Tag Archives: US White House Office of Science and Technology Policy (OSTP)

Nano4EARTH workshop recordings available online

Announced in October 2022, the US government’s Nano4EARTH is the Biden-Harris {President Joe Biden and Vice President Kamala Harris] Administration’s first national nanotechnology challenge. (You can find out more about the challenge in my November 28, 2022 posting.)

More recently, JD Supra’s February 22, 2023 news item notes Nano4EARTH’s kick-off workshop (Note: Links have been removed),

The kickoff workshop for Nano4EARTH was held January 24-25, 2023. Nano4EARTH will leverage recent investments in understanding and controlling matter at the nanoscale to develop technologies, industries, and training opportunities that address climate change. On January 26, 2023, the White House Office of Science and Technology Policy (OSTP) issued a press release summarizing the workshop. According to OSTP, more than 400 people across sectors, with diverse expertise and perspectives, participated in the workshop. OSTP states that discussions focused on identifying nanotechnologies that will have an impact on climate change in four years or less, in addition to sharing resources to address barriers to entrepreneurship and technology adoption. Workshop participants identified goals and metrics to maintain momentum throughout the challenge. New connections and networks spanning federal agencies, non-federal organizations, and industry were created and several examples of collaborations and events centered on nanotechnology and climate change developed organically between participants.

A January 26, 2023 White House Office of Science and Technology Policy (OSTP) press release, which originated the news item on JD Supra, described some common workshop themes,

  • Battery technology has seen increased adoption in personal vehicles and long-term energy storage solutions, but further advances in Li-ion, as well as new chemistries and architectures, show tremendous and broad potential. It is critical that research directions are well matched with particular use cases.
  • Catalysts leveraging new understandings of nanoscale materials and phenomena could optimize many high-greenhouse gas emitting industrial processes, minimize the need for rare-earth metals, and serve as a precursor for alternative energy sources such as green hydrogen and electrofuels. 
  • Coatings and other material innovations are likely to increase the overall efficiency of nearly any industrial process and lead to more resilient structures and devices, especially in changing and harsh environments. Examples include reflective coatings, corrosion protection, heat management in computing, lubricants and other additives, and membranes for separations. Drop-in solutions would have a more near-term impact.
  • Capture of greenhouse gasses through advanced materials and sorbents (e.g., metal organic frameworks) and nature mimicking processes (e.g., artificial photosynthesis), especially deployed at the point of production, could be impactful but deploying at scale has significant challenges. In the near term, renewable energy production and efficient transmission is worthy of increased attention.

In the months to come, the NNCO will convene a series of roundtable discussions that focus on some of the highest potential nanotechnologies identified at the kick-off workshop. Subject matter experts and federal partners will be asked to match nanotechnology opportunities to urgent climate change needs, with strong consideration of the broader societal needs and impacts. Feedback from the kick-off workshop will also inform additional activities and events to facilitate conversations and collaborations across this growing community.

The US National Nanotechnology Initiative-hosted Nano4EARTH Kick-off Workshop page features the meeting agenda where there are links to video recordings of each session.

US and Nano4EARTH

After such a long time (a couple of years at least), it was nice to come across this update on the US government’s national nanotechnology efforts. From a October 7, 2022 (US) White House Office of Science and Technology Policy (OSTP) news release (h/t JD Supra October 17, 2022 legal news update),

Today [October 7, 2022], to mark National Nanotechnology Day, the White House Office of Science and Technology Policy (OSTP) and the National Nanotechnology Coordination Office (NNCO) are making key announcements that aim to advance the Biden-Harris Administration’s efforts to leverage the promise of science and technology to benefit all Americans. They also complement the Administration’s ongoing CHIPS and Science Act implementation efforts that will ensure the United States remains a world leader in the industries of tomorrow.

“National Nanotechnology Day is an opportunity to celebrate the NNCO’s – and Biden-Harris Administration’s – efforts to advance research breakthroughs on the nanoscale that impact nearly every scientific discipline and lay the foundation for emerging fields and technologies,” said newly announced National Nanotechnology Coordination Office Director Dr. Branden Brough. “As evidenced by this week’s Nobel Prize announcements highlighting work in quantum information science and click chemistry, the nanotechnology community is leveraging the Nation’s investments in research at the level of atoms and molecules to find solutions to address today’s most pressing challenges, including climate change, pandemic preparedness, and domestic microelectronics manufacturing.”

