Tag Archives: Vern Brownell

D-Wave and the first large-scale quantum simulation of topological state of matter

This is all about a local (Burnaby is one of the metro Vancouver municipalities) quantum computing companies, D-Wave Systems. The company has been featured here from time to time. It’s usually about about their quantum technology (they are considered a technology star in local and [I think] other circles) but my March 9, 2018 posting about the SXSW (South by Southwest) festival noted that Bo Ewald, President, D-Wave Systems US, was a member of the ‘Quantum Computing: Science Fiction to Science Fact’ panel.

Now, they’re back making technology announcements like this August 22, 2018 news item on phys.org (Note: Links have been removed),

D-Wave Systems today [August 22, 2018] published a milestone study demonstrating a topological phase transition using its 2048-qubit annealing quantum computer. This complex quantum simulation of materials is a major step toward reducing the need for time-consuming and expensive physical research and development.

The paper, entitled “Observation of topological phenomena in a programmable lattice of 1,800 qubits”, was published in the peer-reviewed journal Nature. This work marks an important advancement in the field and demonstrates again that the fully programmable D-Wave quantum computer can be used as an accurate simulator of quantum systems at a large scale. The methods used in this work could have broad implications in the development of novel materials, realizing Richard Feynman’s original vision of a quantum simulator. This new research comes on the heels of D-Wave’s recent Science paper demonstrating a different type of phase transition in a quantum spin-glass simulation. The two papers together signify the flexibility and versatility of the D-Wave quantum computer in quantum simulation of materials, in addition to other tasks such as optimization and machine learning.

An August 22, 2108 D-Wave Systems news release (also on EurekAlert), which originated the news item, delves further (Note: A link has been removed),

In the early 1970s, theoretical physicists Vadim Berezinskii, J. Michael Kosterlitz and David Thouless predicted a new state of matter characterized by nontrivial topological properties. The work was awarded the Nobel Prize in Physics in 2016. D-Wave researchers demonstrated this phenomenon by programming the D-Wave 2000Q™ system to form a two-dimensional frustrated lattice of artificial spins. The observed topological properties in the simulated system cannot exist without quantum effects and closely agree with theoretical predictions.

“This paper represents a breakthrough in the simulation of physical systems which are otherwise essentially impossible,” said 2016 Nobel laureate Dr. J. Michael Kosterlitz. “The test reproduces most of the expected results, which is a remarkable achievement. This gives hope that future quantum simulators will be able to explore more complex and poorly understood systems so that one can trust the simulation results in quantitative detail as a model of a physical system. I look forward to seeing future applications of this simulation method.”

“The work described in the Nature paper represents a landmark in the field of quantum computation: for the first time, a theoretically predicted state of matter was realized in quantum simulation before being demonstrated in a real magnetic material,” said Dr. Mohammad Amin, chief scientist at D-Wave. “This is a significant step toward reaching the goal of quantum simulation, enabling the study of material properties before making them in the lab, a process that today can be very costly and time consuming.”

“Successfully demonstrating physics of Nobel Prize-winning importance on a D-Wave quantum computer is a significant achievement in and of itself. But in combination with D-Wave’s recent quantum simulation work published in Science, this new research demonstrates the flexibility and programmability of our system to tackle recognized, difficult problems in a variety of areas,” said Vern Brownell, D-Wave CEO.

“D-Wave’s quantum simulation of the Kosterlitz-Thouless transition is an exciting and impactful result. It not only contributes to our understanding of important problems in quantum magnetism, but also demonstrates solving a computationally hard problem with a novel and efficient mapping of the spin system, requiring only a limited number of qubits and opening new possibilities for solving a broader range of applications,” said Dr. John Sarrao, principal associate director for science, technology, and engineering at Los Alamos National Laboratory.

