Tag Archives: US National Nanotechnology Coordination Office

(US) Contest: Design a nanotechnology-themed superhero

This contest is open to students enrolled in US high schools or home-schooled and the deadline is Feb. 2, 2016.

High school students can lend their creativity to engineering, science and nanotechnology. Credit: NSF

High school students can lend their creativity to engineering, science and nanotechnology. Credit: NSF

Here are more details from the US National Science Foundation (NSF) Nov. 19, 2015 news release,

A brand-new competition, awarding finalists the opportunity to present their entries at the 2016 USA Science & Engineering Festival [held April 16 & 17, 2016] and compete for cash prizes, opens today for high school students interested in science, engineering and superpowers.

Generation Nano: Small Science, Superheroes is sponsored by the National Science Foundation (NSF) and the National Nanotechnology Initiative (NNI). The competition invites individual students enrolled in U.S. high schools, or who are home-schooled, to submit an original idea for a superhero who uses unique nanotechnology-inspired “gear,” such as a vehicle, costume or tool.

Generation Nano encourages students to think big–which, in this case, means super small–when pondering their hero’s gear: shoelaces that decode secret radio waves, nanotechnology-infused blood cells that supercharge adrenaline or clothing that can change color to camouflage its wearer.

“The wonders of nanotechnology are inspiring an increasing number of young students to pursue science and engineering,” said NSF Senior Advisor for Science and Engineering Mihail C. Roco. “The Generation Nano competition recognizes and channels that interest, while giving students the chance to showcase their creativity at a national level.”

“I’m just thrilled about Generation Nano,” said Lisa Friedersdorf, deputy director of the National Nanotechnology Coordination Office. “This competition has the potential to excite students about science and introduce them to the novel world of nanotechnology. I can’t wait to see the submissions.”

Competition details:

  • Students must submit a written entry explaining their superhero and nanotechnology-driven gear, along with a one-page comic or 90-second video.
  • Cash prizes are $1,500 for first place, $1,000 for second place and $500 for third place.
  • Finalists will showcase their comic or video at the 2016 USA Science and Engineering Festival in Washington, D.C. Final-round judging will take place at the festival.
  • Submissions are due by midnight on Feb. 2, 2016.

Through nanotechnology applications like targeted drugs, self-assembled nanodevices, molecular motors and other innovations, students never have to endure a radioactive spider bite to realize their full potential.

Visit the Generation Nano competition website for full eligibility criteria, entry guidelines, timeline and prize information.

The Generation Nano website offers resources for generating comics, accessing images and audio on this page.

For inspiration, you can take a look at my May 11, 2012 posting which features a description of the nanotechnology-enabled Extremis storyline in the Iron Man comic book series in the context of plans for the Iron Man 3 movie.

For more inspiration from 2012, there was a special exhibit at the Science Gallery in Dublin, Ireland featuring six superheroes created for the exhibit (my Sept. 14, 2012 posting; scroll down about 25% of the way to where I discuss the Magical Materials; Unleash Your Superpowers exhibit).

Good luck!

New US government nano commercialization effort: nanosensors

The latest announcement (this one about nanosensors) from the US National Nanotechnology Coordination Office (NNCO) on behalf of the US National Nanotechnology (NNI) gets a little confusing but hopefully I’ve managed to clarify things.

It starts off simply enough, from a June 22, 2015 news item on Azonano,

The National Nanotechnology Coordination Office (NNCO) is pleased to announce the launch of a workshop report and a web portal, efforts coordinated through and in support of the Nanotechnology Signature Initiative ‘Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and the Environment’ (Sensors NSI). Together, these resources help pave the path forward for the development and commercialization of nanotechnology-enabled sensors and sensors for nanotechnology.

