusion power plant is grounded in Type One Energy’s expert knowledge about reliable, economic, electrical generation for the power grid. We have an organisation that understands this isn’t only about designing a science project.” 

This research was developed collaboratively between Type One Energy and a broad coalition of scientists from national laboratories and universities around the world. Collaborating organisations included the US Department of Energy, for using their supercomputers, such as the exascale Frontier machine at Oak Ridge National Laboratory, to perform its physics simulations. 

While commercial fusion energy has yet to move from theory into practice, this new research marks an important and promising milestone. Clean and abundant energy may yet become reality.  

You can read the six papers and the accompanying Editorial (all of which are open access) in this special issue, Physics Basics of the Infinity Two Fusion Power Plant of the Journal of Plasma Physics.

Bull Run, eh?

This is not directly related to fusion energy, so, you might want to skip this section.

Caption: Type One Energy employees at the Bull Run [emphasis mine] Fossil Plant, soon to be home to the prototype Infinity One. Credit: Type One Energy

I wonder if anyone argued for a change of name given how charged the US history associated with ‘Bull Run’ is, from the the First Battle of Bull Run Wikipedia entry, Note: Links have been removed,

The First Battle of Bull Run, called the Battle of First Manassas[1] by Confederate forces, was the first major battle of the American Civil War. The battle was fought on July 21, 1861, in Prince William County, Virginia, just north of what is now the city of Manassas and about thirty miles west-southwest of Washington, D.C. The Union Army was slow in positioning themselves, allowing Confederate reinforcements time to arrive by rail. Each side had about 18,000 poorly trained and poorly led troops. The battle was a Confederate victory and was followed by a disorganized post-battle retreat of the Union forces.

A Confederate victory the first time and the second time (Second Battle of Bull Run Wikipedia entry)? For anyone unfamiliar with the history, the US Civil War was fought from 1861 to 1865 between Union and Confederate forces. The Confederate states had seceded from the union (US) and were fighting to retain their slavery-based economy and they lost the war.

Had anyone consulted me I would have advised changing the name from Bull Run to some thing less charged (pun noted) to host your prototype fusion energy pilot plant.

Back to the usual programme.

Type One Energy

Type One Energy issued a March 27, 2025 news release about the special issue of the Journal of Plasma Physics (JPP), Note 1: Some of this redundant; Note 2: Links have been removed,

Type One Energy announced today publication of the world’s first comprehensive, self-consistent, and robust physics basis, with conservative design margins, for a practical fusion pilot power plant. This physics basis is presented in a series of seven peer-reviewed scientific papers in a special issue of the prestigious Journal of Plasma Physics (JPP). They serve as the foundation for the company’s first Infinity Two stellarator fusion power plant project, which Type One Energy is developing for the Tennessee Valley Authority (TVA) utility in the U.S.

The Infinity Two fusion pilot power plant physics design basis realistically considers, for the first time, the complex relationship between competing requirements for plasma performance, power plant startup, construction logistics, reliability, and economics utilizing actual power plant operating experience. This Infinity Two baseline physics solution makes use of the inherently favorable operating characteristics of highly optimized stellarator fusion technology using modular superconducting magnets, as was so successfully proven on the W7-X science machine in Germany.

“Why are we the first private fusion company with an agreement to develop a potential fusion power plant project for an energy utility? Because we have a design anchored in reality,” said Christofer Mowry, CEO of Type One Energy. “The physics basis for Infinity Two is grounded in the knowledge of what is required for application to, and performance in, the demanding environment of reliable electrical generation for the power grid. We have an organization that understands this isn’t about designing a science project.”

Led by Chris Hegna, widely recognized as a leading theorist in modern stellarators, Type One Energy performed high-fidelity computational plasma physics analyses to substantially reduce the risk of meeting Infinity Two power plant functional and performance requirements. This unique and transformational achievement is the result of a global development program led by the Type One Energy plasma physics and stellarator engineering organization, with significant contributions from a broad coalition of scientists from national laboratories and universities around the world. The company made use of a spectrum of high-performance computing facilities, including access to the highest-performance U.S. Department of Energy supercomputers such as the exascale Frontier machine at Oak Ridge National Laboratory (ORNL), to perform its stellarator physics simulations.

“We committed to this ambitious fusion commercialization milestone two years ago and today we delivered,” said John Canik, Chief Science and Engineering Officer for Type One Energy. “The team was able to efficiently develop deep plasma physics insights to inform the design of our Infinity Two stellarator, by taking advantage of our access to high performance computing resources. This enabled the Type One Energy team to demonstrate a realistic, integrated stellarator design that moves far beyond conventional thinking and concepts derived from more limited modeling capabilities.”

The consistent and robust physics solution for Infinity Two results in a deuterium-tritium (D-T) fueled, burning plasma stellarator with 800 MW of fusion power and delivers a nominal 350 MWe to the power grid. It is characterized by fusion plasma with resilient and stable behavior across a broad range of operating conditions, very low heat loss due to turbulent transport, as well as tolerable direct energy losses to the stellarator first wall. The Infinity Two stellarator has sufficient room for both adequately sized island divertors to exhaust helium ash and a blanket which provides appropriate shielding and tritium breeding. Type One Energy has high confidence that this essential physics solution provides a good baseline stellarator configuration for the Infinity Two fusion pilot power plant.

“The articles in this issue [of JPP] represent an important step towards a fusion reactor based on the stellarator concept. Thanks to decades of experiments and theoretical research, much of the latter published in JPP, it has become possible to lay out the physics basis for a stellarator power plant in considerable detail,” said Per Helander, head of Stellarator Theory Division at the Max Planck Institute for Plasma Physics. “JPP is very happy to publish this series of papers from Type One Energy, where this has been accomplished in a way that sets new standards for the fidelity and confidence level in this context.”

Important to successful fusion power plant commercialization, this stellarator configuration has enabled Type One Energy to architect a maintenance solution which supports good power plant Capacity Factors (CF) and associated Levelized Cost of Electricity (LCOE). It also supports favorable regulatory requirements for component manufacturing and power plant construction methods essential to achieving a reasonable Over-Night Cost (ONC) for Infinity Two.

About Type One Energy

Type One Energy Group is mission-driven to provide sustainable, affordable fusion power to the world. Established in 2019 and venture-backed in 2023, the company is led by a team of globally recognized fusion scientists with a strong track record of building state-of-the-art stellarator fusion machines, together with veteran business leaders experienced in scaling companies and commercializing energy technologies. Type One Energy applies proven advanced manufacturing methods, modern computational physics and high-field superconducting magnets to develop its optimized stellarator fusion energy system. Its FusionDirect development program pursues the lowest-risk, shortest-schedule path to a fusion power plant over the coming decade, using a partner-intensive and capital-efficient strategy. Type One Energy is committed to community engagement in the development and deployment of its clean energy technology. For more information, visit www.typeoneenergy.com or follow us on LinkedIn.

While the company is currently headquartered in Knoxville, Tennessee, it was originally a spinoff company from the University of Wisconsin-Madison according to a March 30, 2023 posting on the university’s College of Engineering website,

Type One Energy, a Middleton, Wisconsin-based fusion energy company with roots in the University of Wisconsin-Madison’s College of Engineering, recently announced its first round of seed funding, raising $29 million from investors. The company has also onboarded a new, highly experienced CEO [Christofer Mowry].

Type One, founded in 2019 by a team of globally recognized fusion scientists and business leaders, is hoping to commercialize stellarator technology over the next decade. Stellarators are a type of fusion reactor that uses powerful magnets to confine ultra-hot streams of plasma in order to create the conditions for fusion reactions. Energy from fusion promises to be clean, safe, renewable power. The company is using advanced manufacturing methods, modern computational physics and high-field superconducting magnets to develop its stellarator through an initiative called FusionDirect.

According to the Type One Energy’s About page, there are four offices with the headquarters in Tennessee,

Knoxville (Headquarters)
2410 Cherahala Blvd.
Knoxville, TN 37931

Madison
316 W Washington Ave. Suite 300
Madison, WI 53703

Boston
299 Washington St. Suites C & E
Woburn, MA 01801

Vancouver
1140 West Pender St.
Vancouver, BC V6E 4G1

The mention of an office in Vancouver, Canada piqued my curiosity but before getting to that, I’m going to include some informative excerpts about nuclear energy (both fission and fusion) from this August 31, 2023 article written by Tina Tosukhowong on behalf of TDK Ventures, which was posted on Medium,

Fusion power is the key to the energy transformation that humanity needs to drive decarbonization, clean, and baseload energy production that is inherently fail-safe, with no risk of long-lived radioactive waste, while also delivering on ever-growing energy-consumption demands at the global scale. Fusion is hard and requires exceptional conditions for sustained reaction (which is part of what makes it so safe), which has long served as a deterrent for technical maturation and industrial viability. …

The current reality of our world is monumental fossil-fuel dependence. This, coupled with unprecedented levels of energy demand has resulted in the over 136,700 TWh (that’s 10¹²) of energy consumed via fossil fuels annually [1]. Chief repercussion among the many consequences of this dependence is the now very looming threat of climate catastrophe, which will soon be irreversible if global temperature rise is not abated and held to within 1.5 °C of pre-industrial levels. To do so, the nearly 40 gigatons of CO2 emissions generated each year must be steadily reduced and eventually mitigated entirely [2]. A fundamental shift in how power is generated globally is the only way forward. Humanity needs an energy transformation — the right energy transformation.

Alternative energy-generation techniques, such as wind, solar, geothermal, and hydroelectric approaches have all made excellent strides, and indeed in just the United States electricity generated by renewable methods doubled from 10 to 20% of total between 2010 and 2020 [3–4]. These numbers are incredibly encouraging and give significant credence in the journey to net-zero emission energy generation. However, while these standard renewable approaches should be championed, wind and solar are intermittent and require a large amount of land to deploy, while geothermal and hydroelectric are not available in every geography.

