Tag Archives: Venus flytrap

Oops—Greg Gage does it again! With a ‘neuroscience’ talk for TED and launch for the Plant SpikerBox

I’ve written a couple times about Greg Gage and his Backyard Brains,  first, in a March 28, 2012 posting (scroll down about 40% of the way for the mention of the first [?] ‘SpikerBox’) and, most recently, in a June 26, 2013 posting (scroll down about 25% of the way for the mention of a RoboRoach Kickstater project from Backyard Brains) which also featured the launch of a new educational product and a TED [technology education design] talk.

Here’s the latest from an Oct. 10, 2017 news release (received via email),

Backyard Brains Releases Plant SpikerBox, unlocking the Secret Electrical Language used in Plants

The first consumer device to investigate how plants create behaviors through electrophysiology and to enable interspecies plant to plant communication.

ANN ARBOR, MI, OCTOBER 10, 2017–Today Backyard Brains launched the Plant SpikerBox, the first ever science kit designed to reveal the wonderful nature behind plant behavior through electrophysiology experiments done at home or in the classroom. The new SpikerBox launched alongside three new experiments, enabling users to explore Venus Flytrap and Sensitive Mimosa signals and to perform a jaw-dropping Interspecies Plant-Plant-Communicator experiment. The Plant SpikerBox and all three experiments are featured in a live talk from TED2017 given by Backyard Brains CEO and cofounder Dr. Greg Gage which was released today on ​​https://ted.com.

Backyard Brains received viral attention for their previous videos, TED talks, and for their mission to create hands-on neuroscience experiments for everyone. The company (run by professional neuroscientists) produces consumer-friendly versions of expensive graduate lab equipment used at top research universities around the world. The new plant experiments and device facilitate the growing movement of DIY [do it yourself] scientists, made up of passionate amateurs, students, parents, and teachers.

Like previous inventions, the Plant SpikerBox is extremely easy to use, making it accessible for students as young as middle school. The device works by recording the electrical activity responsible for different plant behaviors. For example, the Venus Flytrap uses an electrical signal to determine if prey has landed in its trap; the SpikerBox reveals these invisible messages and allows you to visualize them on your mobile device. For the first time ever, you can peer into the fascinating world of plant signaling and plant behaviors.

The new SpikerBox features an “Interspecies Plant-Plant-Communicator” which demonstrates the ubiquitous nature of electrical signaling seen in humans, insects, and plants. With this device, one can capture the electrical message (called an action potential) from one plant’s behavior, and send it to a different plant to activate another behavior.

Co-founder and CEO Greg Gage explains, “Itis surprising to many people that plants use electrical messages similar to those used by the neurons in our brains. I was shocked to hear that. Many neuroscientists are. But if you think about it, it [sic] does make sense. Our nervous system evolved to react quickly. Electricity is fast. The plants we are studying also need to react quickly, so it makes sense they would develop a similar system. To be clear: No, plants don’t have brains, but they do exhibit behaviors and they do use electric messages called ‘Action Potentials’ like we do to send information. The benefit of these plant experiments then is twofold: First, we can simply demonstrate fundamental neuroscience principles, and second, we can spread the wonder of understanding how living creatures work and hopefully encourage others to make a career in life sciences!”

The Plant SpikerBox is a trailblazer, bringing plant electrophysiology to the public for the first time ever. It is designed to work with the Backyard Brains SpikeRecorder software which is available to download for free on their website or in mobile app stores. The three plant experiments are just a few of the dozens of free experiments available on the Backyard Brains website. The Plant SpikerBox is available now for $149.99.

About Backyard Brains

A staggering 1 in 5 people will develop a neurological disorder in their lifetime, making the need for neuroscience studies urgent. Backyard Brains passionately responds with their motto “Neuroscience for Everyone,” providing exposure, education, and experiment kits to students of all ages. Founded in 2010 in Ann Arbor, MI by University of Michigan Neuroscience graduate students Greg Gage and Tim Marzullo, Backyard Brains have been dubbed Champions of Change at an Obama White House ceremony and have won prestigious awards from the National Institutes of Health and the Society for Neuroscience. To learn more, visit BackyardBrains.com

You can find an embedded video of Greg Gage’s TED talk and Plant SpikerBox launch along with links to experiments you could run with it on Backyard Brains’ Plant SpikerBox product page.

For a sample of what they have on offer, here’s an excerpt from the Venus Flytrap Electrophysiology experiment webpage (Note: Links have been removed),

Background

Your nervous system allows you to sense and respond quickly to the environment around you. You have a nervous system, animals have nervous systems, but plants do not. But not having a nervous system does not mean you cannot sense and respond to the world. Plants can certainly sense the environment around them and move. You have seen your plants slowly turn their leaves towards sunlight by the window over a week, open their flowers in the day, and close their flowers during the night. Some plants can move in much more dramatic fashion, such as the Venus Flytrap and the Sensitive Mimosa.