A June 19, 2015 NNCO news release on EurekAlert, which originated the news item, provides details about the report, the new portal, and the new series of webinars,

The workshop report is a summary of the National Nanotechnology Initiative (NNI)-sponsored event held September 11-12, 2014, entitled ‘Sensor Fabrication, Integration, and Commercialization Workshop.’ The goal of the workshop was to identify and discuss challenges that are faced by the sensor development community during the fabrication, integration, and commercialization of sensors, particularly those employing or addressing issues of nanoscale materials and technologies.

Workshop attendees, including sensor developers and representative from Federal agencies, identified ways to help facilitate the commercialization of nanosensors, which include:

  • Enhancing communication among researchers, developers, manufacturers, customers, and the Federal Government agencies that support and regulate sensor development.
  • Leveraging resources by building testbeds for sensor developers.
  • Improving access of university and private researchers to federally supported facilities.
  • Encouraging sensor developers to consider and prepare for market and regulatory requirements early in the development process.

In response to discussions at the workshop, the NNI has also launched an NSI Sensors web portal to share information on the sensors development landscape, including funding agencies and opportunities, federally supported facilities, regulatory guidance, and published standards. Ongoing dialogue and collaboration among various stakeholder groups will be critical to effectively transitioning nanosensors to market and to meeting the U.S. need for a reliable and robust sensor infrastructure.

On Thursday June 25, 2015, from noon to 1 pm EDT, NNCO will host a webinar to summarize the highlights from the 2014 ‘Sensor Fabrication, Integration, and Commercialization Workshop’ and to introduce the newly developed Sensors NSI Web Portal. The webinar will also feature a Q&A segment with members of the public. Questions for the panel can be submitted to webinar@nnco.nano.gov from June 18 through the end of the webinar at 1 pm EDT on June 25, 2015.

Here’s the portal for what they’ve called the NSI [Nanotechnology Signature Initiative]: Nanotechnology for Sensors and Sensors for Nanotechnology — Improving and Protecting, Health Safety, and the Environment, also known as, Sensors NSI Web Portal.

Here’s the report titled, “Sensor Fabrication, Integration, and Commercialization Workshop [2014].”

As for the first webinar in this new series, from the National Signature Webinar Series: Resources for the Development of Nanosensors webpage,

The National Nanotechnology Coordination Office (NNCO) will host a webinar to summarize the highlights from the September 2014 Sensor Fabrication, Integration, and Commercialization Workshop and to introduce the newly developed Sensors NSI Web Portal, which was created to share information on the sensors development landscape, including Federal program and funding opportunities, federally supported facilities, regulatory guidance, and published standards.

On Thursday, June 25, 2015, from 12 noon to 1 pm EDT, Federal panelists will begin the event with a discussion of the findings from the Sensor Fabrication, Integration, and Commercialization Workshop, as well as a demonstration of the resources available on the Sensors NSI Portal.  [emphasis mine]

Federal panelists at the event will include:

This event will feature a Q&A segment with members of the public. Questions for the panel can be submitted to webinar@nnco.nano.gov from June 18 through the end of the webinar at 1 pm on June 25, 2015. The moderator reserves the right to group similar questions and to omit questions that are either repetitive or not directly related to the topic. Due to time constraints, it may not be possible to answer all questions.

You can find the link to register at the end/bottom of the event page.

The NNCO does have one other Public Webinar series, ‘NNCO Small- and Medium-sized Business Enterprise (SME) Webinar Series’. They have archived previously held webinars in this series. There are no upcoming webinars in this series currently scheduled.

US White House Office of Science and Technology Policy issues a Nanotechnology Grand Challenges request for information

First, there was the Bill and Melinda Gates Foundation Grand Challenges, then there was some sort of Canadian government Grand Challenges, and now there’s the US government Nanotechnology-Inspired Grand Challenges for the Next Decade.

I find it fascinating that ‘Grand Challenges’ have become so popular given the near certainty of at least one defeat and the possibility the entire project will fail. By definition, it’s not a challenge if it’s an easy accomplishment.

