Tag Archives: USA

Sniffing out disease (Na-Nose)

The ‘artificial nose’ is not a newcomer to this blog. The most recent post prior to this is a March 15, 2016 piece about Disney using an artificial nose for art conservation. Today’s (Jan. 9, 2016) piece concerns itself with work from Israel and ‘sniffing out’ disease, according to a Dec. 30, 2016 news item in Sputnik News,

A team from the Israel Institute of Technology has developed a device that from a single breath can identify diseases such as multiple forms of cancer, Parkinson’s disease, and multiple sclerosis. While the machine is still in the experimental stages, it has a high degree of promise for use in non-invasive diagnoses of serious illnesses.

The international team demonstrated that a medical theory first proposed by the Greek physician Hippocrates some 2400 years ago is true, certain diseases leave a “breathprint” on the exhalations of those afflicted. The researchers created a prototype for a machine that can pick up on those diseases using the outgoing breath of a patient. The machine, called the Na-Nose, tests breath samples for the presence of trace amounts of chemicals that are indicative of 17 different illnesses.

A Dec. 22, 2016 Technion Israel Institute of Technology press release offers more detail about the work,

An international team of 56 researchers in five countries has confirmed a hypothesis first proposed by the ancient Greeks – that different diseases are characterized by different “chemical signatures” identifiable in breath samples. …

Diagnostic techniques based on breath samples have been demonstrated in the past, but until now, there has not been scientific proof of the hypothesis that different and unrelated diseases are characterized by distinct chemical breath signatures. And technologies developed to date for this type of diagnosis have been limited to detecting a small number of clinical disorders, without differentiation between unrelated diseases.

The study of more than 1,400 patients included 17 different and unrelated diseases: lung cancer, colorectal cancer, head and neck cancer, ovarian cancer, bladder cancer, prostate cancer, kidney cancer, stomach cancer, Crohn’s disease, ulcerative colitis, irritable bowel syndrome, Parkinson’s disease (two types), multiple sclerosis, pulmonary hypertension, preeclampsia and chronic kidney disease. Samples were collected between January 2011 and June 2014 from in 14 departments at 9 medical centers in 5 countries: Israel, France, the USA, Latvia and China.

The researchers tested the chemical composition of the breath samples using an accepted analytical method (mass spectrometry), which enabled accurate quantitative detection of the chemical compounds they contained. 13 chemical components were identified, in different compositions, in all 17 of the diseases.

According to Prof. Haick, “each of these diseases is characterized by a unique fingerprint, meaning a different composition of these 13 chemical components.  Just as each of us has a unique fingerprint that distinguishes us from others, each disease has a chemical signature that distinguishes it from other diseases and from a normal state of health. These odor signatures are what enables us to identify the diseases using the technology that we developed.”

With a new technology called “artificially intelligent nanoarray,” developed by Prof. Haick, the researchers were able to corroborate the clinical efficacy of the diagnostic technology. The array enables fast and inexpensive diagnosis and classification of diseases, based on “smelling” the patient’s breath, and using artificial intelligence to analyze the data obtained from the sensors. Some of the sensors are based on layers of gold nanoscale particles and others contain a random network of carbon nanotubes coated with an organic layer for sensing and identification purposes.

The study also assessed the efficiency of the artificially intelligent nanoarray in detecting and classifying various diseases using breath signatures. To verify the reliability of the system, the team also examined the effect of various factors (such as gender, age, smoking habits and geographic location) on the sample composition, and found their effect to be negligible, and without impairment on the array’s sensitivity.

“Each of the sensors responds to a wide range of exhalation components,” explain Prof. Haick and his previous Ph.D student, Dr. Morad Nakhleh, “and integration of the information provides detailed data about the unique breath signatures characteristic of the various diseases. Our system has detected and classified various diseases with an average accuracy of 86%.

This is a new and promising direction for diagnosis and classification of diseases, which is characterized not only by considerable accuracy but also by low cost, low electricity consumption, miniaturization, comfort and the possibility of repeating the test easily.”