Biden-⁠Harris Administration’s National Nanotechnology Challenge, Nano4EARTH

The National Nanotechnology Coordination Office is announcing the inaugural National Nanotechnology Challenge, Nano4EARTH. Nano4EARTH will leverage recent investments in understanding and controlling matter at the nanoscale to develop technologies and industries that address climate change. Nano4EARTH recognizes the role nanotechnology plays in: Evaluating, monitoring, and detecting climate change status and trends; Averting future greenhouse gas emissions; Removing existing greenhouse gasses; Training and educating a highly skilled workforce to harness nanotechnology solutions; and developing Higher resilience to – and mitigation of – climate change-induced pressures for improved societal/economic resilience.

The NNCO supports the National Nanotechnology Initiative (NNI), a White House-led initiative that coordinates the nanotechnology R&D activities of 20 federal government agencies. Identified in the 2021 NNI Strategic Plan, National Nanotechnology Challenges are a new mechanism to mobilize and connect the NNI community so it can help to address global societal challenges.

Members of the NNI community – the scientists, engineers, entrepreneurs, and government leaders developing solutions at the nanoscale – are invited to participate in Nano4EARTH! By doing so, they can support the United States’ goal of achieving net-zero carbon emissions by 2050 and inspire and build the STEM workforce capacity that will help develop and implement climate change mitigation and resilience solutions. Links to relevant agency programs, information about the public kick-off workshop, and a link to join a mailing list to get involved can be found on the Nano4EARTH webpage. The Nano4EARTH kick-off workshop (to be held in early 2023) will serve as an information-gathering exercise to identify key feasible outputs of the challenge and effective ways to measure success.

National Nanotechnology Coordination Office (NNCO) Leadership

The White House Office of Science and Technology Policy and The National Nanotechnology Coordination Office are announcing Dr. Branden Brough as the new Director of the National Nanotechnology Coordination Office (NNCO) and Dr. Quinn Spadola as its Deputy Director.

Dr. Brough joins the NNCO from the Molecular Foundry, a U.S. Department of Energy-funded nanoscale science research center that provides users from around the world with access to cutting-edge expertise and instrumentation. He will also serve as OSTP’s Assistant Director for Nanotechnology. As the Molecular Foundry’s Deputy Director, Dr. Brough was responsible for helping guide the organization’s scientific plans and initiatives, while also managing the center’s operations. Before joining the Molecular Foundry, Dr. Brough worked at the NIH’s National Institute of Arthritis and Musculoskeletal and Skin Diseases, where he led strategic policy and planning activities, as well as Congressional and public outreach efforts. Dr. Brough received his Ph.D. in Mechanical Engineering – focusing on the integration of synthetic motor molecules and natural self-assembling proteins into micro/nanotechnologies – from the University of California, Los Angeles (UCLA).

Dr. Spadola was the Associate Director of Education for the National Nanotechnology Coordinated Infrastructure (NNCI), a network of open nanotechnology laboratory user facilities supported by the National Science Foundation, and the Director of Education and Outreach for the Southeastern Nanotechnology Infrastructure Corridor NNCI site at the Georgia Institute of Technology. Prior to joining the Georgia Institute of Technology, Dr. Spadola was the Education and Outreach Coordinator and a Technical Advisor to the Director at NNCO. She received her Ph.D. in physics from Arizona State University and her MFA in Science and Natural History Filmmaking from Montana State University.

Once again, the Climate Change National Nanotechnology Challenge (Nano4EARTH) webpage is here and apparently they aren’t quite ready yet but,

The NNI is planning a Nano4EARTH kick-off workshop! Join our mailing list to get all future updates!

The US White House and its Office of Science and Technology Policy (OSTP)

It’s been a while since I first wrote this but I believe this situation has not changed.

There’s some consternation regarding the US Office of Science and Technology Policy’s (OSTP) diminishing size and lack of leadership. From a July 3, 2017 article by Bob Grant for The Scientist (Note: Links have been removed),

Three OSTP staffers did leave last week, but it was because their prearranged tenures at the office had expired, according to an administration official familiar with the situation. “I saw that there were some tweets and what-not saying that it’s zero,” the official tells The Scientist. “That is not true. We have plenty of PhDs that are still on staff that are working on science. All of the work that was being done by the three who left on Friday had been transitioned to other staffers.”

At least one of the tweets that the official is referring to came from Eleanor Celeste, who announced leaving OSTP, where she was the assistant director for biomedical and forensic sciences. “science division out. mic drop,” she tweeted on Friday afternoon.