Enough musing, a June 18, 2015 news item on Azonano announces the US government (White House Office of Science and Technology Policy [OSTP]) request for information (RFI), which has a deadline of July 16, 2015,

The National Nanotechnology Coordination Office (NNCO) is pleased to highlight an important Request for Information (RFI) issued today by the White House Office of Science and Technology Policy (OSTP) seeking suggestions for Nanotechnology-Inspired Grand Challenges for the Next Decade: ambitious but achievable goals that harness nanoscience, nanotechnology, and innovation to solve important national or global problems and have the potential to capture the public’s imagination.

A June 17, 2015 NNCO news release further describes the RFI,

The RFI can be found online at https://federalregister.gov/a/2015-14914  [blog posting] and is discussed in a White House blog post at https://www.whitehouse.gov/blog/2015/06/17/call-nanotechnology-inspired-grand-challenges. Responses must be received by July 16, 2015, to be considered.

As explained by Dr. Michael Meador, Director of the NNCO, the RFI is a key step in responding to the most recent assessment of the National Nanotechnology Initiative (NNI) by the President’s Council of Advisors on Science and Technology (PCAST). “PCAST specifically recommended that the Federal government launch nanotechnology grand challenges in order to focus and amplify the impact of Federal nanotechnology investments and activities.”

The RFI includes a number of potential grand challenges as examples. Federal agencies participating in the NNI (see www.nano.gov), working with NNCO and OSTP, developed examples in the areas of health care, electronics, materials, sustainability, and product safety in order to illustrate how such grand challenges should be framed and to help stimulate the development of additional grand challenges by the wider community.

The RFI seeks input from nanotechnology stakeholders including researchers in academia and industry, non-governmental organizations, scientific and professional societies, and all other interested members of the public. “We strongly encourage everyone to spread the word about this request,” adds Meador. “We are excited about this request and hope to receive suggestions for bold and exciting challenges that nanotechnology can solve.”

A June 17, 2015 blog posting on the White House website (referred to previously) by Lloyd Whitman and Tom Kalil provides more insight into the ‘Grand Challenges’,

In a recent review of the NNI [US National Nanotechnology Initiative], the President’s Council of Advisors on Science and Technology called for government agencies, industry, and the research community to identify and pursue nanotechnology Grand Challenges. Through today’s RFI, we want to hear your game-changing ideas for Grand Challenges that harness nanoscience and nanotechnology to solve important national or global problems. These Grand Challenges should stimulate additional public and private investment, and foster the commercialization of Federally-funded nanotechnology research.

By 2025, the nanotechnology R&D community is challenged to achieve the following:

  1. Increase the five-year survival rates by 50% for the most difficult to treat cancers.
  2. Create devices no bigger than a grain of rice that can sense, compute, and communicate without wires or maintenance for 10 years, enabling an “internet of things” revolution.
  3. Create computer chips that are 100 times faster yet consume less power.
  4. Manufacture atomically-precise materials with fifty times the strength of aluminum at half the weight and the same cost.
  5. Reduce the cost of turning sea water into drinkable water by a factor of four.
  6. Determine the environmental, health, and safety characteristics of a nanomaterial in a month.

What would you propose? Read more about what makes an effective Grand Challenge and how to propose your own Nanotechnology-Inspired Grand Challenges for the Next Decade and comment on these examples here. Responses must be received by July 16, 2015 to be considered.

Good luck!

Tiny Science. Big Impacts. Cool Videos. Winners announced and new call for submissions.

The US National Nanotechnology Coordination Office (NNCO) on behalf of the National Nanotechnology Initiative (NNI) has announced the winners for its first, ‘Tiny Science. Big Impacts. Cool Videos.’ contest in a June 5, 2015 news item on Nanowerk,

The National Nanotechnology Coordination Office (NNCO) is pleased to announce the winners of the first Tiny Science. Big Impacts. Cool Videos. nanotechnology video contest for students. Abelardo Colon and Jennifer Gill from the University of Puerto Rico, Rio Piedras, Nanoscience and Nanotechnology Research Lab won the top honors for their video entitled Chlorination-less. The video explains a new method for disinfecting drinking water using a nanodiamond powder. This nanotechnology-enabled method can kill bacteria, is biocompatible, and is reusable, making it a good alternative to traditional chlorination. Congratulations Abelardo and Jennifer!