“Breath is an excellent raw material for diagnosis,” said Prof. Haick. “It is available without the need for invasive and unpleasant procedures, it’s not dangerous, and you can sample it again and again if necessary.”

Here’s a schematic of the study, which the researchers have made available,

Diagram: A schematic view of the study. Two breath samples were taken from each subject, one was sent for chemical mapping using mass spectrometry, and the other was analyzed in the new system, which produced a clinical diagnosis based on the chemical fingerprint of the breath sample. Courtesy: Tech;nion

There is also a video, which covers much of the same ground as the press release but also includes information about the possible use of the Na-Nose technology in the European Union’s SniffPhone project,

Here’s a link to and a citation for the paper,

Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules by Morad K. Nakhleh, Haitham Amal, Raneen Jeries, Yoav Y. Broza, Manal Aboud, Alaa Gharra, Hodaya Ivgi, Salam Khatib, Shifaa Badarneh, Lior Har-Shai, Lea Glass-Marmor, Izabella Lejbkowicz, Ariel Miller, Samih Badarny, Raz Winer, John Finberg, Sylvia Cohen-Kaminsky, Frédéric Perros, David Montani, Barbara Girerd, Gilles Garcia, Gérald Simonneau, Farid Nakhoul, Shira Baram, Raed Salim, Marwan Hakim, Maayan Gruber, Ohad Ronen, Tal Marshak, Ilana Doweck, Ofer Nativ, Zaher Bahouth, Da-you Shi, Wei Zhang, Qing-ling Hua, Yue-yin Pan, Li Tao, Hu Liu, Amir Karban, Eduard Koifman, Tova Rainis, Roberts Skapars, Armands Sivins, Guntis Ancans, Inta Liepniece-Karele, Ilze Kikuste, Ieva Lasina, Ivars Tolmanis, Douglas Johnson, Stuart Z. Millstone, Jennifer Fulton, John W. Wells, Larry H. Wilf, Marc Humbert, Marcis Leja, Nir Peled, and Hossam Haick. ACS Nano, Article ASAP DOI: 10.1021/acsnano.6b04930 Publication Date (Web): December 21, 2016

Copyright © 2017 American Chemical Society

This paper appears to be open access.

As for SniffPhone, they’re hoping that Na-Nose or something like it will allow them to modify smartphones in a way that will allow diseases to be detected.

I can’t help wondering who will own the data if your smartphone detects a disease. If you think that’s an idle question, here’s an excerpt from Sue Halpern’s Dec. 22, 2016 review of two books (“Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy” by Cathy O’Neil and “Virtual Competition: The Promise and Perils of the Algorithm-Driven Economy” by Ariel Ezrachi and Maurice E. Stucke) for the New York Times Review of Books,

We give our data away. We give it away in drips and drops, not thinking that data brokers will collect it and sell it, let alone that it will be used against us. There are now private, unregulated DNA databases culled, in part, from DNA samples people supply to genealogical websites in pursuit of their ancestry. These samples are available online to be compared with crime scene DNA without a warrant or court order. (Police are also amassing their own DNA databases by swabbing cheeks during routine stops.) In the estimation of the Electronic Frontier Foundation, this will make it more likely that people will be implicated in crimes they did not commit.

Or consider the data from fitness trackers, like Fitbit. As reported in The Intercept:

During a 2013 FTC panel on “Connected Health and Fitness,” University of Colorado law professor Scott Peppet said, “I can paint an incredibly detailed and rich picture of who you are based on your Fitbit data,” adding, “That data is so high quality that I can do things like price insurance premiums or I could probably evaluate your credit score incredibly accurately.”

Halpern’s piece is well worth reading in its entirety.