“The ability to demonstrate two very different quantum simulations, as we reported in Science and Nature, using the same quantum processor, illustrates the programmability and flexibility of D-Wave’s quantum computer,” said Dr. Andrew King, principal investigator for this work at D-Wave. “This programmability and flexibility were two key ingredients in Richard Feynman’s original vision of a quantum simulator and open up the possibility of predicting the behavior of more complex engineered quantum systems in the future.”

The achievements presented in Nature and Science join D-Wave’s continued work with world-class customers and partners on real-world prototype applications (“proto-apps”) across a variety of fields. The 70+ proto-apps developed by customers span optimization, machine learning, quantum material science, cybersecurity, and more. Many of the proto-apps’ results show that D-Wave systems are approaching, and sometimes surpassing, conventional computing in terms of performance or solution quality on real problems, at pre-commercial scale. As the power of D-Wave systems and software expands, these proto-apps point to the potential for scaled customer application advantage on quantum computers.

The company has prepared a video describing Richard Feynman’s proposal about quantum computing and celebrating their latest achievement,

Here’s the company’s Youtube video description,

In 1982, Richard Feynman proposed the idea of simulating the quantum physics of complex systems with a programmable quantum computer. In August 2018, his vision was realized when researchers from D-Wave Systems and the Vector Institute demonstrated the simulation of a topological phase transition—the subject of the 2016 Nobel Prize in Physics—in a fully programmable D-Wave 2000Q™ annealing quantum computer. This complex quantum simulation of materials is a major step toward reducing the need for time-consuming and expensive physical research and development.

You may want to check out the comments in response to the video.

Here’s a link to and a citation for the Nature paper,

Observation of topological phenomena in a programmable lattice of 1,800 qubits by Andrew D. King, Juan Carrasquilla, Jack Raymond, Isil Ozfidan, Evgeny Andriyash, Andrew Berkley, Mauricio Reis, Trevor Lanting, Richard Harris, Fabio Altomare, Kelly Boothby, Paul I. Bunyk, Colin Enderud, Alexandre Fréchette, Emile Hoskinson, Nicolas Ladizinsky, Travis Oh, Gabriel Poulin-Lamarre, Christopher Rich, Yuki Sato, Anatoly Yu. Smirnov, Loren J. Swenson, Mark H. Volkmann, Jed Whittaker, Jason Yao, Eric Ladizinsky, Mark W. Johnson, Jeremy Hilton, & Mohammad H. Amin. Nature volume 560, pages456–460 (2018) DOI: https://doi.org/10.1038/s41586-018-0410-x Published 22 August 2018

This paper is behind a paywall but, for those who don’t have access, there is a synopsis here.

For anyone curious about the earlier paper published in July 2018, here’s a link and a citation,

Phase transitions in a programmable quantum spin glass simulator by R. Harris, Y. Sato, A. J. Berkley, M. Reis, F. Altomare, M. H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, S. Huang, E. Hoskinson, M. W. Johnson, E. Ladizinsky, N. Ladizinsky, T. Lanting, R. Li, T. Medina, R. Molavi, R. Neufeld, T. Oh, I. Pavlov, I. Perminov, G. Poulin-Lamarre, C. Rich, A. Smirnov, L. Swenson, N. Tsai, M. Volkmann, J. Whittaker, J. Yao. Science 13 Jul 2018: Vol. 361, Issue 6398, pp. 162-165 DOI: 10.1126/science.aat2025

This paper too is behind a paywall.

You can find out more about D-Wave here.

Alberta adds a newish quantum nanotechnology research hub to the Canada’s quantum computing research scene

One of the winners in Canada’s 2017 federal budget announcement of the Pan-Canadian Artificial Intelligence Strategy was Edmonton, Alberta. It’s a fact which sometimes goes unnoticed while Canadians marvel at the wonderfulness found in Toronto and Montréal where it seems new initiatives and monies are being announced on a weekly basis (I exaggerate) for their AI (artificial intelligence) efforts.