A June 5, 2015 NNCO news release on EurekAlert, which originated the news item, describes the judging process and plans for the video,

Videos submitted by students from universities across the United States and U.S. territories, were posted on NanoTube, the official National Nanotechnology Initiative (NNI) YouTube channel, for public voting. The winning video was chosen by representatives from the NNI member agencies from the top two videos identified by public voting. This video will be featured on Nano.gov for the next month. For more information on the Tiny Science. Big Impacts. Cool Videos. contest rules and judges, visit the student video contest page on Nano.gov.

Here is Chlorination-less,

From the Chlorination-less YouTube page,

Published on Apr 28, 2015

“Access to clean water is a major international issue that must not be ignored. Our research is finding a new method for the disinfection of drinking water. Even so, chlorination is the most common treatment for the disinfection of drinking water, but has a lot of disadvantages. Disinfectant by-products (DBP’s) produced by the chlorine disinfection process can cause health problems such as cancer to humans that drink water or inhale vapor. Also some bacteria are able to adapt to this chemical treatment. This is why we are proposing a physical treatment using Ultra Dispersed Diamond (UDD) for the disinfection of drinking water. The UDD is a nanodiamond powder, which has bactericidal properties and is biocompatible. After applying the UDD material to the contaminated water we have promising results. There was a reduction of fecal E. coli colonies as time passed and the density of the material increases. This process will be healthier, cheaper, and more environmentally friendly since it is reusable.”

University of Puerto Rico , Rio Piedras Campus

As for the next contest, that begins July 1, 2015 (from the Tiny Science. Big Impacts. Cool Videos. contest webpage), Note: Links have been removed,

Graduate students, will your research lead to nanotechnologies that impact our daily lives? Submit videos that demonstrate how your nanotechnology research will bring solutions to real-world problems. …

Email submissions information to NNCOvideos@gmail.com and include:

Name and affiliation:

Submissions will be accepted from teams and from individuals. A lead contact person must be designated for team submissions. The order in which names are listed in the submission is the order in which they will appear on the NNI public voting page, the NNI YouTube channel, and on Nano.gov.

Description (150 words or less): Explain your research, use plain language and avoid jargon. Concentrate on what problem your research will help to solve.

Title of uploaded video: It should be the same as the video file name you upload using Google Drive.

Releases for people appearing in the video: A release form is available here; print, collect signatures, scan, and email us electronic copies.

Laboratory website: Include link to the lab where you work, if available

Funding source: Include funding agency, program manager, and award/grant number, if possible

Upload videos using Google Drive to NNCOvideos@gmail.com:

Video Criteria

Video length should be between 2.5 and 3 minutes.

Maximum file size is 2 GB

File type must be H.264, MP4, FLV, or MOV

Use a camera that can shoot videos at least 1280 x 720 pixels in size.

Save video file as the title listed on emailed submission information

Remember to avoid jargon while explaining your research

Collect signed releases (available here) from any recognizable individual appearing in your video

You are allowed to have others (e.g., film students) produce the video. If you put your own video together make sure everything is well lit. Fluorescent overhead lights aren’t the best, try to use natural or focused light if you can. Pay attention to sound quality; use a good microphone and listen for background noise. Watch for too much clutter in the background of your scenes, this can be distracting.

Timeline:

NNCO will begin accepting submissions for the Tiny Science. Big Impacts. Cool Videos. video contest on July 1, 2015.

The Tiny Science. Big Impacts. Cool Videos. video contest will close on November 12, 2015.

The deadline for submissions is 12:00 p.m. PST November 12, 2015.

Semifinalist judging for videos submitted before 12:00 p.m. PST on November 12, 2015 takes place from 12:00 p.m. November 19, 2015 to 12:00 p.m. November 30, 2015.