The administration official concedes that the OSTP is currently in a state of “constant flux” and at a “weird transition period” at the moment, and expects change to continue. “I’m sure that the office will look even more different in three months than it does today, than it did six months ago,” the official says.

Jeffrey Mervis in two articles for Science Magazine is able to provide more detail. From his July 11, 2017 article,

OSTP now has 35 staffers, says an administration official who declined to be named because they weren’t authorized to speak to the media. Holdren [John Holdren], who in January [2017] returned to Harvard University, says the plunge in staff levels is normal during a presidential transition. “But what’s shocking is that, this far into the new administration, the numbers haven’t gone back up.”

The office’s only political appointee is Michael Kratsios, a former aide to Trump confidant and Silicon Valley billionaire Peter Thiel. Kratsios is serving as OSTP’s deputy chief technology officer and de facto OSTP head. Eight new detailees have arrived from other agencies since the inauguration.

Although there has been no formal reorganization of OSTP, a “smaller, more collaborative staff” is now grouped around three areas—science, technology, and national security—according to the Trump aide. Three holdovers from Obama’s OSTP are leading teams focused on specific themes—Lloyd Whitman in technology, Chris Fall in national security, and Deerin Babb-Brott in environment and energy. They report to Kratsios and Ted Wackler, a career civil servant who was Holdren’s deputy chief of staff and who joined OSTP under former President George W. Bush.

“It’s a very flat structure,” says the Trump official, consistent with the administration’s view that “government should be looking for ways to do more with less.” Ultimately, the official adds, “the goal is [for OSTP] to have “probably closer to 50 [people].”

A briefing book prepared by Obama’s outgoing OSTP staff may be a small but telling indication of the office’s current status. The thick, three-ring binder, covering 100 issues, was modeled on one that Holdren received from John “Jack” Marburger, Bush’s OSTP director. “Jack did a fabulous job of laying out what OSTP does, including what reports it owes Congress, so we decided to do likewise,” Holdren says. “But nobody came [from Trump’s transition team] to collect it until a week before the inauguration.”

That person was Reed Cordish, the 43-year-old scion of billionaire real estate developer David Cordish. An English major in college, Reed Cordish was briefly a professional tennis player before joining the family business. He “spent an hour with us and took the book away,” Holdren says. “He told us, ‘This is an important operation and I’ll do my best to see that it flourishes.’ But we don’t know … whether he has the clout to make that happen.”

Cordish is now assistant to the president for intragovernmental and technology initiatives. He works in the new Office of American Innovation led by presidential son-in-law Jared Kushner. That office arranged a recent meeting with high-tech executives, and is also leading yet another White House attempt to “reinvent” government.

Trump has renewed the charter of the National Science and Technology Council, a multiagency group that carries out much of the day-to-day work of advancing the president’s science initiatives. … Still pending is the status of the President’s Council of Advisors on Science and Technology [emphasis mine], a body of eminent scientists and high-tech industry leaders that went out of business at the end of the Obama administration.

Mervis’ July 12, 2017 article is in the form of a Q&A (question and answer) session with the previously mentioned John Holdren, director of the OSTP in Barack Obama’s administration,

Q: Why did you have such a large staff?

A: One reason was to cover the bases. We knew from the start that the Obama administration thought cybersecurity would be an important issue and we needed to be capable in that space. We also knew we needed people who were capable in climate change, in science and technology for economic recovery and job creation and sustained economic growth, and people who knew about advanced manufacturing and nanotechnology and biotechnology.

We also recruited to carry out specific initiatives, like in precision medicine, or combating antibiotic resistance, or the BRAIN [Brain Research through Advancing Innovative Neurotechnologies] initiative. Most of the work will go on in the departments and agencies, but you need someone to oversee it.

The reason we ended up with 135 people at our peak, which was twice the number during its previous peak in the Clinton administration’s second term, was that this president was so interested in knowing what science could do to advance his agenda, on economic recovery, or energy and climate change, or national intelligence. He got it. He didn’t need to be tutored on why science and technology matters.