By far the most viable candidates for continuous clean energy generation to replace coal-fired power plants are nuclear-driven technologies, i.e. nuclear fission or nuclear fusion. Nuclear fission has been a proven effective method ever since it was first demonstrated almost 80 years ago underneath the University of Chicago football Stadium by Nobel Laureate Enrico Fermi [5]. Heavier atomic elements, in most cases Uranium-235, are exposed to and bombarded by neutrons. This causes the Uranium to split resulting in two slightly less-heavy elements (like Barium and Krypton). This in turn causes energy to be released and more neutrons to be ejected and bombard other nearby Uranium-235, at which point the process cascades into a chain reaction. The released energy (heat) is utilized in the same way coal is burned in a traditional power plant, being subsequently used to generate electricity usually via the creation of steam to drive a turbine [6]. While already having reached viable commercial maturity, fission carries inherent and nontrivial safety concerns. An unhampered chain reaction can quickly lead to meltdown with disastrous consequences, and, even when properly managed, the end reaction does generate radioactive waste whose half-life can last hundreds of thousands of years.

Figure 1. Breakdown of a nuclear fission reaction [6]. Incident neutron bombards a fissile heavy element, splitting it and release energy and more nuclei setting off a chain reaction.

Especially given modernization efforts and meteoric gains in safety (thanks to advents in material science like ceramic coatings), fission will continue to be a critical piece to better, greener energy transformation. However, in extending our vision to an even brighter future with no such concerns — carbon emissions or safety — nuclear fusion is humanity’s silver bullet. Instead of breaking down atoms leading to a chain reaction, fusion is the combining of atoms (usually isotopes of Hydrogen) into heavier elements which also results in energy release / heat generation [7]. Like fission, fusion can be designed to be a continuous energy source that can serve as a permanent backbone to the power grid. It is extremely energy dense, with 1 kg of fusion fuel producing the same amount of energy as 1,000,000 kg of coal, and it is inherently fail-safe with no long-term radioactive waste.

As a concept, if fusion is a silver bullet to answer humanity’s energy transformation needs, then why haven’t we done so already? The appeal seems so obvious, what’s the hold up? Simply put, nuclear fusion is hard for the very same reason the process is inherently safe. Atoms in the process must have enough energy to overcome electrostatic repulsive forces between the two positive charges of their nuclei to fuse. The key figure of merit to evaluate fusion is the so-called “Lawson Triple Product.” Essentially, this means in order to generate energy by fusion more than the rate of energy oss to the environment, the nuclei must be very close together (as represented by n — the plasma density), kept at a high enough temperature (as represented by T — temperature), and for long enough time to sustain fusion (as represented by τ — the confinement time). The triple product required to achieve fusion “ignition” (the state where the rate of energy production is higher than the rate of loss) depends on the fuel type and occurs within a plasma state. A deuterium and tritium (D-T) system has the lowest Lawson Triple product requirement, where fusion can achieve a viable threshold for ignition when the density of the fuel atoms, n, multiplied by the fuel temperature, T, multiplied by the confinement time, τ, is greater than 5×10²¹ (nTτ > 5×10²¹ keV-s/m³) [8–9]. For context, the temperature alone in this scenario must be higher than 100-million degrees Celsius.

Figure 2. (Left) Conceptual illustration of a fusion reaction with Deuterium (²H) and Tritium (³H) forming an Alpha particle (⁴He) and free neutron along with energy released as heat (Right). To initiate fusion, repelling electrostatic charge must be overcome via conditions meeting the minimum Lawson Triple Product threshold

Tosukhowong’s August 31, 2023 article provides a good overview keeping in mind that it is slanted to justify TDK’s investment in Type One Energy.

Why a Vancouver, Canada office?

As for Type One Energy’s Vancouver (British Columbia, Canada) connection, I was reminded of General Fusion, a local fusion energy company while speculating about the connection. First speculative question: could Type One Energy’s presence in Canada allow it to access Canadian government funds for its research? Second speculative question: do they want to have access to people who might hesitate to move to the US or might want to move out of the US but would move to Canada?

The US is currently in an unstable state as suggested in this April 3, 2025 opinion piece by Les Leyne for vancouverisawsome.com

Les Leyne: Trump’s incoherence makes responding to tariff wall tricky

Trump’s announcement was so incoherent that much of the rest of the world had to scramble to grasp even the basic details

B.C. officials were guarded Wednesday [April 2, 2025] about the impact on Canada of the tariff wall U.S. President Donald Trump erected around the U.S., but it appears it could have been worse.

Trump’s announcement was so incoherent that much of the rest of the world had to scramble to grasp even the basic details. So cabinet ministers begged for more time to check the impacts.

“It’s still very uncertain,” said Housing Minister Ravi Kahlon, who chairs the “war room” committee responsible for countering tariff threats. “It’s hard to make sense from President Trump’s speech.” [emphasis mine]

Kahlon said the challenge is that tariff policies change hour by hour, “and anything can happen.”

On April 2, 2025 US President Donald Trump announced tariffs (then paused some of the tariffs on April 9, 2025) and some of the targets seemed a bit odd, from an April 2, 2025 article by Alex Galbraith for salon.com, Note: Links have been removed,

“Trade war with penguins”: Trump places 10% tariff on uninhabited Antarctic islands

Planned tariffs shared by the White House included a 10% duty on imports from the barren Heard and McDonald Islands

For once in his life, Donald Trump underpromised and over-delivered. 

The president announced a 10% duty on all imports on Wednesday [April 2, 2025], along with a raft of reciprocal tariffs on U.S. trading partners. An extensive graphic released by the White House showed how far Trump was willing to take his tit-for-tat trade war, including a shocking levy of 10% on all imports from the Heard and McDonald Islands. 

If you haven’t heard of this powerhouse of global trade and territory of Australia, you aren’t alone. Few have outside of Antarctic researchers and seals. These extremely remote islands about 1,000 miles north of Antarctica consist mostly of barren tundra. They’re also entirely uninhabited. 

The news that we were starting a trade war with penguins spread quickly after Trump’s announcement. …

U.S. stock futures crumbled following the news of Trump’s widespread tariffs. Dow futures fell by nearly 1,000 points while NASDAQ and S&P futures fell by 3 to 4%. American companies’ stock values rapidly tumbled after the announcement, with large retail importers seeing significant losses. …

No word from the penguins about the ‘pause’. I’m assuming Donald Trump’s next book will be titled, “The art of negotiating trade deals with penguins.” Can’t wait to read it.

(Perhaps someone should tell him there are no penguins in the Arctic so he can’t bypass Canadians or Greenlanders to make a deal.)

Now for the local story.

General Fusion

There’ve been two recent developments at General Fusion. Most recently, an April 2, 2025 General Fusion news release announces a new hire, Note: Links have been removed,

Bob Smith is joining General Fusion as a strategic advisor. Smith brings more than 35 years of experience developing, scaling, and launching world-changing technologies, including spearheading new products and innovation in the aerospace industry at United Space Alliance, Sandia Labs, and Honeywell before serving as CEO of Blue Origin. He joins General Fusion as the company’s Lawson Machine 26 (LM26) fusion demonstration begins operations and progresses toward transformative technical milestones on the path to commercialization.

“I’ve been watching the fusion energy industry closely for my entire career. Fusion is the last energy source humanity will ever need, and I believe its impact as a zero-carbon energy source will transform the global energy supply at the time needed to fight the worst consequences of climate change,” said Smith. “I am thrilled to work with General Fusion. Their novel approach has inherent and distinctive benefits for the generation of commercially competitive fusion power. It’s exciting to join at a time when the team is about to demonstrate the fundamental physics behind their system and move to scaling up to a pilot plant.”

The LM26 program marks a significant step towards commercialization, as the company’s unique Magnetized Target Fusion (MTF) approach makes the path to powering the grid with fusion energy more straightforward than other technologies—because it practically addresses barriers to fusion commercialization, such as neutron material degradation, sustainable fuel production, and efficient energy extraction. As a strategic advisor, Smith will leverage his experience advancing game-changing technologies to help guide General Fusion’s technology development and strategic growth.

“Bob’s insights and experience will be invaluable as we execute the LM26 program and look beyond it to propel our practical technology to powering the grid by the mid-2030s,” said Greg Twinney, CEO, General Fusion. “We are grateful for his commitment of his in-demand time and expertise to our mission and look forward to working together to make fusion power a reality!”

About Bob Smith:

Bob is an experienced business leader in the aerospace and defense industry with extensive technical and operational expertise across the sector. He worked at and managed federal labs, led developments at a large government contractor, grew businesses at a Fortune 100 multinational, and scaled up a launch and space systems startup. Bob also has extensive international experience and has worked with suppliers and OEMs in all the major aerospace regions, including establishing new sites and factories in Europe, India, China, and Puerto Rico.

Bob’s prior leadership roles include Chairman and Chief Executive Officer of Blue Origin, President of Mechanical Systems & Components at Honeywell Aerospace, Chief Technology Officer at Honeywell Aerospace, Chairman of NTESS (Sandia Labs), and Executive Director of Space Shuttle Upgrades at United Space Alliance.

Bob holds a Bachelor of Science degree in aerospace engineering from Texas A&M, a Master of Science degree in engineering/applied mathematics from Brown University, a doctorate from the University of Texas in aerospace engineering, and a business degree from MIT’s Sloan School of Management. Bob is also a Fellow of the Royal Aeronautical Society, a Fellow of the American Institute of Aeronautics and Astronautics, and an Academician in the International Academy of Astronautics.