The Venus Flytrap comes from the swamps of North Carolina, USA, and lives in very nutrient-poor, water-logged soil. It photosynthesizes like other plants, but it can’t always rely on the sunlight for food. To supplement its food supply it traps and eats insects, extracting from them the nitrogen and phosphorous needed to form plant food (amino acids, nucleic acids, and other molecules).

If you look closely at the Venus Flytrap, you will notice it has very tiny “Trigger Hairs” inside its trap leaves.

If a wayward, unsuspecting insect touches a trigger hair, an Action Potential occurs in the leaves. This is a different Action Potential than what we are used to seeing in neurons, as it’s based on the movement of calcium, potassium, and chloride ions (vs. movement of potassium and sodium as in the Action Potentials of neurons and muscles), and it is muuuuuuuuucccchhhhhh longer than anything we’ve seen before.

If the trigger hair is touched twice within 20 seconds (firing two Action Potentials within 20 seconds), the trap closes. The trap is not closing due to muscular action (plants do not have muscles), but rather due to an osmotic, rapid change in the shape of curvature of the trap leaves. Interestingly, the firing of Action Potentials is not always reliable, depending on time of year, temperature, health of plant, and/or other factors. Quite different from we humans, Action Potential failure is not devastating to a Venus Flytrap.

We can observe this plant Action Potential using our Plant SpikerBox. Welcome to the Brave New World of Plant Electrophysiology.

Downloads

Before you begin, make sure you have the Backyard Brains SpikeRecorder. The Backyard Brains SpikeRecorder program allows you to visualize and save data on your computer when doing experiments.

….

I did feel a bit sorry for the Venus Flytrap in Greg Gage’s TED talk which was fooled into closing its trap. According to Gage, the Venus Flytrap has limited number of times it can close its trap and after the last time, it dies. On the other hand, I eat meat and use leather goods so there is not pedestal for me to perch on.

For anyone who caught the Brittany Spears reference in the headline in this posting,

From exploring outer space with Brittany Spears to exploring plant communication and neuroscience in your back yard, science can be found in many different places.

Machine/flesh, robotic venus flytraps, and artificial muscles

On the heels of yesterday’s musings about machine/flesh in the context of my Carbon nanotubes, neurons, and spinal cords … posting, there’s a new Spotlight essay (on Nanowerk) by Michael Berger titled, Robotic Venus flytrap aids artificial muscle research. From the essay,

Mohsen Shahinpoor, Richard C. Hill Professor & Chairman Mechanical Engineering Department at the University of Maine, has created a robotic replica of the carnivorous Venus flytrap with nanosensors and a thin, pliable metal composite material that he invented as part of his ongoing artificial muscle research. The device offers promise in the development of electrically stimulated artificial muscle that could be implanted in people to help overcome muscular disease or paralysis.

It’s the Venus flytrap’s (Dionaea muscipula) trigger sensitivity to movement (when the plant feels movement along certain hairs, it snaps shut within milliseconds to trap its prey). Here’s an image from the Botanical Society of America’s Mysterious Venus Flytrap webpage which illustrates the hairs (cilia) that act as triggers,

Venus flytrap trigger hairs

I have briefly glanced at the research paper, Biomimetic robotic Venus flytrap (Dionaea muscipula Ellis) made with ionic polymer metal  composites (open access PDF), published by IOP Publishers in its Bioinspiration & Biomimetics journal (vol. 6, no. 4). The introduction, the conclusion, and the images are the most accessible for someone (like me) who doesn’t have a background in electrical engineering. Here’s a bit from the introduction (Note: I have removed the bibiographic notes),

The rapid closure of the VFT lobes in about hundreds of milliseconds is one of the fastest nastic movements in higher plants. Darwin described the VFT plant as ‘one of the most wonderful plants in the world’. Mechanical stimulation of trigger hairs in the lobes of the VFT by a prey causes the traps to close rapidly. The reader is referred to a number of studies on the mechanism of closing of lobes of the VFT as described in … Note that Batalin was the first to propose a possible mechanism for such nastic movements in higher plants. Sibaoka discussed the physiology of rapid movements in higher plants.

Here, we propose that the mechanisms of sensing of the prey wiggling in its lobes by the trigger hairs and the trap closing of VFT are very similar to sensing and actuation mechanisms in IPMCs and thus one can design, fabricate and operate a biomimetic robotic VFT equipped with IPMCs [ionic polymeric metal composite].

The researchers don’t mention any applications (none I could find in the paper) for these progenitors to artificial muscles but Berger notes at the end of his essay,

The development of artificial muscles is one of the key areas for bionic enhancements or replacements. Artificial muscles like these could find applications in the medical field or for engineering applications.

I suppose you can’t call the possible integration in medical applications of these artificial muscles machine/flesh so much as they are plant/machine/flesh.