The Leonardo Project and the master’s DNA (deoxyribonucleic acid)

I’ve never really understood the mania for digging up bodies of famous people in history and trying to ascertain how the person really died or what kind of diseases they may have had but the practice fascinates me. The latest famous person to be subjected to a forensic inquiry centuries after death is Leonardo da Vinci. A May 5, 2016 Human Evolution (journal) news release on EurekAlert provides details,

A team of eminent specialists from a variety of academic disciplines has coalesced around a goal of creating new insight into the life and genius of Leonardo da Vinci by means of authoritative new research and modern detective technologies, including DNA science.

The Leonardo Project is in pursuit of several possible physical connections to Leonardo, beaming radar, for example, at an ancient Italian church floor to help corroborate extensive research to pinpoint the likely location of the tomb of his father and other relatives. A collaborating scholar also recently announced the successful tracing of several likely DNA relatives of Leonardo living today in Italy (see endnotes).

If granted the necessary approvals, the Project will compare DNA from Leonardo’s relatives past and present with physical remnants — hair, bones, fingerprints and skin cells — associated with the Renaissance figure whose life marked the rebirth of Western civilization.

The Project’s objectives, motives, methods, and work to date are detailed in a special issue of the journal Human Evolution, published coincident with a meeting of the group hosted in Florence this week under the patronage of Eugenio Giani, President of the Tuscan Regional Council (Consiglio Regionale della Toscana).

The news release goes on to provide some context for the work,

Born in Vinci, Italy, Leonardo died in 1519, age 67, and was buried in Amboise, southwest of Paris. His creative imagination foresaw and described innovations hundreds of years before their invention, such as the helicopter and armored tank. His artistic legacy includes the iconic Mona Lisa and The Last Supper.

The idea behind the Project, founded in 2014, has inspired and united anthropologists, art historians, genealogists, microbiologists, and other experts from leading universities and institutes in France, Italy, Spain, Canada and the USA, including specialists from the J. Craig Venter Institute of California, which pioneered the sequencing of the human genome.

The work underway resembles in complexity recent projects such as the successful search for the tomb of historic author Miguel de Cervantes and, in March 2015, the identification of England’s King Richard III from remains exhumed from beneath a UK parking lot, fittingly re-interred 500 years after his death.

Like Richard, Leonardo was born in 1452, and was buried in a setting that underwent changes in subsequent years such that the exact location of the grave was lost.

If DNA and other analyses yield a definitive identification, conventional and computerized techniques might reconstruct the face of Leonardo from models of the skull.”

In addition to Leonardo’s physical appearance, information potentially revealed from the work includes his ancestry and additional insight into his diet, state of health, personal habits, and places of residence.

According to the news release, the researchers have an agenda that goes beyond facial reconstruction and clues about  ancestry and diet,

Beyond those questions, and the verification of Leonardo’s “presumed remains” in the chapel of Saint-Hubert at the Château d’Amboise, the Project aims to develop a genetic profile extensive enough to understand better his abilities and visual acuity, which could provide insights into other individuals with remarkable qualities.

It may also make a lasting contribution to the art world, within which forgery is a multi-billion dollar industry, by advancing a technique for extracting and sequencing DNA from other centuries-old works of art, and associated methods of attribution.

Says Jesse Ausubel, Vice Chairman of the Richard Lounsbery Foundation, sponsor of the Project’s meetings in 2015 and 2016: “I think everyone in the group believes that Leonardo, who devoted himself to advancing art and science, who delighted in puzzles, and whose diverse talents and insights continue to enrich society five centuries after his passing, would welcome the initiative of this team — indeed would likely wish to lead it were he alive today.”

The researchers aim to have the work complete by 2019,

In the journal, group members underline the highly conservative, precautionary approach required at every phase of the Project, which they aim to conclude in 2019 to mark the 500th anniversary of Leonardo’s death.

For example, one objective is to verify whether fingerprints on Leonardo’s paintings, drawings, and notebooks can yield DNA consistent with that extracted from identified remains.