The winning video will be announced on December 15, 2015.

Good luck!

US White House establishes new initiatives to commercialize nanotechnology

As I’ve noted several times, there’s a strong push in the US to commercialize nanotechnology and May 20, 2015 was a banner day for the efforts. The US White House announced a series of new initiatives to speed commercialization efforts in a May 20, 2015 posting by Lloyd Whitman, Tom Kalil, and JJ Raynor,

Today, May 20 [2015], the National Economic Council and the Office of Science and Technology Policy held a forum at the White House to discuss opportunities to accelerate the commercialization of nanotechnology.

In recognition of the importance of nanotechnology R&D, representatives from companies, government agencies, colleges and universities, and non-profits are announcing a series of new and expanded public and private initiatives that complement the Administration’s efforts to accelerate the commercialization of nanotechnology and expand the nanotechnology workforce:

  • The Colleges of Nanoscale Science and Engineering at SUNY Polytechnic Institute in Albany, NY and the National Institute for Occupational Safety and Health are launching the Nano Health & Safety Consortium to advance research and guidance for occupational safety and health in the nanoelectronics and other nanomanufacturing industry settings.
  • Raytheon has brought together a group of representatives from the defense industry and the Department of Defense to identify collaborative opportunities to advance nanotechnology product development, manufacturing, and supply-chain support with a goal of helping the U.S. optimize development, foster innovation, and take more rapid advantage of new commercial nanotechnologies.
  • BASF Corporation is taking a new approach to finding solutions to nanomanufacturing challenges. In March, BASF launched a prize-based “NanoChallenge” designed to drive new levels of collaborative innovation in nanotechnology while connecting with potential partners to co-create solutions that address industry challenges.
  • OCSiAl is expanding the eligibility of its “iNanoComm” matching grant program that provides low-cost, single-walled carbon nanotubes to include more exploratory research proposals, especially proposals for projects that could result in the creation of startups and technology transfers.
  • The NanoBusiness Commercialization Association (NanoBCA) is partnering with Venture for America and working with the National Science Foundation (NSF) to promote entrepreneurship in nanotechnology.  Three companies (PEN, NanoMech, and SouthWest NanoTechnologies), are offering to support NSF’s Innovation Corps (I-Corps) program with mentorship for entrepreneurs-in-training and, along with three other companies (NanoViricides, mPhase Technologies, and Eikos), will partner with Venture for America to hire recent graduates into nanotechnology jobs, thereby strengthening new nanotech businesses while providing needed experience for future entrepreneurs.
  • TechConnect is establishing a Nano and Emerging Technologies Student Leaders Conference to bring together the leaders of nanotechnology student groups from across the country. The conference will highlight undergraduate research and connect students with venture capitalists, entrepreneurs, and industry leaders.  Five universities have already committed to participating, led by the University of Virginia Nano and Emerging Technologies Club.
  • Brewer Science, through its Global Intern Program, is providing more than 30 students from high schools, colleges, and graduate schools across the country with hands-on experience in a wide range of functions within the company.  Brewer Science plans to increase the number of its science and engineering interns by 50% next year and has committed to sharing best practices with other nanotechnology businesses interested in how internship programs can contribute to a small company’s success.
  • The National Institute of Standards and Technology’s Center for Nanoscale Science and Technology is expanding its partnership with the National Science Foundation to provide hands-on experience for students in NSF’s Advanced Technology Education program. The partnership will now run year-round and will include opportunities for students at Hudson Valley Community College and the University of the District of Columbia Community College.
  • Federal agencies participating in the NNI [US National Nanotechnology Initiative], supported by the National Nanotechnology Coordination Office [NNCO], are launching multiple new activities aimed at educating students and the public about nanotechnology, including image and video contests highlighting student research, a new webinar series focused on providing nanotechnology information for K-12 teachers, and a searchable web portal on nano.gov of nanoscale science and engineering resources for teachers and professors.