Quick Facts:  

  • Fusion energy is the ultimate clean energy solution—it is the energy source that powers the sun and stars. Fusion is the process by which two light nuclei merge to form a heavier one, producing a massive amount of energy.
  • General Fusion’s Magnetized Target Fusion (MTF) technology is designed to scale for cost-efficient power plants. It uses mechanical compression to create fusion conditions in short pulses, eliminating the need for expensive lasers or superconducting magnets. An MTF power plant is designed to produce its own fuel and inherently includes a method to extract the energy and put it to work.
  • Lawson Machine 26 (LM26) is a world-first Magnetized Target Fusion demonstration. Launched, designed, and assembled in just 16 months, the machine is now forming magnetized plasmas regularly at 50 per cent commercial scale. It is advancing towards a series of results that will demonstrate MTF in a commercially relevant way: 10 million degrees Celsius (1 keV), 100 million degrees Celsius (10 keV), and scientific breakeven equivalent (100% Lawson).

About General Fusion
General Fusion is pursuing a fast and practical approach to commercial fusion energy and is headquartered in Richmond, Canada. The company was established in 2002 and is funded by a global syndicate of leading energy venture capital firms, industry leaders, and technology pioneers. Learn more at www.generalfusion.com.

Bob Smith and Blue Origin: things did not go well

Sometimes you end up in a job and things do not work out well and that seems to have been the case at Blue Origin according to a September 25, 2023 article by Eric Berger for Ars Tecnica,

After six years of running Blue Origin, Bob Smith announced in a company-wide email on Monday that he will be “stepping aside” as chief executive of the space company founded by Jeff Bezos.

“It has been my privilege to be part of this great team, and I am confident that Blue Origin’s greatest achievements are still ahead of us,” Smith wrote in an email. “We’ve rapidly scaled this company from its prototyping and research roots to a large, prominent space business.”

Shortly after Smith’s email, a Blue Origin spokesperson said the company’s new chief executive will be Dave Limp, who stepped down as Amazon’s vice president of devices and services last month.

To put things politely, Smith has had a rocky tenure as Blue Origin’s chief executive. After being personally vetted and hired by Bezos, Smith took over from Rob Meyerson in 2017. The Honeywell engineer was given a mandate to transform Blue Origin into a large and profitable space business.

He did succeed in growing Blue Origin. The company had about 1,500 employees when Smith arrived, and the company now employs nearly 11,000 people. But he has been significantly late on a number of key programs, including the BE-4 rocket engine and the New Glenn rocket.

As a space reporter, I have spoken with dozens of current and former Blue Origin employees, and virtually none of them have had anything positive to say about Smith’s tenure as chief executive. I asked one current employee about the hiring of Limp on Monday afternoon, and their response was, “Anything is better than Bob.”

Although it is very far from an exact barometer, Smith has received consistently low ratings on Glassdoor for his performance as chief executive of Blue Origin. And two years ago, a group of current and former Blue Origin employees wrote a blistering letter about the company under Smith. “In our experience, Blue Origin’s culture sits on a foundation that ignores the plight of our planet, turns a blind eye to sexism, is not sufficiently attuned to safety concerns, and silences those who seek to correct wrongs,” the essay authors wrote.

With any corporate culture, there will be growing pains, of course. But Smith brought a traditional aerospace mindset into a company that had hitherto been guided by a new space vision, leading to a high turnover rate. And Blue Origin remains significantly underwater, financially. It is likely that Bezos is still providing about $2 billion a year to support the company’s cash needs.

Crucially, as Blue Origin meandered under Smith’s tenure, SpaceX soared, launching hundreds of rockets and thousands of satellites. Smith, clearly, was not the leader Blue Origin needed to make the company more competitive with SpaceX in launch and other spaceflight activities. It became something of a parlor game in the space industry to guess when Bezos would finally get around to firing Smith.

On the technical front, a March 27, 2025 General Fusion news release announces “Peer-reviewed publication confirms General Fusion achieved plasma energy confinement time required for its LM26 large-scale fusion machine,” Note: Links have been removed,

New results published in Nuclear Fusion confirm General Fusion successfully created magnetized plasmas that achieved energy confinement times exceeding 10 milliseconds. The published energy confinement time results were achieved on General Fusion’s PI3 plasma injector — the world’s largest and most powerful plasma injector of its kind. Commissioned in 2017, PI3 formed approximately 20,000 plasmas in a machine of 50 per cent commercial scale. The plasma injector is now integrated into General Fusion’s Lawson Machine 26 (LM26) — a world-first Magnetized Target Fusion demonstration tracking toward game-changing technical milestones that will advance the company’s ultimate mission: generating zero-carbon fusion energy for the grid in the next decade.

The 10-millisecond energy confinement time is the duration required to compress plasmas in LM26 to achieve key temperature thresholds of 1 keV, 10 keV, and, ultimately, scientific breakeven equivalent (100% Lawson). These results were imperative to de-risking LM26. The demonstration machine is now forming plasmas regularly, and the company is optimizing its plasma performance in preparation for compressing plasmas to create fusion and heating from compression.    

Key Findings: 

  • The plasma injector now integrated into General Fusion’s LM26 achieved energy confinement times exceeding 10 milliseconds, the pre-compression confinement time required for LM26’s targeted technical milestones. These results were achieved without requiring active magnetic stabilization or auxiliary heating. This means the results were achieved without superconducting magnets, demonstrating the company’s cost-effective approach.  
  • The plasma’s energy confinement time improved when the plasma injector vessel was coated with natural lithium. A key differentiator in General Fusion’s commercial approach is its use of a liquid lithium wall to compress plasmas during compression. In addition to the confinement time advantages shown in this paper, the liquid lithium wall will also protect a commercial MTF machine from neutron damage, enable the machine to breed its own fuel, and provide an efficient method for extracting energy from the machine.
  • The maximum energy confinement time achieved by PI3 was approximately 12 milliseconds. The machine’s maximum plasma density was approximately 6×1019 m-3, and maximum plasma temperatures exceeded 400 eV. These strong pre-compression results support LM26’s transformative targets.

Quotes:  

“LM26 is designed to achieve a series of results that will demonstrate MTF in a commercially relevant way. Following LM26’s results, our unique approach makes the path to powering the grid with fusion energy more straightforward than other technologies because we have front-loaded the work to address the barriers to commercialization.”  

Dr. Michel Laberge
Founder and Chief Science Officer

“For over 16 years, I have worked hand in hand with Michel to advance General Fusion’s practical technology. This company is entrepreneurial at its core. We pride ourselves on building real machines that get results that matter, and I’m thrilled to have the achievements recognized in Nuclear Fusion.”

Mike Donaldson
Senior Vice President, Technology Development

Here’s a link to and a citation for the paper,

Thermal energy confinement time of spherical tokamak plasmas in PI3 by A. Tancetti, C. Ribeiro, S.J. Howard, S. Coop, C.P. McNally, M. Reynolds, P. Kholodov, F. Braglia, R. Zindler, C. Macdonald. Nuclear Fusion, Volume 65, Number 3DOI: 10.1088/1741-4326/adb8fb Published 28 February 2025 • © 2025 The Author(s). Published by IOP Publishing Ltd on behalf of the IAEA [International Atomic Energy Agency]

This paper is open access.

For anyone curious about General Fusion, I have a brief overview and history of the company and their particular approach to fusion energy in my February 6, 2024 posting (scroll down to ‘The Canadians’).

Chatbot with expertise in nanomaterials

This December 1, 2023 news item on phys.org starts with a story,

A researcher has just finished writing a scientific paper. She knows her work could benefit from another perspective. Did she overlook something? Or perhaps there’s an application of her research she hadn’t thought of. A second set of eyes would be great, but even the friendliest of collaborators might not be able to spare the time to read all the required background publications to catch up.

Kevin Yager—leader of the electronic nanomaterials group at the Center for Functional Nanomaterials (CFN), a U.S. Department of Energy (DOE) Office of Science User Facility at DOE’s Brookhaven National Laboratory—has imagined how recent advances in artificial intelligence (AI) and machine learning (ML) could aid scientific brainstorming and ideation. To accomplish this, he has developed a chatbot with knowledge in the kinds of science he’s been engaged in.

A December 1, 2023 DOE/Brookhaven National Laboratory news release by Denise Yazak (also on EurekAlert), which originated the news item, describes a research project with a chatbot that has nanomaterial-specific knowledge, Note: Links have been removed,

Rapid advances in AI and ML have given way to programs that can generate creative text and useful software code. These general-purpose chatbots have recently captured the public imagination. Existing chatbots—based on large, diverse language models—lack detailed knowledge of scientific sub-domains. By leveraging a document-retrieval method, Yager’s bot is knowledgeable in areas of nanomaterial science that other bots are not. The details of this project and how other scientists can leverage this AI colleague for their own work have recently been published in Digital Discovery.

Rise of the Robots

“CFN has been looking into new ways to leverage AI/ML to accelerate nanomaterial discovery for a long time. Currently, it’s helping us quickly identify, catalog, and choose samples, automate experiments, control equipment, and discover new materials. Esther Tsai, a scientist in the electronic nanomaterials group at CFN, is developing an AI companion to help speed up materials research experiments at the National Synchrotron Light Source II (NSLS-II).” NSLS-II is another DOE Office of Science User Facility at Brookhaven Lab.

At CFN, there has been a lot of work on AI/ML that can help drive experiments through the use of automation, controls, robotics, and analysis, but having a program that was adept with scientific text was something that researchers hadn’t explored as deeply. Being able to quickly document, understand, and convey information about an experiment can help in a number of ways—from breaking down language barriers to saving time by summarizing larger pieces of work.

Watching Your Language

To build a specialized chatbot, the program required domain-specific text—language taken from areas the bot is intended to focus on. In this case, the text is scientific publications. Domain-specific text helps the AI model understand new terminology and definitions and introduces it to frontier scientific concepts. Most importantly, this curated set of documents enables the AI model to ground its reasoning using trusted facts.