Alberta’s quantum nanotechnology hub (graduate programme)

Intriguingly, it seems that Edmonton has higher aims than (an almost unnoticed) leadership in AI. Physicists at the University of Alberta have announced hopes to be just as successful as their AI brethren in a Nov. 27, 2017 article by Juris Graney for the Edmonton Journal,

Physicists at the University of Alberta [U of A] are hoping to emulate the success of their artificial intelligence studying counterparts in establishing the city and the province as the nucleus of quantum nanotechnology research in Canada and North America.

Google’s artificial intelligence research division DeepMind announced in July [2017] it had chosen Edmonton as its first international AI research lab, based on a long-running partnership with the U of A’s 10-person AI lab.

Retaining the brightest minds in the AI and machine-learning fields while enticing a global tech leader to Alberta was heralded as a coup for the province and the university.

It is something U of A physics professor John Davis believes the university’s new graduate program, Quanta, can help achieve in the world of quantum nanotechnology.

The field of quantum mechanics had long been a realm of theoretical science based on the theory that atomic and subatomic material like photons or electrons behave both as particles and waves.

“When you get right down to it, everything has both behaviours (particle and wave) and we can pick and choose certain scenarios which one of those properties we want to use,” he said.

But, Davis said, physicists and scientists are “now at the point where we understand quantum physics and are developing quantum technology to take to the marketplace.”

“Quantum computing used to be realm of science fiction, but now we’ve figured it out, it’s now a matter of engineering,” he said.

Quantum computing labs are being bought by large tech companies such as Google, IBM and Microsoft because they realize they are only a few years away from having this power, he said.

Those making the groundbreaking developments may want to commercialize their finds and take the technology to market and that is where Quanta comes in.

East vs. West—Again?

Ivan Semeniuk in his article, Quantum Supremacy, ignores any quantum research effort not located in either Waterloo, Ontario or metro Vancouver, British Columbia to describe a struggle between the East and the West (a standard Canadian trope). From Semeniuk’s Oct. 17, 2017 quantum article [link follows the excerpts] for the Globe and Mail’s October 2017 issue of the Report on Business (ROB),

 Lazaridis [Mike], of course, has experienced lost advantage first-hand. As co-founder and former co-CEO of Research in Motion (RIM, now called Blackberry), he made the smartphone an indispensable feature of the modern world, only to watch rivals such as Apple and Samsung wrest away Blackberry’s dominance. Now, at 56, he is engaged in a high-stakes race that will determine who will lead the next technology revolution. In the rolling heartland of southwestern Ontario, he is laying the foundation for what he envisions as a new Silicon Valley—a commercial hub based on the promise of quantum technology.

Semeniuk skips over the story of how Blackberry lost its advantage. I came onto that story late in the game when Blackberry was already in serious trouble due to a failure to recognize that the field they helped to create was moving in a new direction. If memory serves, they were trying to keep their technology wholly proprietary which meant that developers couldn’t easily create apps to extend the phone’s features. Blackberry also fought a legal battle in the US with a patent troll draining company resources and energy in proved to be a futile effort.

Since then Lazaridis has invested heavily in quantum research. He gave the University of Waterloo a serious chunk of money as they named their Quantum Nano Centre (QNC) after him and his wife, Ophelia (you can read all about it in my Sept. 25, 2012 posting about the then new centre). The best details for Lazaridis’ investments in Canada’s quantum technology are to be found on the Quantum Valley Investments, About QVI, History webpage,

History-bannerHistory has repeatedly demonstrated the power of research in physics to transform society.  As a student of history and a believer in the power of physics, Mike Lazaridis set out in 2000 to make real his bold vision to establish the Region of Waterloo as a world leading centre for physics research.  That is, a place where the best researchers in the world would come to do cutting-edge research and to collaborate with each other and in so doing, achieve transformative discoveries that would lead to the commercialization of breakthrough  technologies.