Interestingly, May 20, 2015 is also the day the NNCO held its second webinar for small- and medium-size businesses in the nanotechnology community. You can find out more about that webinar and future ones by following the links in my May 13, 2015 posting.

Since the US White House announcement, OCSiAl has issued a May 26, 2015 news release which provides a brief history and more details about its newly expanded NanoComm program,

OCSiAl launched the iNanoComm, which stands for the Integrated Nanotube Commercialization Award, program in February 2015 to help researchers lower the cost of their most promising R&D projects dedicated to SWCNT [single-walled carbon nanotube] applications. The first round received 33 applications from 28 university groups, including The Smalley-Curl Center for Nanoscale Science and Technology at Rice University and the Concordia Center for Composites at Concordia University [Canada] among others. [emphasis mine] The aim of iNanoComm is to stimulate universities and research organizations to develop innovative market products based on nano-augmented materials, also known as clean materials.

Now the program’s criteria are being broadened to enable greater private sector engagement in potential projects and the creation of partnerships in commercializing nanotechnology. The program will now support early stage commercialization efforts connected to university research in the form of start-ups, technology transfers, new businesses and university spinoffs to support the mass commercialization of SWCNT products and technologies.

The announcement of the program’s expansion took place at the 2015 Roundtable of the US NanoBusiness Commercialization Association (NanoBCA), the world’s first non-profit association focused on the commercialization of nanotechnologies. NanoBCA is dedicated to creating an environment that nurtures research and innovation in nanotechnology, promotes tech-transfer of nanotechnology from academia to industry, encourages private capital investments in nanotechnology companies, and helps its corporate members bring innovative nanotechnology products to market.

“Enhancing iNanoComm as a ‘start-up incubator’ is a concrete step in promoting single-wall carbon nanotube applications in the commercial world,” said Max Atanassov, CEO of OCSiAl USA. “It was the logical thing for us to do, now that high quality carbon nanotubes have become broadly available and are affordably priced to be used on a mass industrial scale.”

Vince Caprio, Executive Director of NanoBCA, added that “iNanoComm will make an important contribution to translating fundamental nanotechnology research into commercial products. By facilitating the formation of more start-ups, it will encourage more scientists to pursue their dreams and develop their ideas into commercially successful businesses.”

For more information on the program expansion and how it can reduce the cost of early stage research connected to university projects, visit the iNanoComm website at www.inanocomm.org or contact info@inanocomm.org.

h/t Azonano May 27, 2015 news item

Manufacturing innovation in the US and the Institutes for Manufacturing Innovation (IMI)

The announcement from US President Barack Obama about creating a National Network for Manufacturing Innovation (NNMI) resulting in 45 Institutes for Manufacturing Innovation (IMI) seems to have been made a while back as one of the technical focus areas mentioned in the current round of RFIs (request for information) has closed. Regardless, here’s more from a Sept. 18, 2014 news item on Azonano,

The President of the United States has launched a major, new initiative focused on strengthening the innovation, performance, competitiveness, and job-creating power of U.S. manufacturing called the National Network for Manufacturing Innovation (NNMI).

The NNMI is comprised of Institutes for Manufacturing Innovation (IMIs) and the President has proposed establishing up to 45 IMIs around the country.

A Sept. ??, 2014 National Nanotechnology Initiative (NNI) news release, which originated the news item, describes the program and the RFIs in more detail,

The IMIs will be regionally centered public private partnerships enabling the scale-up of advanced manufacturing technologies and processes, with the goal of successful transition of existing science and technology into the marketplace for both defense and commercial applications. The purpose of the RFI is for DOD to consider input from industry and academia as part of an effort to select and scope the technology focus areas for future IMIs. The RFI originally sought information about the following technical focus areas:

  • Flexible Hybrid Electronics
  • Photonics (now closed)
  • Engineered Nanomaterials
  • Fiber and Textiles
  • Electronic Packaging and Reliability
  • Aerospace Composites

Submissions received to date relevant to the Photonics topic have been deemed sufficient and this topic area is now closed; all other areas remain open. The RFI contains detailed descriptions of the focus areas along with potential applications, market opportunities, and discussion of current and future Technology Readiness Levels (TRLs).

