Tag Archives: UWM

Center for Sustainable Nanotechnology or how not to poison and make the planet uninhabitable

I received notice of the Center for Sustainable Nanotechnology’s newest deal with the US National Science Foundation in an August 31, 2015 email University of Wisconsin-Madison (UWM) news release,

The Center for Sustainable Nanotechnology, a multi-institutional research center based at the University of Wisconsin-Madison, has inked a new contract with the National Science Foundation (NSF) that will provide nearly $20 million in support over the next five years.

Directed by UW-Madison chemistry Professor Robert Hamers, the center focuses on the molecular mechanisms by which nanoparticles interact with biological systems.

Nanotechnology involves the use of materials at the smallest scale, including the manipulation of individual atoms and molecules. Products that use nanoscale materials range from beer bottles and car wax to solar cells and electric and hybrid car batteries. If you read your books on a Kindle, a semiconducting material manufactured at the nanoscale underpins the high-resolution screen.

While there are already hundreds of products that use nanomaterials in various ways, much remains unknown about how these modern materials and the tiny particles they are composed of interact with the environment and living things.

“The purpose of the center is to explore how we can make sure these nanotechnologies come to fruition with little or no environmental impact,” explains Hamers. “We’re looking at nanoparticles in emerging technologies.”

In addition to UW-Madison, scientists from UW-Milwaukee, the University of Minnesota, the University of Illinois, Northwestern University and the Pacific Northwest National Laboratory have been involved in the center’s first phase of research. Joining the center for the next five-year phase are Tuskegee University, Johns Hopkins University, the University of Iowa, Augsburg College, Georgia Tech and the University of Maryland, Baltimore County.

At UW-Madison, Hamers leads efforts in synthesis and molecular characterization of nanomaterials. soil science Professor Joel Pedersen and chemistry Professor Qiang Cui lead groups exploring the biological and computational aspects of how nanomaterials affect life.

Much remains to be learned about how nanoparticles affect the environment and the multitude of organisms – from bacteria to plants, animals and people – that may be exposed to them.

“Some of the big questions we’re asking are: How is this going to impact bacteria and other organisms in the environment? What do these particles do? How do they interact with organisms?” says Hamers.

For instance, bacteria, the vast majority of which are beneficial or benign organisms, tend to be “sticky” and nanoparticles might cling to the microorganisms and have unintended biological effects.

“There are many different mechanisms by which these particles can do things,” Hamers adds. “The challenge is we don’t know what these nanoparticles do if they’re released into the environment.”

To get at the challenge, Hamers and his UW-Madison colleagues are drilling down to investigate the molecular-level chemical and physical principles that dictate how nanoparticles interact with living things.
Pedersen’s group, for example, is studying the complexities of how nanoparticles interact with cells and, in particular, their surface membranes.

“To enter a cell, a nanoparticle has to interact with a membrane,” notes Pedersen. “The simplest thing that can happen is the particle sticks to the cell. But it might cause toxicity or make a hole in the membrane.”

Pedersen’s group can make model cell membranes in the lab using the same lipids and proteins that are the building blocks of nature’s cells. By exposing the lab-made membranes to nanomaterials now used commercially, Pedersen and his colleagues can see how the membrane-particle interaction unfolds at the molecular level – the scale necessary to begin to understand the biological effects of the particles.

Such studies, Hamers argues, promise a science-based understanding that can help ensure the technology leaves a minimal environmental footprint by identifying issues before they manifest themselves in the manufacturing, use or recycling of products that contain nanotechnology-inspired materials.

To help fulfill that part of the mission, the center has established working relationships with several companies to conduct research on materials in the very early stages of development.

“We’re taking a look-ahead view. We’re trying to get into the technological design cycle,” Hamers says. “The idea is to use scientific understanding to develop a predictive ability to guide technology and guide people who are designing and using these materials.”

What with this initiative and the LCnano Network at Arizona State University (my April 8, 2014 posting; scroll down about 50% of the way), it seems that environmental and health and safety studies of nanomaterials are kicking into a higher gear as commercialization efforts intensify.

Audience perceptions of emerging technologies and media stories that emphasize conflict over nuance

A few names popped into my head, as soon as I saw a news release focused on audience perceptions and emerging technologies. I was right about one of the authors (Dominique Brossard of the University of Wisconsin-Madison [UWM] often writes on the topic) however, the lead author is Andrew Binder of North Carolina State University (NCSU). An August 31, 2015 NCSU news release describes a joint NCSU-UWM research project  (Note: Links have been removed),

Researchers from NC State University and the University of Wisconsin-Madison have found more evidence that how media report on emerging technologies – such as nanotechnology or genetically modified crops – influences public opinion on those subjects.

Specifically, when news stories highlight conflict in the scientific community on an emerging technology, people who accept the authority of scientists on scientific subjects are more likely to view the emerging technology as risky.

“Scientists – even scientists who disagree – often incorporate caveats and nuance into their comments on emerging technologies,” says Andrew R. Binder, lead author of a paper on the work and an associate professor of communication at NC State. “For example, a scientist may voice an opinion but note a lack of data on the subject. But that nuance is often lost in news stories.

“We wanted to know stories that present scientists as being in clear conflict, leaving out the nuance, affected the public’s perception of uncertainty on an issue – particularly compared to stories that incorporate the nuances of each scientist’s position,” Binder says.

For their experiment, the researchers had 250 college students answer a questionnaire on their deference to scientific authority and their perceptions of nanotechnology. Participants were split into four groups. Before asking about nanotechnology, one group was asked to read a news story about nanotech that quoted scientists and presented them as being in conflict; one group read a news story with quotes that showed disagreement between scientists but included nuance on each scientist’s position; one group read a story without quotes; and one group – the control group – was given no reading.

In most instances, the reading assignments did not have a significant impact on study participants’ perception of risks associated with nanotechnology. However, those participants who were both “highly deferent” to scientific authority and given the “conflict” news item perceived nanotechnology as being significantly more risky as compared to those highly deferent study participants who read the “nuance” article.

“One thing that’s interesting here is that participants who were highly deferential to scientific authority but were in the control group or read the news item without quotes – they landed about halfway between the ‘conflict’ group and the ‘nuance’ group,” Binder says. “So it would seem that the way reporters frame scientific opinion can sway an audience one way or the other.”

The researchers also found that, while an appearance of conflict can increase one’s perception of risk, it did not increase participants’ sense of certainty in their position.

As a practical matter, the findings raise questions for journalists – since scientists have limited control over how they’re portrayed in the news. Previous surveys have found that many people are deferent to scientific authority – they trust scientists – so a reporter’s decision to cut nuance or highlight conflict could make a very real impact on how the public perceives emerging technologies.

“Reporters can’t include every single detail, and scientists want to include everything,” Binder says. “So I don’t think there’s a definitive solution out there that will make everyone happy. But hopefully this will encourage both parties to meet in the middle.”

I have one comment, this research was conducted on college students whose age range is likely more restricted than what you’d find in the general populace. I don’t know if the research team has plans or more funding but it would seem the next step would be to tested a wider range to see if the results with the college students can be generalized.

Here’s a link to and a citation for the paper,

Conflict or Caveats? Effects of Media Portrayals of Scientific Uncertainty on Audience Perceptions of New Technologies by Andrew R. Binder, Elliott D. Hillback, and Dominique Brossard. Risk Analysis DOI: 10.1111/risa.12462 Article first published online: 13 AUG 2015

© 2015 Society for Risk Analysis

This paper is behind a paywall.