Early last year, Project collaborators from the International Institute for Humankind Studies in Florence opened discussions with the laboratory in that city where Leonardo’s Adoration of the Magi has been undergoing restoration for nearly two years, to explore the possibility of analyzing dust from the painting for possible DNA traces. A crucial question is whether traces of DNA remain or whether restoration measures and the passage of time have obliterated all evidence of Leonardo’s touch.

In preparation for such analysis, a team from the J. Craig Venter Institute and the University of Florence is examining privately owned paintings believed to be of comparable age to develop and calibrate techniques for DNA extraction and analysis. At this year’s meeting in Florence, the researchers also described a pioneering effort to analyze the microbiome of a painting thought to be about five centuries old.

If human DNA can one day be obtained from Leonardo’s work and sequenced, the genetic material could then be compared with genetic information from skeletal or other remains that may be exhumed in the future.

Here’s a list of the participating organizations (from the news release),

  • The Institut de Paléontologie Humaine, Paris
  • The International Institute for Humankind Studies, Florence
  • The Laboratory of Molecular Anthropology and Paleogenetics, Biology Department, University of Florence
  • Museo Ideale Leonardo da Vinci, in Vinci, Italy
  • J. Craig Venter Institute, La Jolla, California
  • Laboratory of Genetic Identification, University of Granada, Spain
  • The Rockefeller University, New York City

You can find the special issue of Human Evolution (HE Vol. 31, 2016 no. 3) here. The introductory essay is open access but the other articles are behind a paywall.

Not the same old gold: there’s a brand new phase

A Dec. 7, 2015 news item on ScienceDaily announces a new phase for gold has been identified,

A new and stable phase of gold with different physical and optical properties from those of conventional gold has been synthesized by Agency for Science, Technology and Research (A*STAR) researchers [1], Singapore, and promises to be useful for a wide range of applications, including plasmonics and catalysis.

Many materials exist in a variety of crystal structures, known as phases or polymorphs. These different phases have the same chemical composition but different physical structures, which give rise to different properties. For example, two well-known polymorphs of carbon, graphite and diamond, arranged differently, have radically different physical properties, despite being the same element.

Gold has been used for many purposes throughout history, including jewelry, electronics and catalysis. Until now it has always been produced in one phase ― a face-centered cubic structure in which atoms are located at the corners and the center of each face of the constituent cubes.

Now, Lin Wu and colleagues at the Institute of the A*STAR Institute of High Performance Computing have modeled the optical and plasmonic properties of nanoscale ribbons of a new phase of gold — the 4H hexagonal phase (…) — produced and characterized by collaborators at other institutes in Singapore, China and the USA. The team synthesized nanoribbons of the new phase by simply heating the gold (III) chloride hydrate (HAuCl4) with a mixture of three organic solvents and then centrifuging and washing the product. This gave a high yield of about 60 per cent.

Here’s an image supplied by the researchers,

The atomic structure of the new phase of gold synthesized by A*STAR researchers. Reproduced from Ref. 1 and licensed under CC BY 4.0 © 2015 Z. Fan et al.

The atomic structure of the new phase of gold synthesized by A*STAR researchers. Reproduced from Ref. 1 and licensed under CC BY 4.0 © 2015 Z. Fan et al.

A Dec. 2, 2015 A*STAR news release, which originated the news item, provides more details,

The researchers also produced 4H hexagonal phases of the precious metals silver, platinum and palladium by growing them on top of the gold 4H hexagonal phase.

The cubic phase looks identical when viewed front on, from one side or from above. In contrast, the new 4H hexagonal phase lacks this cubic symmetry and hence varies more with direction — a property known as anisotropy. This lower symmetry gives it more directionally varying optical properties, which may make it useful for plasmonic applications. “Our finding is not only is of fundamental interest, but it also provides a new avenue for unconventional applications of plasmonic devices,” says Wu.

The team is keen to explore the potential of their new phase. “In the future, we hope to leverage the unconventional anisotropic properties of the new gold phase and design new devices with excellent performances not achievable with conventional face-centered-cubic gold,” says Wu. The synthesis method also gives rise to the potential for new strategies for controlling the crystalline phase of nanomaterials made from the noble metals.