The National Nanotechnology Coordination Office encourages interested members of the nanotechnology community to view and respond to the RFI as appropriate. [emphasis mine] The IMI institutes have the potential to provide game-changing resources and foster exciting new partnerships for the nanotechnology community.

The current closing date is 10 October 2014. Additional details can be found in the RFI and its amendments.

(I’m highlighting the nanotechnology connection for discussion later in this posting.)

You can find the official RFI for the Institutes for Manufacturing Innovation here along with this information,

The Department of Defense (DoD) wishes to consider input from Industry and Academia as part of an effort to select and scope the technology focus areas for future Institutes for Manufacturing Innovation (IMIs). These IMIs will be regionally centered Public Private Partnerships enabling the scale-up of advanced manufacturing technologies and processes with the goal of successful transition of existing science and technology into the marketplace for both Defense and commercial applications. Each Institute will be led by a not-for-profit organization and focus on one technology area. The Department is requesting responses which will assist in the selection of a technology focus area from those currently under consideration, based upon evidence of national security requirement, economic benefit, technical opportunity, relevance to industry, business case for sustainability, and workforce challenge.

There is also some information about this opportunity on the US government’s Advanced Manufacturing Portal here.

This National Network for Manufacturing Innovation is a particularly interesting development in light of my Feb. 10, 2014 posting about a US Government Accountability Office (GAO) report titled: “Nanomanufacturing: Emergence and Implications for U.S. Competitiveness, the Environment, and Human Health.”

Later in 2014, the NNI budget request was shrunk by $200M (mentioned in my March 31, 2014 posting) and shortly thereafter members of the nanotech community went to Washington as per my May 23, 2014 posting. Prior to hearing testimony, the representatives on the subcommittee hearing testimony were given a a 22 pp. précis (PDF; titled: NANOMANUFACTURING AND U.S. COMPETITIVENESS; Challenges and Opportunities) of the GAO report published in Feb. 2014.

I’ve already highlighted mention of the National Nanotechnology Coordination Office in a news release generated by the National Nanotechnology Initiative (NNI) which features a plea to the nanotechnology community to respond to the RFIs.

Clearly, the US NNI is responding to the notion that research generated by the NNI needs to be commercialized.

Finally, the involvement of the US Department of Defense can’t be a huge surprise to anyone given that military research has contributed greatly to consumer technology. As well, it seems the Dept. of Defense might wish to further capitalize on its own research efforts.

Inaugural workshop using *nanomaterials for environmental remediation being held in Louisiana

Participants at the Nano-4-Rem (nanomaterials for environmental remediation) aNsseRS workshop will be visiting the Southeastern Louisiana University in Hammond in early June 2013. From the Nov.  6, 2012 news item on Nanowerk,

An inaugural workshop on the safe use of nanomaterials in environmental remediation will be held at Southeastern Louisiana University June 5-7, 2013.

With increased use of nanotechnology and nanomaterials in the cleanup of hazardous sites, there is now a growing body of evidence that exposure to these materials may have adverse health effects, said conference organizer Ephraim Massawe, assistant professor of occupational safety, health and environment.

“The applications and results of nano-enabled strategies and methods for environmental remediation are increasingly promising,” Massawe said. “The challenge is ensuring that such applications are both safe and sustainable.”

There is more information on Southeastern Louisiana University’s Nano-4-Rem aNsseRS webpage,

Background: Groundwater or soil contamination is present at most Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and Resource Conservation and Recovery Act (RCRA) corrective action sites. Traditional technologies, such as pump-and-treat (P&T) and permeable reactive barriers (PRBs), have been used for decades to remediate such sites. In recent years, remediation strategies involving engineered nanoparticles (ENPs) such as zero-valent iron and titanium dioxide have been demonstrated as viable time-saving and cost-effective alternatives to traditional remediation. In addition, advances in nanotechnology-enabled assessment and monitoring methods such as nano-sensors may support more extensive, reliable, and cost effective assessment and management of remediation activities.