To emulate natural human language, AI models are trained on existing text, enabling them to learn the structure of language, memorize various facts, and develop a primitive sort of reasoning. Rather than laboriously retrain the AI model on nanoscience text, Yager gave it the ability to look up relevant information in a curated set of publications. Providing it with a library of relevant data was only half of the battle. To use this text accurately and effectively, the bot would need a way to decipher the correct context.

“A challenge that’s common with language models is that sometimes they ‘hallucinate’ plausible sounding but untrue things,” explained Yager. “This has been a core issue to resolve for a chatbot used in research as opposed to one doing something like writing poetry. We don’t want it to fabricate facts or citations. This needed to be addressed. The solution for this was something we call ‘embedding,’ a way of categorizing and linking information quickly behind the scenes.”

Embedding is a process that transforms words and phrases into numerical values. The resulting “embedding vector” quantifies the meaning of the text. When a user asks the chatbot a question, it’s also sent to the ML embedding model to calculate its vector value. This vector is used to search through a pre-computed database of text chunks from scientific papers that were similarly embedded. The bot then uses text snippets it finds that are semantically related to the question to get a more complete understanding of the context.

The user’s query and the text snippets are combined into a “prompt” that is sent to a large language model, an expansive program that creates text modeled on natural human language, that generates the final response. The embedding ensures that the text being pulled is relevant in the context of the user’s question. By providing text chunks from the body of trusted documents, the chatbot generates answers that are factual and sourced.

“The program needs to be like a reference librarian,” said Yager. “It needs to heavily rely on the documents to provide sourced answers. It needs to be able to accurately interpret what people are asking and be able to effectively piece together the context of those questions to retrieve the most relevant information. While the responses may not be perfect yet, it’s already able to answer challenging questions and trigger some interesting thoughts while planning new projects and research.”

Bots Empowering Humans

CFN is developing AI/ML systems as tools that can liberate human researchers to work on more challenging and interesting problems and to get more out of their limited time while computers automate repetitive tasks in the background. There are still many unknowns about this new way of working, but these questions are the start of important discussions scientists are having right now to ensure AI/ML use is safe and ethical.

“There are a number of tasks that a domain-specific chatbot like this could clear from a scientist’s workload. Classifying and organizing documents, summarizing publications, pointing out relevant info, and getting up to speed in a new topical area are just a few potential applications,” remarked Yager. “I’m excited to see where all of this will go, though. We never could have imagined where we are now three years ago, and I’m looking forward to where we’ll be three years from now.”

For researchers interested in trying this software out for themselves, the source code for CFN’s chatbot and associated tools can be found in this github repository.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.

Here’s a link to and a citation for the paper,

Domain-specific chatbots for science using embeddings by Kevin G. Yager.
Digital Discovery, 2023,2, 1850-1861 DOI: https://doi.org/10.1039/D3DD00112A
First published 10 Oct 2023

This paper appears to be open access.

US announces fusion energy breakthrough

Nice to learn of this news, which is on the CBC (Canadian Broadcasting Corporation) news online website. From a December 13, 2022 news item provided by Associated Press (Note: the news item was updated to include general description and some Canadian content at about 12 pm PT) ,

Researchers at the Lawrence Livermore National Laboratory in California for the first time produced more energy in a fusion reaction than was used to ignite it, [emphasis mine] something called net energy gain, the Energy Department said.

Peter Behr’s December 13, 2022 article on Politico.com about the US Department of Energy’s big announcement also breaks the news,

The Department of Energy announced Tuesday [December 12, 2022] that its scientists have produced the first ever fusion reaction that yielded more energy than the reaction required, an essential step in the long path toward commercial fusion power, officials said.

The experiment Dec. 5 [2022], at the Lawrence Livermore National Laboratory in California, took a few billionths of second. But laboratory leaders said today that it demonstrated for the first time that sustained fusion power is possible.

Behr explains what nuclear fusion is but first he touches on why scientists are so interested in the process, from his December 13, 2022 article,

In theory, nuclear fusion could produce massive amounts of energy without producing lost-lasting radioactive waste, or posing the risk of meltdowns. That’s unlike nuclear fission, which powers today’s reactors.

Fission results when radioactive atoms — most commonly uranium — are split by neutrons in controlled chain reactions, creating lighter atoms and large amounts of radiation and energy to produce electric power.

Fusion is the opposite process. In the most common approach, swirling hydrogen isotopes are forced together under tremendous heat to create helium and energy for power generation. This is the same process that powers the sun and other stars. But scientists have been trying since the mid-20th century to find a way to use it to generate power on Earth.

There are two main approaches to making fusion happen and I found a description for them in an October 2022 article about local company, General Fusion, by Nelson Bennett for Business in Vancouver magazine (paper version),

Most fusion companies are pursuing one of two approaches: Magnet [sic] or inertial confinement. General fusion is one of the few that is taking a more hybrid approach ¬ magnetic confinement with pulse compression.

Fusion occurs when smaller nuclei are fused together under tremendous force into larger nuclei, with a release of energy occurring in the form of neutrons. It’s what happens to stars when gravitational force creates extreme heat that turns on the fusion engine.

Replicating that in a machine requires some form of confinement to squeeze plasma ¬ a kind of super-hot fog of unbound positive and negative particles ¬ to the point where nuclei fuse.

One approach is inertial confinement, in which lasers are focused on a small capsule of heavy hydrogen fuel (deuterium and tritium) to create ignition. This takes a tremendous amount of energy, and the challenge for all fusion efforts is to get a sustained ignition that produces more energy than it takes to get ignition ¬ called net energy gain.

The other main approach is magnetic confinement, using powerful magnets in a machine called a tokomak to contain and squeeze plasma into a donut-shaped form called a torus.

General Fusion uses magnets to confine the plasma, but to get ignition it uses pistons arrayed around a spherical chamber to fire synchronously to essentially collapse the plasma on itself and spark ignition.

General Fusion’s machine uses liquid metal spinning inside a chamber that acts as a protective barrier between the hot plasma and the machine ¬ basically a sphere of plasma contained within a sphere of liquid metal. This protects the machine from damage.

The temperatures generated in fusion ¬ up to to 150 million degrees Celsius ¬ are five to six times hotter than the core of the sun, and can destroy machines that produce them. This makes durability a big challenge in any machine.

The Lawrence Livermore National Laboratory (LLNL) issued a December 13, 2022 news release, which provides more detail about their pioneering work, Note: I have changed the order of the paragraphs but all of this is from the news release,

Fusion is the process by which two light nuclei combine to form a single heavier nucleus, releasing a large amount of energy. In the 1960s, a group of pioneering scientists at LLNL hypothesized that lasers could be used to induce fusion in a laboratory setting. Led by physicist John Nuckolls, who later served as LLNL director from 1988 to 1994, this revolutionary idea became inertial confinement fusion, kicking off more than 60 years of research and development in lasers, optics, diagnostics, target fabrication, computer modeling and simulation and experimental design.

To pursue this concept, LLNL built a series of increasingly powerful laser systems, leading to the creation of NIF [National Ignition Facility], the world’s largest and most energetic laser system. NIF — located at LLNL in Livermore, California — is the size of a sports stadium and uses powerful laser beams to create temperatures and pressures like those in the cores of stars and giant planets, and inside exploding nuclear weapons.

LLNL’s experiment surpassed the fusion threshold by delivering 2.05 megajoules (MJ) of energy to the target, resulting in 3.15 MJ of fusion energy output, demonstrating for the first time a most fundamental science basis for inertial fusion energy (IFE). Many advanced science and technology developments are still needed to achieve simple, affordable IFE to power homes and businesses, and DOE is currently restarting a broad-based, coordinated IFE program in the United States. Combined with private-sector investment, there is a lot of momentum to drive rapid progress toward fusion commercialization.

If you want to see some really excited comments from scientists just read the LLNL’s December 13, 2022 news release. Even the news release’s banner is exuberant,

Behr peers into the future of fusion energy, from his December 13, 2022 article,

Fearful that China might wind up dominating fusion energy in the second half of this century, Congress in 2020 told DOE [Department of Energy] to begin funding development of a utility-scale fusion pilot plant that could deliver at least 50 megawatts of power to the U.S. grid.

In September [2022], DOE invited private companies to apply for an initial $50 million in research grants to help fund development of detailed pilot plant plans.

“We’re seeking strong partnerships between DOE and the private sector,” a senior DOE official told POLITICO’s E&E News recently. The official was not willing to speak on the record, saying the grant process is ongoing and confidential.

As the competition proceeds, DOE will set technical milestones or requirements, challenging the teams to show how critical engineering challenges will be overcome. DOE’s goal is “hopefully to enable a fusion pilot to operate in the early 2030s,” the official added.

At least 15 U.S. and foreign fusion companies have submitted requests for an initial total of $50 million in pilot plant grants, and some of them are pursuing the laser-ignition fusion process that Lawrence Livermore has pioneered, said Holland. He did not name the companies because the competition is confidential.

I wonder if General Fusion whose CEO (Chief Executive Officer) Greg Twinney declared, “Commercializing fusion energy is within reach, and General Fusion is ready to deliver it to the grid by the 2030s …” (in a December 12, 2022 company press release) is part of the US competition.

I noticed that General Fusion lists this at the end of the press release,

… Founded in 2002, we are headquartered in Vancouver, Canada, with additional centers co-located with internationally recognized fusion research laboratories near London, U.K., and Oak Ridge, Tennessee, U.S.A.

The Oak Ridge National Laboratory (ORNL), like the LLNL, is a US Department of Energy research facility.

As for General Fusion’s London connection, I have more about that in my October 28, 2022 posting “Overview of fusion energy scene,” which includes General Fusion’s then latest news about a commercialization agreement with the UKAEA (UK Atomic Energy Authority) and a ‘fusion’ video by rapper Baba Brinkman along with the overview.