Here’s a link to and a citation for the paper,

Stabilization of 4H hexagonal phase in gold nanoribbons by Zhanxi Fan, Michel Bosman, Xiao Huang, Ding Huang, Yi Yu, Khuong P. Ong, Yuriy A. Akimov, Lin Wu, Bing Li, Jumiati Wu, Ying Huang, Qing Liu, Ching Eng Png, Chee Lip Gan, Peidong Yang & Hua Zhang. Nature Communications 6, Article number: 7684 doi:10.1038/ncomms8684 Published 28 July 2015

This is an open access paper.

Blue Brain Project builds a digital piece of brain

Caption: This is a photo of a virtual brain slice. Credit: Makram et al./Cell 2015

Caption: This is a photo of a virtual brain slice. Credit: Makram et al./Cell 2015

Here’s more *about this virtual brain slice* from an Oct. 8, 2015 Cell (magazine) news release on EurekAlert,

If you want to learn how something works, one strategy is to take it apart and put it back together again [also known as reverse engineering]. For 10 years, a global initiative called the Blue Brain Project–hosted at the Ecole Polytechnique Federale de Lausanne (EPFL)–has been attempting to do this digitally with a section of juvenile rat brain. The project presents a first draft of this reconstruction, which contains over 31,000 neurons, 55 layers of cells, and 207 different neuron subtypes, on October 8 [2015] in Cell.

Heroic efforts are currently being made to define all the different types of neurons in the brain, to measure their electrical firing properties, and to map out the circuits that connect them to one another. These painstaking efforts are giving us a glimpse into the building blocks and logic of brain wiring. However, getting a full, high-resolution picture of all the features and activity of the neurons within a brain region and the circuit-level behaviors of these neurons is a major challenge.

Henry Markram and colleagues have taken an engineering approach to this question by digitally reconstructing a slice of the neocortex, an area of the brain that has benefitted from extensive characterization. Using this wealth of data, they built a virtual brain slice representing the different neuron types present in this region and the key features controlling their firing and, most notably, modeling their connectivity, including nearly 40 million synapses and 2,000 connections between each brain cell type.

“The reconstruction required an enormous number of experiments,” says Markram, of the EPFL. “It paves the way for predicting the location, numbers, and even the amount of ion currents flowing through all 40 million synapses.”

Once the reconstruction was complete, the investigators used powerful supercomputers to simulate the behavior of neurons under different conditions. Remarkably, the researchers found that, by slightly adjusting just one parameter, the level of calcium ions, they could produce broader patterns of circuit-level activity that could not be predicted based on features of the individual neurons. For instance, slow synchronous waves of neuronal activity, which have been observed in the brain during sleep, were triggered in their simulations, suggesting that neural circuits may be able to switch into different “states” that could underlie important behaviors.

“An analogy would be a computer processor that can reconfigure to focus on certain tasks,” Markram says. “The experiments suggest the existence of a spectrum of states, so this raises new types of questions, such as ‘what if you’re stuck in the wrong state?'” For instance, Markram suggests that the findings may open up new avenues for explaining how initiating the fight-or-flight response through the adrenocorticotropic hormone yields tunnel vision and aggression.

The Blue Brain Project researchers plan to continue exploring the state-dependent computational theory while improving the model they’ve built. All of the results to date are now freely available to the scientific community at https://bbp.epfl.ch/nmc-portal.

An Oct. 8, 2015 Hebrew University of Jerusalem press release on the Canadian Friends of the Hebrew University of Jerusalem website provides more detail,

Published by the renowned journal Cell, the paper is the result of a massive effort by 82 scientists and engineers at EPFL and at institutions in Israel, Spain, Hungary, USA, China, Sweden, and the UK. It represents the culmination of 20 years of biological experimentation that generated the core dataset, and 10 years of computational science work that developed the algorithms and built the software ecosystem required to digitally reconstruct and simulate the tissue.