At the same time that applications of nano-enabled strategies and methods for environmental remediation are increasingly promising, there is a growing body of evidence linking exposure to certain nanomaterials with adverse health effects in animals at the laboratory scale. The challenge is to ensure that such applications are both safe and sustainable. …

Workshop Objectives: This is the first national workshop that provides an opportunity for representatives from the environmental remediation community, industry, academia, and government to:

  • Share their perspectives, pose questions, and develop ideas for design of good guidelines, selection criteria, and work practices to support safe and sustainable nano-enabled environmental remediation;
  • Become acquainted with other U.S. nanotechnology stakeholders, including vendors, transporters, and contractors of the remediation sites and communities; and
  • Share case studies of nano-enhanced clean up technologies, including selection criteria for alternative remediation strategies and methods, job planning, job tasks, and nanomaterial handling practices.

Furthermore, in the context of nanoinformatics (Nanoinformatics 2020 Roadmap), the workshop will present:

  • Occupational and environmental regulatory issues as they relate to remediation, synthesis and characterization, and application of nanoinformatics for safe and sustainable use of nanomaterials during remediation;
  • Fate and transport of nanomaterials during and after remediation;
  • Risks, including contributions from both toxicological properties of nanomaterials (hazard) and potentials for occupational and environmental exposure, where hazard x exposure = risk;
  • Results of the recent nanoinformatics survey of state agencies and programs described on the workshop website; and
  • Opportunities for developing and sustaining continuing advances and collaborations.

Call for Presenters and Deadlines: Participants are invited from the industry; site contractors, nanomaterial vendors; laboratories that synthesize and characterize ENPs for environmental remediation; regulatory authorities (local, state, and federal government) and academia (faculty and students). Presenters should submit titles and abstracts for podium or poster presentations by December 14, 2012. The workshop or program schedule will be finalized by February 20, 2013. Event date: June 5-7, 2013. Students are encouraged to submit proposals for podium or poster presentations. “Best student” poster and presentation awards will be given. Information about this workshop can also be found at http://cluin.org [a US Environmental Protection Agency ‘office’].

The Nov. 7, 2012 news release from Southeastern Louisiana University which originated the news item (Nanowerk seems to have posted the item before the release was posted on the university website) provides more detail,

The event, “Nano-4-Rem-Anssers 2013: Applications of Nanotechnology for Safe and Sustainable Environmental Remediations,” is one of the first of its kind in the Southeast which has been designed to provide an opportunity for involved parties to share perspectives, pose questions and develop ideas for generating solid guidelines for best work practices that support safe and sustainable nano-enabled environmental remediation.

Southeastern is sponsoring the event with other agencies and institutions, including the U.S. Environmental Protection Agency (EPA), the National Institute of Safety and Health (NIOSH), the Occupational Safety and Health Administration (OSHA) and in conjunction with the National Nanotechnology Coordination Office (NNCO).

The program will include case studies of nano-enhanced clean up technologies, including selection criteria for alternative remediation strategies and methods, job planning and tasks, and safe material handling practices. Other issues to be discussed are updates of toxicity studies, fate and transport of nanoparticules [the French word for nanoparticles is nanoparticules ..  this seems an unusual choice for a news release from a US university but Louisiana was French at one time, so perhaps there’s a desire to retain a linguistic link?]  in soils and groundwater, and nanoinformatics.

I have written about nanoremediation before. Here are a few of the latest,

Nanoremediation techniques from Iran and from South Carolina

Canadian soil remediation expert in Australia

Phyto and nano soil remediation (part 2: nano)

* ‘nanotechnolmaterials corrected to ‘nanomaterials’ on Sept. 23, 2013.