Neuromorphic (brainlike) computing inspired by sea slugs

The sea slug has taught neuroscientists the intelligence features that any creature in the animal kingdom needs to survive. Now, the sea slug is teaching artificial intelligence how to use those strategies. Pictured: Aplysia californica. (Image by NOAA Monterey Bay National Marine Sanctuary/Chad King.)

I don’t think I’ve ever seen a picture of a sea slug before. Its appearance reminds me of its terrestrial cousin.

As for some of the latest news on brainlike computing, a December 7, 2021 news item on Nanowerk makes an announcement from the Argonne National Laboratory (a US Department of Energy laboratory; Note: Links have been removed),

A team of scientists has discovered a new material that points the way toward more efficient artificial intelligence hardware for everything from self-driving cars to surgical robots.

For artificial intelligence (AI) to get any smarter, it needs first to be as intelligent as one of the simplest creatures in the animal kingdom: the sea slug.

A new study has found that a material can mimic the sea slug’s most essential intelligence features. The discovery is a step toward building hardware that could help make AI more efficient and reliable for technology ranging from self-driving cars and surgical robots to social media algorithms.

The study, published in the Proceedings of the National Academy of Sciences [PNAS] (“Neuromorphic learning with Mott insulator NiO”), was conducted by a team of researchers from Purdue University, Rutgers University, the University of Georgia and the U.S. Department of Energy’s (DOE) Argonne National Laboratory. The team used the resources of the Advanced Photon Source (APS), a DOE Office of Science user facility at Argonne.

A December 6, 2021 Argonne National Laboratory news release (also on EurekAlert) by Kayla Wiles and Andre Salles, which originated the news item, provides more detail,

“Through studying sea slugs, neuroscientists discovered the hallmarks of intelligence that are fundamental to any organism’s survival,” said Shriram Ramanathan, a Purdue professor of Materials Engineering. ​“We want to take advantage of that mature intelligence in animals to accelerate the development of AI.”

Two main signs of intelligence that neuroscientists have learned from sea slugs are habituation and sensitization. Habituation is getting used to a stimulus over time, such as tuning out noises when driving the same route to work every day. Sensitization is the opposite — it’s reacting strongly to a new stimulus, like avoiding bad food from a restaurant.

AI has a really hard time learning and storing new information without overwriting information it has already learned and stored, a problem that researchers studying brain-inspired computing call the ​“stability-plasticity dilemma.” Habituation would allow AI to ​“forget” unneeded information (achieving more stability) while sensitization could help with retaining new and important information (enabling plasticity).

In this study, the researchers found a way to demonstrate both habituation and sensitization in nickel oxide, a quantum material. Quantum materials are engineered to take advantage of features available only at nature’s smallest scales, and useful for information processing. If a quantum material could reliably mimic these forms of learning, then it may be possible to build AI directly into hardware. And if AI could operate both through hardware and software, it might be able to perform more complex tasks using less energy.

“We basically emulated experiments done on sea slugs in quantum materials toward understanding how these materials can be of interest for AI,” Ramanathan said.

Neuroscience studies have shown that the sea slug demonstrates habituation when it stops withdrawing its gill as much in response to tapping. But an electric shock to its tail causes its gill to withdraw much more dramatically, showing sensitization.

For nickel oxide, the equivalent of a ​“gill withdrawal” is an increased change in electrical resistance. The researchers found that repeatedly exposing the material to hydrogen gas causes nickel oxide’s change in electrical resistance to decrease over time, but introducing a new stimulus like ozone greatly increases the change in electrical resistance.

Ramanathan and his colleagues used two experimental stations at the APS to test this theory, using X-ray absorption spectroscopy. A sample of nickel oxide was exposed to hydrogen and oxygen, and the ultrabright X-rays of the APS were used to see changes in the material at the atomic level over time.

“Nickel oxide is a relatively simple material,” said Argonne physicist Hua Zhou, a co-author on the paper who worked with the team at beamline 33-ID. ​“The goal was to use something easy to manufacture, and see if it would mimic this behavior. We looked at whether the material gained or lost a single electron after exposure to the gas.”

The research team also conducted scans at beamline 29-ID, which uses softer X-rays to probe different energy ranges. While the harder X-rays of 33-ID are more sensitive to the ​“core” electrons, those closer to the nucleus of the nickel oxide’s atoms, the softer X-rays can more readily observe the electrons on the outer shell. These are the electrons that define whether a material is conductive or resistive to electricity.

“We’re very sensitive to the change of resistivity in these samples,” said Argonne physicist Fanny Rodolakis, a co-author on the paper who led the work at beamline 29-ID. ​“We can directly probe how the electronic states of oxygen and nickel evolve under different treatments.”

Physicist Zhan Zhang and postdoctoral researcher Hui Cao, both of Argonne, contributed to the work, and are listed as co-authors on the paper. Zhang said the APS is well suited for research like this, due to its bright beam that can be tuned over different energy ranges.

For practical use of quantum materials as AI hardware, researchers will need to figure out how to apply habituation and sensitization in large-scale systems. They also would have to determine how a material could respond to stimuli while integrated into a computer chip.

This study is a starting place for guiding those next steps, the researchers said. Meanwhile, the APS is undergoing a massive upgrade that will not only increase the brightness of its beams by up to 500 times, but will allow for those beams to be focused much smaller than they are today. And this, Zhou said, will prove useful once this technology does find its way into electronic devices.

“If we want to test the properties of microelectronics,” he said, ​“the smaller beam that the upgraded APS will give us will be essential.”

In addition to the experiments performed at Purdue and Argonne, a team at Rutgers University performed detailed theory calculations to understand what was happening within nickel oxide at a microscopic level to mimic the sea slug’s intelligence features. The University of Georgia measured conductivity to further analyze the material’s behavior.

A version of this story was originally published by Purdue University

About the Advanced Photon Source

The U. S. Department of Energy Office of Science’s Advanced Photon Source (APS) at Argonne National Laboratory is one of the world’s most productive X-ray light source facilities. The APS provides high-brightness X-ray beams to a diverse community of researchers in materials science, chemistry, condensed matter physics, the life and environmental sciences, and applied research. These X-rays are ideally suited for explorations of materials and biological structures; elemental distribution; chemical, magnetic, electronic states; and a wide range of technologically important engineering systems from batteries to fuel injector sprays, all of which are the foundations of our nation’s economic, technological, and physical well-being. Each year, more than 5,000 researchers use the APS to produce over 2,000 publications detailing impactful discoveries, and solve more vital biological protein structures than users of any other X-ray light source research facility. APS scientists and engineers innovate technology that is at the heart of advancing accelerator and light-source operations. This includes the insertion devices that produce extreme-brightness X-rays prized by researchers, lenses that focus the X-rays down to a few nanometers, instrumentation that maximizes the way the X-rays interact with samples being studied, and software that gathers and manages the massive quantity of data resulting from discovery research at the APS.

This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://​ener​gy​.gov/​s​c​ience.

You can find the September 24, 2021 Purdue University story, Taking lessons from a sea slug, study points to better hardware for artificial intelligence here.

Here’s a link to and a citation for the paper,

Neuromorphic learning with Mott insulator NiO by Zhen Zhang, Sandip Mondal, Subhasish Mandal, Jason M. Allred, Neda Alsadat Aghamiri, Alireza Fali, Zhan Zhang, Hua Zhou, Hui Cao, Fanny Rodolakis, Jessica L. McChesney, Qi Wang, Yifei Sun, Yohannes Abate, Kaushik Roy, Karin M. Rabe, and Shriram Ramanathan. PNAS September 28, 2021 118 (39) e2017239118 DOI: https://doi.org/10.1073/pnas.2017239118

This paper is behind a paywall.

A nano big bang event

Here’s what you’re seeing (from the YouTube entry),

Berkeley Lab scientists and collaborators took advantage of one of the best microscopes in the world – the TEAM I electron microscope at the Molecular Foundry – to watch how individual gold atoms organized themselves into crystals on top of graphene. The research team observed as groups of gold atoms formed and broke apart many times, trying out different configurations, before finally stabilizing. The discovery of this fast-changing and reversible process was possible thanks to these high-speed images captured at atomic resolution. Credit: Berkeley Lab

The work was announced in a March 25, 2021 news item on phys.org,

When we grow crystals, atoms first group together into small clusters—a process called nucleation. But understanding exactly how such atomic ordering emerges from the chaos of randomly moving atoms has long eluded scientists.

Classical nucleation theory suggests that crystals form one atom at a time, steadily increasing the level of order. Modern studies have also observed a two-step nucleation process, where a temporary, high-energy structure forms first, which then changes into a stable crystal. But according to an international research team co-led by the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), the real story is even more complicated.

Their findings, recently reported in the journal Science, reveal that rather than grouping together one-by-one or making a single irreversible transition, gold atoms will instead self-organize, fall apart, regroup, and then reorganize many times before establishing a stable, ordered crystal. Using an advanced electron microscope, the researchers witnessed this rapid, reversible nucleation process for the first time. Their work provides tangible insights into the early stages of many growth processes such as thin-film deposition and nanoparticle formation.

A March 25, 2021 DOE [US Dept. of Energy]/Lawrence Berkeley National Laboratory news release (also on EurekAlert) by Clarissa Bhargava, which originated the news item, expands on the topic,

“As scientists seek to control matter at smaller length scales to produce new materials and devices, this study helps us understand exactly how some crystals form,” said Peter Ercius, one of the study’s lead authors and a staff scientist at Berkeley Lab’s Molecular Foundry.

In line with scientists’ conventional understanding, once the crystals in the study reached a certain size, they no longer returned to the disordered, unstable state. Won Chul Lee, one of the professors guiding the project, describes it this way: if we imagine each atom as a Lego brick, then instead of building a house one brick at a time, it turns out that the bricks repeatedly fit together and break apart again until they are finally strong enough to stay together. Once the foundation is set, however, more bricks can be added without disrupting the overall structure.