I feel I’ve been given undue credit for [Obama] being a science geek. It wasn’t me. He came that way. He was constantly asking what we could do to move the needle. When the first flu epidemic, H1N1, came along, the president immediately turned to me and said, “OK, I want [the President’s Council of Advisors on Science and Technology] to look in depth on this, and OSTP, and NIH [National Institutes of Health], and [the Centers for Disease Control and Prevention].” And he told us to coordinate my effort on this stuff—inform me on what can be done and assemble the relevant experts. It was the same with Ebola, with the Macondo oil spill in the Gulf, with Fukushima, where the United States stepped up to work with the Japanese.

It’s not that we had all the expertise. But our job was to reach out to those who did have the relevant expertise.

Q: OSTP now has 35 people. What does that level of staffing say to you?

A: I have to laugh.

Q: Why?

A: When I left, on 19 January [2017], we were down to 30 people. And a substantial fraction of the 30 were people who, in a sense, keep the lights on. They were the OSTP general counsel and deputy counsel, the security officer and deputy, the budget folks, the accounting folks, the executive director of NSTC [National Science and Technology Council].

There are some scientists left, and there are some scientists there still. But on 30 June the last scientist in the science division left.

Somebody said OSTP has shut down. But that’s not quite it. There was no formal decision to shut anything down. But they did not renew the contract of the last remaining science folks in the science division.

I saw somebody say, “Well, we still have some Ph.D.s left.” And that’s undoubtedly true. There are still some science Ph.D.s left in the national security and international affairs division. But because [OSTP] is headless, they have no direct connection to the president and his top advisers.

I don’t want to disparage the top people there. The top people there now are Michael Kratsios, who they named the deputy chief technology officer, and Ted Wackler, who was my deputy chief of staff and who was [former OSTP Director] Jack Marberger’s deputy, and who I kept because he’s a fabulously effective manager. And I believe that they are doing everything they can to make sure that OSTP, at the very least, does the things it has to do. … But right now I think OSTP is just hanging on.

Q: Why did some people choose to stay on?

A: A large portion of OSTP staff are borrowed from other agencies, and because the White House is the White House, we get the people we need. These are dedicated folks who want to get the job done. They want to see science and technology applied to advance the public interest. And they were willing to stay and do their best despite the considerable uncertainty about their future.

But again, most of the detailees, and the reason we went from 135 to 30 almost overnight, is that it’s pretty standard for the detailees to go back to their home agencies and wait for the next administration to decide what set of detailees it wants to advance their objects.

So there’s nothing shocking that most of the detailees went back to their home agencies. The people who stayed are mostly employed directly by OSTP. What’s shocking is that, this far into the new administration, that number hasn’t gone back up. That is, they have only five more people than they had on January 20 [2017].

As I had been wondering about the OSTP and about the President’s Council of Advisors on Science and Technology (PCAST), it was good to get an update.

On a more parochial note, we in Canada are still waiting for an announcement about who our Chief Science Advisor might be.

$1.4B for US National Nanotechnology Initiative (NNI) in 2017 budget

According to an April 1, 2016 news item on Nanowerk, the US National Nanotechnology (NNI) has released its 2017 budget supplement,

The President’s Budget for Fiscal Year 2017 provides $1.4 billion for the National Nanotechnology Initiative (NNI), affirming the important role that nanotechnology continues to play in the Administration’s innovation agenda. NNI
Cumulatively totaling nearly $24 billion since the inception of the NNI in 2001, the President’s 2017 Budget supports nanoscale science, engineering, and technology R&D at 11 agencies.

Another 9 agencies have nanotechnology-related mission interests or regulatory responsibilities.

An April 1, 2016 NNI news release, which originated the news item, affirms the Obama administration’s commitment to the NNI and notes the supplement serves as an annual report amongst other functions,

Throughout its two terms, the Obama Administration has maintained strong fiscal support for the NNI and has implemented new programs and activities to engage the broader nanotechnology community to support the NNI’s vision that the ability to understand and control matter at the nanoscale will lead to new innovations that will improve our quality of life and benefit society.

This Budget Supplement documents progress of these participating agencies in addressing the goals and objectives of the NNI. It also serves as the Annual Report for the NNI called for under the provisions of the 21st Century Nanotechnology Research and Development Act of 2003 (Public Law 108-153, 15 USC §7501). The report also addresses the requirement for Department of Defense reporting on its nanotechnology investments, per 10 USC §2358.

For additional details and to view the full document, visit www.nano.gov/2017BudgetSupplement.

I don’t seem to have posted about the 2016 NNI budget allotment but 2017’s $1.4B represents a drop of $100M since 2015’s $1.5 allotment.