Establishing a World Class Centre in Quantum Research:

The first step in this regard was the establishment of the Perimeter Institute for Theoretical Physics.  Perimeter was established in 2000 as an independent theoretical physics research institute.  Mike started Perimeter with an initial pledge of $100 million (which at the time was approximately one third of his net worth).  Since that time, Mike and his family have donated a total of more than $170 million to the Perimeter Institute.  In addition to this unprecedented monetary support, Mike also devotes his time and influence to help lead and support the organization in everything from the raising of funds with government and private donors to helping to attract the top researchers from around the globe to it.  Mike’s efforts helped Perimeter achieve and grow its position as one of a handful of leading centres globally for theoretical research in fundamental physics.

Stephen HawkingPerimeter is located in a Governor-General award winning designed building in Waterloo.  Success in recruiting and resulting space requirements led to an expansion of the Perimeter facility.  A uniquely designed addition, which has been described as space-ship-like, was opened in 2011 as the Stephen Hawking Centre in recognition of one of the most famous physicists alive today who holds the position of Distinguished Visiting Research Chair at Perimeter and is a strong friend and supporter of the organization.

Recognizing the need for collaboration between theorists and experimentalists, in 2002, Mike applied his passion and his financial resources toward the establishment of The Institute for Quantum Computing at the University of Waterloo.  IQC was established as an experimental research institute focusing on quantum information.  Mike established IQC with an initial donation of $33.3 million.  Since that time, Mike and his family have donated a total of more than $120 million to the University of Waterloo for IQC and other related science initiatives.  As in the case of the Perimeter Institute, Mike devotes considerable time and influence to help lead and support IQC in fundraising and recruiting efforts.  Mike’s efforts have helped IQC become one of the top experimental physics research institutes in the world.

Quantum ComputingMike and Doug Fregin have been close friends since grade 5.  They are also co-founders of BlackBerry (formerly Research In Motion Limited).  Doug shares Mike’s passion for physics and supported Mike’s efforts at the Perimeter Institute with an initial gift of $10 million.  Since that time Doug has donated a total of $30 million to Perimeter Institute.  Separately, Doug helped establish the Waterloo Institute for Nanotechnology at the University of Waterloo with total gifts for $29 million.  As suggested by its name, WIN is devoted to research in the area of nanotechnology.  It has established as an area of primary focus the intersection of nanotechnology and quantum physics.

With a donation of $50 million from Mike which was matched by both the Government of Canada and the province of Ontario as well as a donation of $10 million from Doug, the University of Waterloo built the Mike & Ophelia Lazaridis Quantum-Nano Centre, a state of the art laboratory located on the main campus of the University of Waterloo that rivals the best facilities in the world.  QNC was opened in September 2012 and houses researchers from both IQC and WIN.

Leading the Establishment of Commercialization Culture for Quantum Technologies in Canada:

In the Research LabFor many years, theorists have been able to demonstrate the transformative powers of quantum mechanics on paper.  That said, converting these theories to experimentally demonstrable discoveries has, putting it mildly, been a challenge.  Many naysayers have suggested that achieving these discoveries was not possible and even the believers suggested that it could likely take decades to achieve these discoveries.  Recently, a buzz has been developing globally as experimentalists have been able to achieve demonstrable success with respect to Quantum Information based discoveries.  Local experimentalists are very much playing a leading role in this regard.  It is believed by many that breakthrough discoveries that will lead to commercialization opportunities may be achieved in the next few years and certainly within the next decade.

Recognizing the unique challenges for the commercialization of quantum technologies (including risk associated with uncertainty of success, complexity of the underlying science and high capital / equipment costs) Mike and Doug have chosen to once again lead by example.  The Quantum Valley Investment Fund will provide commercialization funding, expertise and support for researchers that develop breakthroughs in Quantum Information Science that can reasonably lead to new commercializable technologies and applications.  Their goal in establishing this Fund is to lead in the development of a commercialization infrastructure and culture for Quantum discoveries in Canada and thereby enable such discoveries to remain here.