The unstable structures were only visible because of the speed of newly developed detectors on the TEAM I [Transmission Electron Aberration-corrected Microscope], one of the world’s most powerful electron microscopes. A team of in-house experts guided the experiments at the National Center for Electron Microscopy in Berkeley Lab’s Molecular Foundry. Using the TEAM I microscope, researchers captured real-time, atomic-resolution images at speeds up to 625 frames per second, which is exceptionally fast for electron microcopy and about 100 times faster than previous studies. The researchers observed individual gold atoms as they formed into crystals, broke apart into individual atoms, and then reformed again and again into different crystal configurations before finally stabilizing.

“Slower observations would miss this very fast, reversible process and just see a blur instead of the transitions, which explains why this nucleation behavior has never been seen before,” said Ercius.

The reason behind this reversible phenomenon is that crystal formation is an exothermic process – that is, it releases energy. In fact, the very energy released when atoms attach to the tiny nuclei can raise the local “temperature” and melt the crystal. In this way, the initial crystal formation process works against itself, fluctuating between order and disorder many times before building a nucleus that is stable enough to withstand the heat. The research team validated this interpretation of their experimental observations by performing calculations of binding reactions between a hypothetical gold atom and a nanocrystal.

Now, scientists are developing even faster detectors which could be used to image the process at higher speeds. This could help them understand if there are more features of nucleation hidden in the atomic chaos. The team is also hoping to spot similar transitions in different atomic systems to determine whether this discovery reflects a general process of nucleation.

One of the study’s lead authors, Jungwon Park, summarized the work: “From a scientific point of view, we discovered a new principle of crystal nucleation process, and we proved it experimentally.”

Here’s a link to and a citation for the paper,

Reversible disorder-order transitions in atomic crystal nucleation by Sungho Jeon, Taeyeong Heo, Sang-Yeon Hwang, Jim Ciston, Karen C. Bustillo, Bryan W. Reed, Jimin Ham, Sungsu Kang, Sungin Kim, Joowon Lim, Kitaek Lim, Ji Soo Kim, Min-Ho Kang, Ruth S. Bloom, Sukjoon Hong, Kwanpyo Kim, Alex Zettl, Woo Youn Kim, Peter Ercius, Jungwon Park, Won Chul Lee. Science 29 Jan 2021: Vol. 371, Issue 6528, pp. 498-503 DOI: 10.1126/science.aaz7555

This paper is behind a paywall.

Alloy nanoparticles make better catalysts

A Jan. 4, 2021 news item on Nanowerk describes new insights into nanoscale catalysts derived from work at the US Argonne National Laboratory,

Catalysts are integral to countless aspects of modern society. By speeding up important chemical reactions, catalysts support industrial manufacturing and reduce harmful emissions. They also increase efficiency in chemical processes for applications ranging from batteries and transportation to beer and laundry detergent.

As significant as catalysts are, the way they work is often a mystery to scientists. Understanding catalytic processes can help scientists develop more efficient and cost-effective catalysts. In a recent study, scientists from University of Illinois Chicago (UIC) and the U.S. Department of Energy’s (DOE) Argonne National Laboratory discovered that, during a chemical reaction that often quickly degrades catalytic materials, a certain type of catalyst displays exceptionally high stability and durability.

The catalysts in this study are alloy nanoparticles, or nanosized particles made up of multiple metallic elements, such as cobalt, nickel, copper and platinum. These nanoparticles could have multiple practical applications, including water-splitting to generate hydrogen in fuel cells; reduction of carbon dioxide by capturing and converting it into useful materials like methanol; more efficient reactions in biosensors to detect substances in the body; and solar cells that produce heat, electricity and fuel more effectively.

A January 4, 2021 Argonne National Laboratory news release (also on EurekAlert) by Savannah Mitchem fills in some details,

In this study, the scientists investigated “high-entropy” (highly stable) alloy nanoparticles. The team of researchers, led by Reza Shahbazian-Yassar at UIC, used Argonne’s Center for Nanoscale Materials (CNM), a DOE Office of Science user facility, to characterize the particles’ compositions during oxidation, a process that degrades the material and reduces its usefulness in catalytic reactions.

“Using gas flow transmission electron microscopy (TEM) at CNM, we can capture the whole oxidation process in real time and at very high resolution,” said scientist Bob Song from UIC, a lead scientist on the study. “We found that the high-entropy alloy nanoparticles are able to resist oxidation much better than general metal particles.”

To perform the TEM, the scientists embedded the nanoparticles into a silicon nitride membrane and flowed different types of gas through a channel over the particles. A beam of electrons probed the reactions between the particles and the gas, revealing the low rate of oxidation and the migration of certain metals — iron, cobalt, nickel and copper — to the particles’ surfaces during the process.

“Our objective was to understand how fast high-entropy materials react with oxygen and how the chemistry of nanoparticles evolves during such a reaction,” said Shahbazian-Yassar, UIC professor of mechanical and industrial engineering at the College of Engineering.

According to Shahbazian-Yassar, the discoveries made in this research could benefit many energy storage and conversion technologies, such as fuel cells, lithium-air batteries, supercapacitors and catalyst materials. The nanoparticles could also be used to develop corrosion-resistant and high-temperature materials.

“This was a successful showcase of how CNM’s capabilities and services can meet the needs of our collaborators,” said Argonne’s Yuzi Liu, a scientist at CNM. “We have state-of-the-art facilities, and we want to deliver state-of-the-art science as well.”

Here’s a link to and a citation for the paper,

In Situ Oxidation Studies of High-Entropy Alloy Nanoparticles by Boao Song, Yong Yang, Muztoba Rabbani, Timothy T. Yang, Kun He, Xiaobing Hu, Yifei Yuan, Pankaj Ghildiyal, Vinayak P. Dravid, Michael R. Zachariah, Wissam A. Saidi, Yuzi Liu, and Reza Shahbazian-Yassar. ACS Nano 2020, 14, 11, 15131–15143 DOI: https://doi.org/10.1021/acsnano.0c05250 Publication Date:October 20, 2020 Copyright © 2020 American Chemical Society

This paper is behind a paywall.

Below is one of my favourite types of video work, a ‘blob video’ from the University of Illinois showing the alloy nanoparticles as they oxidate,

Video of transmission electron microscopy, performed at Argonne’s CNM, showing the oxidation of high-entropy nanoparticles in air at 400 °C, sped up by a factor of four. The oxidation process is depicted by the dissolution of the edges of the nanoparticles in the video. (Image by University of Illinois.)

Innerspace of a nanoparticle

A Jan. 3, 2019 news item on ScienceDaily touts a new means of transporting DNA-coated nanoparticles (DNA is deoxyribonucleic acid),

This holiday season, scientists at the Center for Functional Nanomaterials (CFN) — a U.S. Department of Energy Office of Science User Facility at Brookhaven National Laboratory — have wrapped a box of a different kind. Using a one-step chemical synthesis method, they engineered hollow metallic nanosized boxes with cube-shaped pores at the corners and demonstrated how these “nanowrappers” can be used to carry and release DNA-coated nanoparticles in a controlled way. The research is reported in a paper published on Dec. 12 [2018] in ACS Central Science, a journal of the American Chemical Society (ACS).

A January 3, 2018 Brookhaven National Laboratory (BNL) news release (also on EurekAlert), which originated the news item, explains the work in more detail (Note: Links have been removed),

“Imagine you have a box but you can only use the outside and not the inside,” said co-author Oleg Gang, leader of the CFN Soft and Bio Nanomaterials Group. “This is how we’ve been dealing with nanoparticles. Most nanoparticle assembly or synthesis methods produce solid nanostructures. We need methods to engineer the internal space of these structures.

“Compared to their solid counterparts, hollow nanostructures have different optical and chemical properties that we would like to use for biomedical, sensing, and catalytic applications,” added corresponding author Fang Lu, a scientist in Gang’s group. “In addition, we can introduce surface openings in the hollow structures where materials such as drugs, biological molecules, and even nanoparticles can enter and exit, depending on the surrounding environment.”

Synthetic strategies have been developed to produce hollow nanostructures with surface pores, but typically the size, shape, and location of these pores cannot be well-controlled. The pores are randomly distributed across the surface, resulting in a Swiss-cheese-like structure. A high level of control over surface openings is needed in order to use nanostructures in practical applications–for example, to load and release nanocargo

In this study, the scientists demonstrated a new pathway for chemically sculpturing gold-silver alloy nanowrappers with cube-shaped corner holes from solid nanocube particles. They used a chemical reaction known as nanoscale galvanic replacement. During this reaction, the atoms in a silver nanocube get replaced by gold ions in an aqueous solution at room temperature. The scientists added a molecule (surfactant, or surface-capping agent) to the solution to direct the leaching of silver and the deposition of gold on specific crystalline facets.

“The atoms on the faces of the cube are arranged differently from those in the corners, and thus different atomic planes are exposed, so the galvanic reaction may not proceed the same way in both areas,” explained Lu. “The surfactant we chose binds to the silver surface just enough–not too strongly or weakly–so that gold and silver can interact. Additionally, the absorption of surfactant is relatively weak on the silver cube’s corners, so the reaction is most active here. The silver gets “eaten” away from its edges, resulting in the formation of corner holes, while gold gets deposited on the rest of the surface to create a gold and silver shell.”

To capture the structural and chemical composition changes of the overall structure at the nanoscale in 3-D and at the atomic level in 2-D as the reaction proceeded over three hours, the scientists used electron microscopes at the CFN. The 2-D electron microscope images with energy-dispersive X-ray spectroscopy (EDX) elemental mapping confirmed that the cubes are hollow and composed of a gold-silver alloy. The 3-D images they obtained through electron tomography revealed that these hollow cubes feature large cube-shaped holes at the corners

“In electron tomography, 2-D images collected at different angles are combined to reconstruct an image of an object in 3-D,” said Gang. “The technique is similar to a CT [computerized tomography] scan used to image internal body structures, but it is carried out on a much smaller size scale and uses electrons instead of x-rays.”