The Hebrew University of Jerusalem’s Prof. Idan Segev, a senior author of the research paper, said: “With the Blue Brain Project, we are creating a digital reconstruction of the brain and using supercomputer simulations of its electrical behavior to reveal a variety of brain states. This allows us to examine brain phenomena within a purely digital environment and conduct experiments previously only possible using biological tissue. The insights we gather from these experiments will help us to understand normal and abnormal brain states, and in the future may have the potential to help us develop new avenues for treating brain disorders.”

Segev, a member of the Hebrew University’s Edmond and Lily Safra Center for Brain Sciences and director of the university’s Department of Neurobiology, sees the paper as building on the pioneering work of the Spanish anatomist Ramon y Cajal from more than 100 years ago: “Ramon y Cajal began drawing every type of neuron in the brain by hand. He even drew in arrows to describe how he thought the information was flowing from one neuron to the next. Today, we are doing what Cajal would be doing with the tools of the day: building a digital representation of the neurons and synapses, and simulating the flow of information between neurons on supercomputers. Furthermore, the digitization of the tissue is open to the community and allows the data and the models to be preserved and reused for future generations.”

While a long way from digitizing the whole brain, the study demonstrates that it is feasible to digitally reconstruct and simulate brain tissue, and most importantly, to reveal novel insights into the brain’s functioning. Simulating the emergent electrical behavior of this virtual tissue on supercomputers reproduced a range of previous observations made in experiments on the brain, validating its biological accuracy and providing new insights into the functioning of the neocortex. This is a first step and a significant contribution to Europe’s Human Brain Project, which Henry Markram founded, and where EPFL is the coordinating partner.

Cell has made a video abstract available (it can be found with the Hebrew University of Jerusalem press release)

Here’s a link to and a citation for the paper,

Reconstruction and Simulation of Neocortical Microcircuitry by Henry Markram, Eilif Muller, Srikanth Ramaswamy, Michael W. Reimann, Marwan Abdellah, Carlos Aguado Sanchez, Anastasia Ailamaki, Lidia Alonso-Nanclares, Nicolas Antille, Selim Arsever, Guy Antoine Atenekeng Kahou, Thomas K. Berger, Ahmet Bilgili, Nenad Buncic, Athanassia Chalimourda, Giuseppe Chindemi, Jean-Denis Courcol, Fabien Delalondre, Vincent Delattre, Shaul Druckmann, Raphael Dumusc, James Dynes, Stefan Eilemann, Eyal Gal, Michael Emiel Gevaert, Jean-Pierre Ghobril, Albert Gidon, Joe W. Graham, Anirudh Gupta, Valentin Haenel, Etay Hay, Thomas Heinis, Juan B. Hernando, Michael Hines, Lida Kanari, Daniel Keller, John Kenyon, Georges Khazen, Yihwa Kim, James G. King, Zoltan Kisvarday, Pramod Kumbhar, Sébastien Lasserre, Jean-Vincent Le Bé, Bruno R.C. Magalhães, Angel Merchán-Pérez, Julie Meystre, Benjamin Roy Morrice, Jeffrey Muller, Alberto Muñoz-Céspedes, Shruti Muralidhar, Keerthan Muthurasa, Daniel Nachbaur, Taylor H. Newton, Max Nolte, Aleksandr Ovcharenko, Juan Palacios, Luis Pastor, Rodrigo Perin, Rajnish Ranjan, Imad Riachi, José-Rodrigo Rodríguez, Juan Luis Riquelme, Christian Rössert, Konstantinos Sfyrakis, Ying Shi, Julian C. Shillcock, Gilad Silberberg, Ricardo Silva, Farhan Tauheed, Martin Telefont, Maria Toledo-Rodriguez, Thomas Tränkler, Werner Van Geit, Jafet Villafranca Díaz, Richard Walker, Yun Wang, Stefano M. Zaninetta, Javier DeFelipe, Sean L. Hill, Idan Segev, Felix Schürmann. Cell, Volume 163, Issue 2, p456–492, 8 October 2015 DOI: http://dx.doi.org/10.1016/j.cell.2015.09.029

This paper appears to be open access.