Semeniuk goes on to set the stage for Waterloo/Lazaridis vs. Vancouver (from Semeniuk’s 2017 ROB article),

… as happened with Blackberry, the world is once again catching up. While Canada’s funding of quantum technology ranks among the top five in the world, the European Union, China, and the US are all accelerating their investments in the field. Tech giants such as Google [also known as Alphabet], Microsoft and IBM are ramping up programs to develop companies and other technologies based on quantum principles. Meanwhile, even as Lazaridis works to establish Waterloo as the country’s quantum hub, a Vancouver-area company has emerged to challenge that claim. The two camps—one methodically focused on the long game, the other keen to stake an early commercial lead—have sparked an East-West rivalry that many observers of the Canadian quantum scene are at a loss to explain.

Is it possible that some of the rivalry might be due to an influential individual who has invested heavily in a ‘quantum valley’ and has a history of trying to ‘own’ a technology?

Getting back to D-Wave Systems, the Vancouver company, I have written about them a number of times (particularly in 2015; for the full list: input D-Wave into the blog search engine). This June 26, 2015 posting includes a reference to an article in The Economist magazine about D-Wave’s commercial opportunities while the bulk of the posting is focused on a technical breakthrough.

Semeniuk offers an overview of the D-Wave Systems story,

D-Wave was born in 1999, the same year Lazaridis began to fund quantum science in Waterloo. From the start, D-Wave had a more immediate goal: to develop a new computer technology to bring to market. “We didn’t have money or facilities,” says Geordie Rose, a physics PhD who co0founded the company and served in various executive roles. …

The group soon concluded that the kind of machine most scientists were pursing based on so-called gate-model architecture was decades away from being realized—if ever. …

Instead, D-Wave pursued another idea, based on a principle dubbed “quantum annealing.” This approach seemed more likely to produce a working system, even if the application that would run on it were more limited. “The only thing we cared about was building the machine,” says Rose. “Nobody else was trying to solve the same problem.”

D-Wave debuted its first prototype at an event in California in February 2007 running it through a few basic problems such as solving a Sudoku puzzle and finding the optimal seating plan for a wedding reception. … “They just assumed we were hucksters,” says Hilton [Jeremy Hilton, D.Wave senior vice-president of systems]. Federico Spedalieri, a computer scientist at the University of Southern California’s [USC} Information Sciences Institute who has worked with D-Wave’s system, says the limited information the company provided about the machine’s operation provoked outright hostility. “I think that played against them a lot in the following years,” he says.

It seems Lazaridis is not the only one who likes to hold company information tightly.

Back to Semeniuk and D-Wave,

Today [October 2017], the Los Alamos National Laboratory owns a D-Wave machine, which costs about $15million. Others pay to access D-Wave systems remotely. This year , for example, Volkswagen fed data from thousands of Beijing taxis into a machine located in Burnaby [one of the municipalities that make up metro Vancouver] to study ways to optimize traffic flow.

But the application for which D-Wave has the hights hope is artificial intelligence. Any AI program hings on the on the “training” through which a computer acquires automated competence, and the 2000Q [a D-Wave computer] appears well suited to this task. …

Yet, for all the buzz D-Wave has generated, with several research teams outside Canada investigating its quantum annealing approach, the company has elicited little interest from the Waterloo hub. As a result, what might seem like a natural development—the Institute for Quantum Computing acquiring access to a D-Wave machine to explore and potentially improve its value—has not occurred. …

I am particularly interested in this comment as it concerns public funding (from Semeniuk’s article),

Vern Brownell, a former Goldman Sachs executive who became CEO of D-Wave in 2009, calls the lack of collaboration with Waterloo’s research community “ridiculous,” adding that his company’s efforts to establish closer ties have proven futile, “I’ll be blunt: I don’t think our relationship is good enough,” he says. Brownell also point out that, while  hundreds of millions in public funds have flowed into Waterloo’s ecosystem, little funding is available for  Canadian scientists wishing to make the most of D-Wave’s hardware—despite the fact that it remains unclear which core quantum technology will prove the most profitable.