The scientists also confirmed the transformation of nanocubes to nanowrappers through spectroscopy experiments capturing optical changes. The spectra showed that the optical absorption of the nanowrappers can be tuned depending on the reaction time. At their final state, the nanowrappers absorb infrared light.

“The absorption spectrum showed a peak at 1250 nanometers, one of the longest wavelengths reported for nanoscale gold or silver,” said Gang. “Typically, gold and silver nanostructures absorb visible light. However, for various applications, we would like those particles to absorb infrared light–for example, in biomedical applications such as phototherapy.”

Using the synthesized nanowrappers, the scientists then demonstrated how spherical gold nanoparticles of an appropriate size that are capped with DNA could be loaded into and released from the corner openings by changing the concentration of salt in the solution. DNA is negatively charged (owing to the oxygen atoms in its phosphate backbone) and changes its configuration in response to increasing or decreasing concentrations of a positively charged ion such as salt. In high salt concentrations, DNA chains contract because their repulsion is reduced by the salt ions. In low salt concentrations, DNA chains stretch because their repulsive forces push them apart.

When the DNA strands contract, the nanoparticles become small enough to fit in the openings and enter the hollow cavity. The nanoparticles can then be locked within the nanowrapper by decreasing the salt concentration. At this lower concentration, the DNA strands stretch, thereby making the nanoparticles too large to go through the pores. The nanoparticles can leave the structure through a reverse process of increasing and decreasing the salt concentration.

“Our electron microscopy and optical spectroscopy studies confirmed that the nanowrappers can be used to load and release nanoscale components,” said Lu. “In principle, they could be used to release optically or chemically active nanoparticles in particular environments, potentially by changing other parameters such as pH or temperature.”

Going forward, the scientists are interested in assembling the nanowrappers into larger-scale architectures, extending their method to other bimetallic systems, and comparing the internal and external catalytic activity of the nanowrappers.

“We did not expect to see such regular, well-defined holes,” said Gang. “Usually, this level of control is quite difficult to achieve for nanoscale objects. Thus, our discovery of this new pathway of nanoscale structure formation is very exciting. The ability to engineer nano-objects with a high level of control is important not only to understanding why certain processes are happening but also to constructing targeted nanostructures for various applications, from nanomedicine and optics to smart materials and catalysis. Our new synthesis method opens up unique opportunities in these areas.”

“This work was made possible by the world-class expertise in nanomaterial synthesis and capabilities that exist at the CFN,” said CFN Director Charles Black. “In particular, the CFN has a leading program in the synthesis of new materials by assembly of nanoscale components, and state-of-the-art electron microscopy and optical spectroscopy capabilities for studying the 3-D structure of these materials and their interaction with light. All of these characterization capabilities are available to the nanoscience research community through the CFN user program. We look forward to seeing the advances in nano-assembly that emerge as scientists across academia, industry, and government make use of the capabilities in their research.”

Here’s a link to and a citation for the paper,

Tailoring Surface Opening of Hollow Nanocubes and Their Application as Nanocargo Carriers by Fang Lu, Huolin Xin, Weiwei Xia, Mingzhao Liu, Yugang Zhang, Weiping Cai, and Oleg Gang. ACS Cent. Sci., 2018, 4 (12), pp 1742–1750 DOI: 10.1021/acscentsci.8b00778 Publication Date (Web): December 12, 2018

Copyright © 2018 American Chemical Society

This paper is open access.

Borophene and next generation electronics?

2D materials as signified by the ‘ene’ suffix are, as far as I can tell, always associated with electronics—initially. Borophene is not an exception.

This borophene news was announced in a December 3, 2018 news item on ScienceDaily,

Borophene — two-dimensional (2-D) atom-thin-sheets of boron, a chemical element traditionally found in fiberglass insulation — is anything but boring. Though boron is a nonmetallic semiconductor in its bulk (3-D) form, it becomes a metallic conductor in 2-D. Borophene is extremely flexible, strong, and lightweight — even more so than its carbon-based analogue, graphene. [Providing a little competition to the Europeans who are seriously pursuing nanotechnology-enabled electronics and other applications with graphene?] These unique electronic and mechanical properties make borophene a promising material platform for next-generation electronic devices such as wearables, biomolecule sensors, light detectors, and quantum computers.

Now, physicists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Yale University have synthesized borophene on copper substrates with large-area (ranging in size from 10 to 100 micrometers) single-crystal domains (for reference, a strand of human hair is about 100 micrometers wide). Previously, only nanometer-size single-crystal flakes of borophene had been produced. The advance, reported on Dec. 3 [2018] in Nature Nanotechnology, represents an important step in making practical borophene-based devices possible.

A December 3, 2018 Brookhaven National Laboratory (BNL) news release (also on EurekAlert), which originated the news item, provides more detail about 2D materials and the specifics of this borophene research,

For electronic applications, high-quality single crystals–periodic arrangements of atoms that continue throughout the entire crystal lattice without boundaries or defects–must be distributed over large areas of the surface material (substrate) on which they are grown. For example, today’s microchips use single crystals of silicon and other semiconductors. Device fabrication also requires an understanding of how different substrates and growth conditions impact a material’s crystal structure, which determines its properties.

“We increased the size of the single-crystal domains by a factor of a million,” said co-author and project lead Ivan Bozovic, senior scientist and Molecular Beam Epitaxy Group Leader in Brookhaven Lab’s Condensed Matter Physics and Materials Science (CMPMS) Department and adjunct professor of applied physics at Yale University. “Large domains are required to fabricate next-generation electronic devices with high electron mobility. Electrons that can easily and quickly move through a crystal structure are key to improving device performance.”

A new 2-D material

Since the 2004 discovery of graphene–a single sheet of carbon atoms, which can be peeled from graphite, the core component of pencils, with Scotch tape–scientists have been on the hunt for other 2-D materials with remarkable properties. The chemical bonds between carbon atoms that impart graphene with its strength make manipulating its structure difficult.

Theorists predicted that boron (next to carbon on the Periodic Table, with one less electron) deposited on an appropriately chosen substrate could form a 2-D material similar to graphene. But this prediction was not experimentally confirmed until three years ago, when scientists synthesized borophene for the very first time. They deposited boron onto silver substrates under ultrahigh-vacuum conditions through molecular beam epitaxy (MBE), a precisely controlled atomic layer-by-layer crystal growth technique. Soon thereafter, another group of scientists grew borophene on silver, but they proposed an entirely different crystal structure.

“Borophene is structurally similar to graphene, with a hexagonal network made of boron (instead of carbon) atoms on each of the six vertices defining the hexagon,” said Bozovic. “However, borophene is different in that it periodically has an extra boron atom in the center of the hexagon. The crystal structure tends to be theoretically stable when about four out of every five center positions are occupied and one is vacant.”

According to theory, while the number of vacancies is fixed, their arrangement is not. As long as the vacancies are distributed in a way that maintains the most stable (lowest energy) structure, they can be rearranged. Because of this flexibility, borophene can have multiple configurations.

A small step toward device fabrication

In this study, the scientists first investigated the real-time growth of borophene on silver surfaces at various temperatures. They grew the samples at Yale in an ultra-high vacuum low-energy electron microscope (LEEM) equipped with an MBE system. During and after the growth process, they bombarded the sample with a beam of electrons at low energy and analyzed the low-energy electron diffraction (LEED) patterns produced as electrons were reflected from the crystal surface and projected onto a detector. Because the electrons have low energy, they can only reach the first few atomic layers of the material. The distance between the reflected electrons (“spots” in the diffraction patterns) is related to the distance between atoms on the surface, and from this information, scientists can reconstruct the crystal structure.

In this case, the patterns revealed that the single-crystal borophene domains were only tens of nanometers in size–too small for fabricating devices and studying fundamental physical properties–for all growth conditions. They also resolved the controversy about borophene’s structure: both structures exist, but they form at different temperatures. The scientists confirmed their LEEM and LEED results through atomic force microscopy (AFM). In AFM, a sharp tip is scanned over a surface, and the measured force between the tip and atoms on the surface is used to map the atomic arrangement.

To promote the formation of larger crystals, the scientists then switched the substrate from silver to copper, applying the same LEEM, LEED, and AFM techniques. Brookhaven scientists Percy Zahl and Ilya Drozdov also imaged the surface structure at high resolution using a custom-built scanning tunneling microscope (STM) with a carbon monoxide probe tip at Brookhaven’s Center for Functional Nanomaterials (CFN)–a U.S. Department of Energy (DOE) Office of Science User Facility. Yale theorists Stephen Eltinge and Sohrab Ismail-Beigi performed calculations to determine the stability of the experimentally obtained structures. After identifying which structures were most stable, they simulated the electron diffraction spectra and STM images and compared them to the experimental data. This iterative process continued until theory and experiment were in agreement.

“From theoretical insights, we expected copper to produce larger single crystals because it interacts more strongly with borophene than silver,” said Bozovic. “Copper donates some electrons to stabilize borophene, but the materials do not interact too much as to form a compound. Not only are the single crystals larger, but the structures of borophene on copper are different from any of those grown on silver.”

Because there are several possible distributions of vacancies on the surface, various crystal structures of borophene can emerge. This study also showed how the structure of borophene can be modified by changing the substrate and, in some cases, the temperature or deposition rate.

The next step is to transfer the borophene sheets from the metallic copper surfaces to insulating device-compatible substrates. Then, scientists will be able to accurately measure resistivity and other electrical properties important to device functionality. Bozovic is particularly excited to test whether borophene can be made superconducting. Some theorists have speculated that its unusual electronic structure may even open a path to lossless transmission of electricity at room temperature, as opposed to the ultracold temperatures usually required for superconductivity. Ultimately, the goal in 2-D materials research is to be able to fine-tune the properties of these materials to suit particular applications.