My most substantive description of the Blue Brain Project , previous to this, was in a Jan. 29, 2013 posting featuring the European Union’s (EU) Human Brain project and involvement from countries that are not members.

* I edited a redundant lede (That’s a virtual slice of a rat brain.), moved the second sentence to the lede while adding this:  *about this virtual brain slice* on Oct. 16, 2015 at 0955 hours PST.

LEGO2NANO, a UK-China initiative

LEGO2NANO is a ‘summer’ school being held in China sometime during September 2015 (I could not find the dates). The first summer school, held last year, featured a prototype functioning atomic force microscope made of Lego bricks according to an Aug. 25, 2015 news item on Nanowerk,

University College London students from across a range of disciplines travel to China to team up with students from Beijing, Boston (USA) and Taipei (Taiwan) for an action-packed two-week hackathon summer school based at Tsinghua University’s Beijing and Shenzhen campuses.

LEGO2NANO aims to bring the world of nanotechnology to school classrooms by initiating projects to develop low-cost scientific instruments such as the Open AFM—an open-source atomic force microscope assembled from cheap, off-the-shelf electronic components, Arduino, Lego and 3D printable parts.

Here’s an image used to publicize the first summer school in 2014,

LEGO2NANO – a summer school about making nanotechnology, 6–14 September 2014, Beijing, China LEGO2NANO关于纳米技术暑期学校2014年9月6-14日

LEGO2NANO – a summer school about making nanotechnology, 6–14 September 2014, Beijing, China

An August 20, 2015 University College of London press release, which originated the news item, provides more detail about the upcoming two-week session,

The 2015 LEGO2NANO challenge is focused on developing a range of innovative imaging and motion-sensitive instruments based on optical pick-up units available in any DVD head.

Aside from the intense, daily making sessions, the programme is packed with trips and visits to local Chinese schools, university laboratories, the Chinese Academy of Sciences, Beijing’s electronics markets, Shenzhen’s Open Innovation Laboratory (SZOIL)  and SEEED Studio. The students will also have daily talks and presentations from international experts on a variety of subjects such as the international maker movement, the Chinese education system, augmented reality and DIY instrumentation.

You can find more information about LEGO2NANO here at openafm.com and here at http://lego2nano.openwisdomlab.net/.

Canada and some graphene scene tidbits

For a long time It seemed as if every country in the world, except Canada, had some some sort of graphene event. According to a July 16, 2015 news item on Nanotechnology Now, Canada has now stepped up, albeit, in a peculiarly Canadian fashion. First the news,

Mid October [Oct. 14 -16, 2015], the Graphene & 2D Materials Canada 2015 International Conference & Exhibition (www.graphenecanada2015.com) will take place in Montreal (Canada).

I found a July 16, 2015 news release (PDF) announcing the Canadian event on the lead organizer’s (Phantoms Foundation located in Spain) website,

On the second day of the event (15th October, 2015), an Industrial Forum will bring together top industry leaders to discuss recent advances in technology developments and business opportunities in graphene commercialization.
At this stage, the event unveils 38 keynote & invited speakers. On the Industrial Forum 19 of them will present the latest in terms of Energy, Applications, Production and Worldwide Initiatives & Priorities.