There’s a lot more to Semeniuk’s article but this is the last excerpt,

The world isn’t waiting for Canada’s quantum rivals to forge a united front. Google, Microsoft, IBM, and Intel are racing to develop a gate-model quantum computer—the sector’s ultimate goal. (Google’s researchers have said they will unveil a significant development early next year.) With the U.K., Australia and Japan pouring money into quantum, Canada, an early leader, is under pressure to keep up. The federal government is currently developing  a strategy for supporting the country’s evolving quantum sector and, ultimately, getting a return on its approximately $1-billion investment over the past decade [emphasis mine].

I wonder where the “approximately $1-billion … ” figure came from. I ask because some years ago MP Peter Julian asked the government for information about how much Canadian federal money had been invested in nanotechnology. The government replied with sheets of paper (a pile approximately 2 inches high) that had funding disbursements from various ministries. Each ministry had its own method with different categories for listing disbursements and the titles for the research projects were not necessarily informative for anyone outside a narrow specialty. (Peter Julian’s assistant had kindly sent me a copy of the response they had received.) The bottom line is that it would have been close to impossible to determine the amount of federal funding devoted to nanotechnology using that data. So, where did the $1-billion figure come from?

In any event, it will be interesting to see how the Council of Canadian Academies assesses the ‘quantum’ situation in its more academically inclined, “The State of Science and Technology and Industrial Research and Development in Canada,” when it’s released later this year (2018).

Finally, you can find Semeniuk’s October 2017 article here but be aware it’s behind a paywall.

Whither we goest?

Despite any doubts one might have about Lazaridis’ approach to research and technology, his tremendous investment and support cannot be denied. Without him, Canada’s quantum research efforts would be substantially less significant. As for the ‘cowboys’ in Vancouver, it takes a certain temperament to found a start-up company and it seems the D-Wave folks have more in common with Lazaridis than they might like to admit. As for the Quanta graduate  programme, it’s early days yet and no one should ever count out Alberta.

Meanwhile, one can continue to hope that a more thoughtful approach to regional collaboration will be adopted so Canada can continue to blaze trails in the field of quantum research.

D-Wave upgrades Google’s quantum computing capabilities

Vancouver-based (more accurately, Burnaby-based) D-Wave systems has scored a coup as key customers have upgraded from a 512-qubit system to a system with over 1,000 qubits. (The technical breakthrough and concomitant interest from the business community was mentioned here in a June 26, 2015 posting.) As for the latest business breakthrough, here’s more from a Sept. 28, 2015 D-Wave press release,

D-Wave Systems Inc., the world’s first quantum computing company, announced that it has entered into a new agreement covering the installation of a succession of D-Wave systems located at NASA’s Ames Research Center in Moffett Field, California. This agreement supports collaboration among Google, NASA and USRA (Universities Space Research Association) that is dedicated to studying how quantum computing can advance artificial intelligence and machine learning, and the solution of difficult optimization problems. The new agreement enables Google and its partners to keep their D-Wave system at the state-of-the-art for up to seven years, with new generations of D-Wave systems to be installed at NASA Ames as they become available.

“The new agreement is the largest order in D-Wave’s history, and indicative of the importance of quantum computing in its evolution toward solving problems that are difficult for even the largest supercomputers,” said D-Wave CEO Vern Brownell. “We highly value the commitment that our partners have made to D-Wave and our technology, and are excited about the potential use of our systems for machine learning and complex optimization problems.”