The 2017 NNI budget supplement describes the NNI’s main focus,

Over the past year, the NNI participating agencies, the White House Office of Science and Technology Policy (OSTP), and the National Nanotechnology Coordination Office (NNCO) have been charting the future directions of the NNI, including putting greater focus on promoting commercialization and increasing education and outreach efforts to the broader nanotechnology community. As part of this effort, and in keeping with recommendations from the 2014 review of the NNI by the President’s Council of Advisors for Science and Technology, the NNI has been working to establish Nanotechnology-Inspired Grand Challenges, ambitious but achievable goals that will harness nanotechnology to solve National or global problems and that have the potential to capture the public’s imagination. Based upon inputs from NNI agencies and the broader community, the first Nanotechnology-Inspired Grand Challenge (for future computing) was announced by OSTP on October 20, 2015, calling for a collaborative effort to “create a new type of computer that can proactively interpret and learn from data, solve unfamiliar problems using what it has learned, and operate with the energy efficiency of the human brain.” This Grand Challenge has generated broad interest within the nanotechnology community—not only NNI agencies, but also industry, technical societies, and private foundations—and planning is underway to address how the agencies and the community will work together to achieve this goal. Topics for additional Nanotechnology-Inspired Grand Challenges are under review.

Interestingly, it also offers an explanation of the images on its cover (Note: Links have been removed),

US_NNI_2017_budget_cover

About the cover

Each year’s National Nanotechnology Initiative Supplement to the President’s Budget features cover images illustrating recent developments in nanotechnology stemming from NNI activities that have the potential to make major contributions to National priorities. The text below explains the significance of each of the featured images on this year’s cover.

US_NNI_2017_front_cover_CloseUp

Front cover featured images (above): Images illustrating three novel nanomedicine applications. Center: microneedle array for glucose-responsive insulin delivery imaged using fluorescence microscopy. This “smart insulin patch” is based on painless microneedles loaded with hypoxia-sensitive vesicles ~100 nm in diameter that release insulin in response to high glucose levels. Dr. Zhen Gu and colleagues at the University of North Carolina (UNC) at Chapel Hill and North Carolina State University have demonstrated that this patch effectively regulates the blood glucose of type 1 diabetic mice with faster response than current pH-sensitive formulations. The inset image on the lower right shows the structure of the nanovesicles; each microneedle contains more than 100 million of these vesicles. The research was supported by the American Diabetes Association, the State of North Carolina, the National Institutes of Health (NIH), and the National Science Foundation (NSF). Left: colorized rendering of a candidate universal flu vaccine nanoparticle. The vaccine molecule, developed at the NIH Vaccine Research Center, displays only the conserved part of the viral spike and stimulates the production of antibodies to fight against the ever-changing flu virus. The vaccine is engineered from a ~13 nm ferritin core (blue) combined with a 7 nm influenza antigen (green). Image credit: NIH National Institute of Allergy and Infectious Diseases (NIAID). Right: colorized scanning electron micrograph of Ebola virus particles on an infected VERO E6 cell. Blue represents individual Ebola virus particles. The image was produced by John Bernbaum and Jiro Wada at NIAID. When the Ebola outbreak struck in 2014, the Food and Drug Administration authorized emergency use of lateral flow immunoassays for Ebola detection that use gold nanoparticles for visual interpretation of the tests.

US_NNI_2017_back_cover._CloseUp

Back cover featured images (above): Images illustrating examples of NNI educational outreach activities. Center: Comic from the NSF/NNI competition Generation Nano: Small Science Superheroes. Illustration by Amina Khan, NSF. Left of Center: Polymer Nanocone Array (biomimetic of antimicrobial insect surface) by Kyle Nowlin, UNC-Greensboro, winner from the first cycle of the NNI’s student image contest, EnvisioNano. Right of Center: Gelatin Nanoparticles in Brain (nasal delivery of stroke medication to the brain) by Elizabeth Sawicki, University of Illinois at Urbana-Champaign, winner from the second cycle of EnvisioNano. Outside right: still photo from the video Chlorination-less (water treatment method using reusable nanodiamond powder) by Abelardo Colon and Jennifer Gill, University of Puerto Rico at Rio Piedras, the winning video from the NNI’s Student Video Contest. Outside left: Society of Emerging NanoTechnologies (SENT) student group at the University of Central Florida, one of the initial nodes in the developing U.S. Nano and Emerging Technologies Student Network; photo by Alexis Vilaboy.