Gary Economo (Grafoid Inc., Canada)
Khasha Ghaffarzadeh (IDTechEx, UK)
Shu-Jen Han (IBM T.J. Watson Research Center, USA)
Bor Z. Jang (Angstron Materials, USA)
Seongjun Park (Samsung Advanced Institute of Technology (SAIT), Korea)
Chun-Yun Sung (Lockheed Martin, USA)

Parallel Sessions:
Gordon Chiu (Grafoid Inc., Canada)
Jesus de la Fuente (Graphenea, Spain)
Mark Gallerneault (ALCERECO Inc., Canada)
Ray Gibbs (Haydale Graphene Industries, UK)
Masataka Hasegawa (AIST, Japan)
Byung Hee Hong (SNU & Graphene Square, Korea)
Tony Ling (Jestico + Whiles, UK)
Carla Miner (SDTC, Canada)
Gregory Pognon (THALES Research & Technology, France)
Elena Polyakova (Graphene Laboratories Inc, USA)
Federico Rosei (INRS–EMT, Université du Québec, Canada)
Aiping Yu (University of Waterloo, Canada)
Hua Zhang (MSE-NTU, Singapore)

Apart from the industrial forum, several industry-related activities will be organized:
– Extensive thematic workshops in parallel (Standardization, Materials & Devices Characterization, Bio & Health and Electronic Devices)
– An exhibition carried out with the latest graphene trends (Grafoid, RAYMOR NanoIntegris, Nanomagnetics Instruments, ICEX and Xerox Research Centre of Canada (XRCC) already confirmed)
– B2B meetings to foster technical cooperation in the field of Graphene

It’s still possible to contribute to the event with an oral presentation. The call for abstracts is open until July, 20 [2015]. [emphasis mine]

Graphene Canada 2015 is already supported by Canada’s leading graphene applications developer, Grafoid Inc., Tourisme Montréal and Université de Montréal.

This is what makes the event peculiarly Canadian: multiculturalism, anyone? From the news release,

Organisers: Phantoms Foundation www.phantomsnet.net & Grafoid Foundation (lead organizers)

CEMES/CNRS (France) | Grafoid (Canada) | Catalan Institute of Nanoscience and Nanotechnology – ICN2 (Spain) | IIT (Italy) | McGill University, Canada | Texas Instruments (USA) | Université Catholique de Louvain (Belgium) | Université de Montreal, Canada

It’s billed as a ‘Canada Graphene 2015’ and, as I recall, these types of events don’t usually have so many other countries listed as organizers. For example, UK Graphene 2015 would have mostly or all of its organizers (especially the leads) located in the UK.

Getting to the Canadian content, I wrote about Grafoid at length tracking some of its relationships to companies it owns, a business deal with Hydro Québec, and a partnership with the University of Waterloo, and a nonrepayable grant from the Canadian federal government (Sustainable Development Technology Canada [SDTC]) in a Feb. 23, 2015 posting. Do take a look at the post if you’re curious about the heavily interlinked nature of the Canadian graphene scene and take another look at the list of speakers and their agencies (Mark Gallerneault of ALCERECO [partially owned by Grafoid], Carla Miner of SDTC [Grafoid received monies from the Canadian federal department],  Federico Rosei of INRS–EMT, Université du Québec [another Quebec link], Aiping Yu, University of Waterloo [an academic partner to Grafoid]). The Canadian graphene community is a small one so it’s not surprising there are links between the Canadian speakers but it does seem odd that Lomiko Metals is not represented here. Still, new speakers have been announced since the news release (e.g., Frank Koppens of ICFO, Spain, and Vladimir Falko of Lancaster University, UK) so  time remains.

Meanwhile, Lomiko Metals has announced in a July 17, 2015 news item on Azonano that Graphene 3D labs has changed the percentage of its outstanding shares affecting the percentage that Lomiko owns, amid some production and distribution announcements. The bit about launching commercial sales of its graphene filament seems more interesting to me,

On March 16, 2015 Graphene 3D Lab (TSXV:GGG) (OTCQB:GPHBF) announced that it launched commercial sales of its Conductive Graphene Filament for 3D printing. The filament incorporates highly conductive proprietary nano-carbon materials to enhance the properties of PLA, a widely used thermoplastic material for 3D printing; therefore, the filament is compatible with most commercially available 3D printers. The conductive filament can be used to print conductive traces (similar to as used in circuit boards) within 3D printed parts for electronics.

So, that’s all I’ve got for Canada’s graphene scene.