Here’s a link to and a citation for the paper,

Large-area single-crystal sheets of borophene on Cu(111) surfaces by Rongting Wu, Ilya K. Drozdov, Stephen Eltinge, Percy Zahl, Sohrab Ismail-Beigi, Ivan Božović & Adrian Gozar. Nature Nanotechnology (2018) DOI: https://doi.org/10.1038/s41565-018-0317-6Published 03 December 2018

This paper is behind a paywall.

Cannibalisitic nanostructures

I think this form of ‘cannibalism’ could also be described as a form of ‘self-assembly’. That said, here is an August 31, 2018 news item on ScienceDaily announcing ‘cannibalistic’ materials,

Scientists at the [US] Department of Energy’s [DOE] Oak Ridge National Laboratory [ORNL] induced a two-dimensional material to cannibalize itself for atomic “building blocks” from which stable structures formed.

The findings, reported in Nature Communications, provide insights that may improve design of 2D materials for fast-charging energy-storage and electronic devices.

An August 31, 2018 DOE/Oak Ridge National Laboratory news release (also on EurekAlert), which originated the news item, provides more detail (Note: Links have been removed),

“Under our experimental conditions, titanium and carbon atoms can spontaneously form an atomically thin layer of 2D transition-metal carbide, which was never observed before,” said Xiahan Sang of ORNL.

He and ORNL’s Raymond Unocic led a team that performed in situ experiments using state-of-the-art scanning transmission electron microscopy (STEM), combined with theory-based simulations, to reveal the mechanism’s atomistic details.

“This study is about determining the atomic-level mechanisms and kinetics that are responsible for forming new structures of a 2D transition-metal carbide such that new synthesis methods can be realized for this class of materials,” Unocic added.

The starting material was a 2D ceramic called a MXene (pronounced “max een”). Unlike most ceramics, MXenes are good electrical conductors because they are made from alternating atomic layers of carbon or nitrogen sandwiched within transition metals like titanium.

The research was a project of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, a DOE Energy Frontier Research Center that explores fluid–solid interface reactions that have consequences for energy transport in everyday applications. Scientists conducted experiments to synthesize and characterize advanced materials and performed theory and simulation work to explain observed structural and functional properties of the materials. New knowledge from FIRST projects provides guideposts for future studies.

The high-quality material used in these experiments was synthesized by Drexel University scientists, in the form of five-ply single-crystal monolayer flakes of MXene. The flakes were taken from a parent crystal called “MAX,” which contains a transition metal denoted by “M”; an element such as aluminum or silicon, denoted by “A”; and either a carbon or nitrogen atom, denoted by “X.” The researchers used an acidic solution to etch out the monoatomic aluminum layers, exfoliate the material and delaminate it into individual monolayers of a titanium carbide MXene (Ti3C2).

The ORNL scientists suspended a large MXene flake on a heating chip with holes drilled in it so no support material, or substrate, interfered with the flake. Under vacuum, the suspended flake was exposed to heat and irradiated with an electron beam to clean the MXene surface and fully expose the layer of titanium atoms.

MXenes are typically inert because their surfaces are covered with protective functional groups—oxygen, hydrogen and fluorine atoms that remain after acid exfoliation. After protective groups are removed, the remaining material activates. Atomic-scale defects—“vacancies” created when titanium atoms are removed during etching—are exposed on the outer ply of the monolayer. “These atomic vacancies are good initiation sites,” Sang said. “It’s favorable for titanium and carbon atoms to move from defective sites to the surface.” In an area with a defect, a pore may form when atoms migrate.

“Once those functional groups are gone, now you’re left with a bare titanium layer (and underneath, alternating carbon, titanium, carbon, titanium) that’s free to reconstruct and form new structures on top of existing structures,” Sang said.

High-resolution STEM imaging proved that atoms moved from one part of the material to another to build structures. Because the material feeds on itself, the growth mechanism is cannibalistic.

“The growth mechanism is completely supported by density functional theory and reactive molecular dynamics simulations, thus opening up future possibilities to use these theory tools to determine the experimental parameters required for synthesizing specific defect structures,” said Adri van Duin of Penn State [Pennsylvania State University].

Most of the time, only one additional layer [of carbon and titanium] grew on a surface. The material changed as atoms built new layers. Ti3C2 turned into Ti4C3, for example.

“These materials are efficient at ionic transport, which lends itself well to battery and supercapacitor applications,” Unocic said. “How does ionic transport change when we add more layers to nanometer-thin MXene sheets?” This question may spur future studies.

“Because MXenes containing molybdenum, niobium, vanadium, tantalum, hafnium, chromium and other metals are available, there are opportunities to make a variety of new structures containing more than three or four metal atoms in cross-section (the current limit for MXenes produced from MAX phases),” Yury Gogotsi of Drexel University added. “Those materials may show different useful properties and create an array of 2D building blocks for advancing technology.”

At ORNL’s Center for Nanophase Materials Sciences (CNMS), Yu Xie, Weiwei Sun and Paul Kent performed first-principles theory calculations to explain why these materials grew layer by layer instead of forming alternate structures, such as squares. Xufan Li and Kai Xiao helped understand the growth mechanism, which minimizes surface energy to stabilize atomic configurations. Penn State scientists conducted large-scale dynamical reactive force field simulations showing how atoms rearranged on surfaces, confirming defect structures and their evolution as observed in experiments.

The researchers hope the new knowledge will help others grow advanced materials and generate useful nanoscale structures.

Here’s a link to and a citation for the paper,

In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides by Xiahan Sang, Yu Xie, Dundar E. Yilmaz, Roghayyeh Lotfi, Mohamed Alhabeb, Alireza Ostadhossein, Babak Anasori, Weiwei Sun, Xufan Li, Kai Xiao, Paul R. C. Kent, Adri C. T. van Duin, Yury Gogotsi, & Raymond R. Unocic. Nature Communicationsvolume 9, Article number: 2266 (2018) DOI: https://doi.org/10.1038/s41467-018-04610-0 Published 11 June 2018

This paper is open access.

3D printed all liquid electronics

Even after watching the video, I still don’t quite believe it. A March 28, 2018 news item on ScienceDaily announces the work,

Scientists from the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab [or LBNL]) have developed a way to print 3-D structures composed entirely of liquids. Using a modified 3-D printer, they injected threads of water into silicone oil — sculpting tubes made of one liquid within another liquid.

They envision their all-liquid material could be used to construct liquid electronics that power flexible, stretchable devices. The scientists also foresee chemically tuning the tubes and flowing molecules through them, leading to new ways to separate molecules or precisely deliver nanoscale building blocks to under-construction compounds.

A March 28, 2018 Berkeley Lab March 26, 2018 news release (also on EurekAlert), which originated the news item, describe the work in more detail,

The researchers have printed threads of water between 10 microns and 1 millimeter in diameter, and in a variety of spiraling and branching shapes up to several meters in length. What’s more, the material can conform to its surroundings and repeatedly change shape.

“It’s a new class of material that can reconfigure itself, and it has the potential to be customized into liquid reaction vessels for many uses, from chemical synthesis to ion transport to catalysis,” said Tom Russell, a visiting faculty scientist in Berkeley Lab’s Materials Sciences Division. He developed the material with Joe Forth, a postdoctoral researcher in the Materials Sciences Division, as well as other scientists from Berkeley Lab and several other institutions. They report their research March 24 [2018] in the journal Advanced Materials.

The material owes its origins to two advances: learning how to create liquid tubes inside another liquid, and then automating the process.

For the first step, the scientists developed a way to sheathe tubes of water in a special nanoparticle-derived surfactant that locks the water in place. The surfactant, essentially soap, prevents the tubes from breaking up into droplets. Their surfactant is so good at its job, the scientists call it a nanoparticle supersoap.

The supersoap was achieved by dispersing gold nanoparticles into water and polymer ligands into oil. The gold nanoparticles and polymer ligands want to attach to each other, but they also want to remain in their respective water and oil mediums. The ligands were developed with help from Brett Helms at the Molecular Foundry, a DOE Office of Science User Facility located at Berkeley Lab.

In practice, soon after the water is injected into the oil, dozens of ligands in the oil attach to individual nanoparticles in the water, forming a nanoparticle supersoap. These supersoaps jam together and vitrify, like glass, which stabilizes the interface between oil and water and locks the liquid structures in position.

This stability means we can stretch water into a tube, and it remains a tube. Or we can shape water into an ellipsoid, and it remains an ellipsoid,” said Russell. “We’ve used these nanoparticle supersoaps to print tubes of water that last for several months.”

Next came automation. Forth modified an off-the-shelf 3-D printer by removing the components designed to print plastic and replacing them with a syringe pump and needle that extrudes liquid. He then programmed the printer to insert the needle into the oil substrate and inject water in a predetermined pattern.

“We can squeeze liquid from a needle, and place threads of water anywhere we want in three dimensions,” said Forth. “We can also ping the material with an external force, which momentarily breaks the supersoap’s stability and changes the shape of the water threads. The structures are endlessly reconfigurable.”

This image illustrates how the water is printed,

These schematics show the printing of water in oil using a nanoparticle supersoap. Gold nanoparticles in the water combine with polymer ligands in the oil to form an elastic film (nanoparticle supersoap) at the interface, locking the structure in place. (Credit: Berkeley Lab)

Here’s a link to and a citation for the paper,

Reconfigurable Printed Liquids by Joe Forth, Xubo Liu, Jaffar Hasnain, Anju Toor, Karol Miszta, Shaowei Shi, Phillip L. Geissler, Todd Emrick, Brett A. Helms, Thomas P. Russell. Advanced Materials https://doi.org/10.1002/adma.201707603 First published: 24 March 2018

This paper is behind a paywall.