Cade Wetz’s Sept. 28, 2015 article for Wired magazine provides some interesting observations about D-Wave computers along with some explanations of quantum computing (Note: Links have been removed),

Though the D-Wave machine is less powerful than many scientists hope quantum computers will one day be, the leap to 1000 qubits represents an exponential improvement in what the machine is capable of. What is it capable of? Google and its partners are still trying to figure that out. But Google has said it’s confident there are situations where the D-Wave can outperform today’s non-quantum machines, and scientists at the University of Southern California [USC] have published research suggesting that the D-Wave exhibits behavior beyond classical physics.

A quantum computer operates according to the principles of quantum mechanics, the physics of very small things, such as electrons and photons. In a classical computer, a transistor stores a single “bit” of information. If the transistor is “on,” it holds a 1, and if it’s “off,” it holds a 0. But in quantum computer, thanks to what’s called the superposition principle, information is held in a quantum system that can exist in two states at the same time. This “qubit” can store a 0 and 1 simultaneously.

Two qubits, then, can hold four values at any given time (00, 01, 10, and 11). And as you keep increasing the number of qubits, you exponentially increase the power of the system. The problem is that building a qubit is a extreme difficult thing. If you read information from a quantum system, it “decoheres.” Basically, it turns into a classical bit that houses only a single value.

D-Wave claims to have a found a solution to the decoherence problem and that appears to be borne out by the USC researchers. Still, it isn’t a general quantum computer (from Wetz’s article),

… researchers at USC say that the system appears to display a phenomenon called “quantum annealing” that suggests it’s truly operating in the quantum realm. Regardless, the D-Wave is not a general quantum computer—that is, it’s not a computer for just any task. But D-Wave says the machine is well-suited to “optimization” problems, where you’re facing many, many different ways forward and must pick the best option, and to machine learning, where computers teach themselves tasks by analyzing large amount of data.

It takes a lot of innovation before you make big strides forward and I think D-Wave is to be congratulated on producing what is to my knowledge the only commercially available form of quantum computing of any sort in the world.

ETA Oct. 6, 2015* at 1230 hours PST: Minutes after publishing about D-Wave I came across this item (h/t Quirks & Quarks twitter) about Australian researchers and their quantum computing breakthrough. From an Oct. 6, 2015 article by Hannah Francis for the Sydney (Australia) Morning Herald,

For decades scientists have been trying to turn quantum computing — which allows for multiple calculations to happen at once, making it immeasurably faster than standard computing — into a practical reality rather than a moonshot theory. Until now, they have largely relied on “exotic” materials to construct quantum computers, making them unsuitable for commercial production.

But researchers at the University of New South Wales have patented a new design, published in the scientific journal Nature on Tuesday, created specifically with computer industry manufacturing standards in mind and using affordable silicon, which is found in regular computer chips like those we use every day in smartphones or tablets.

“Our team at UNSW has just cleared a major hurdle to making quantum computing a reality,” the director of the university’s Australian National Fabrication Facility, Andrew Dzurak, the project’s leader, said.

“As well as demonstrating the first quantum logic gate in silicon, we’ve also designed and patented a way to scale this technology to millions of qubits using standard industrial manufacturing techniques to build the world’s first quantum processor chip.”

According to the article, the university is looking for industrial partners to help them exploit this breakthrough. Fisher’s article features an embedded video, as well as, more detail.

*It was Oct. 6, 2015 in Australia but Oct. 5, 2015 my side of the international date line.

ETA Oct. 6, 2015 (my side of the international date line): An Oct. 5, 2015 University of New South Wales news release on EurekAlert provides additional details.

Here’s a link to and a citation for the paper,

A two-qubit logic gate in silicon by M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang,    J. P. Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello    & A. S. Dzurak. Nature (2015 doi:10.1038/nature15263 Published online 05 October 2015

This paper is behind a paywall.

D-Wave passes 1000-qubit barrier

A local (Vancouver, Canada-based, quantum computing company, D-Wave is making quite a splash lately due to a technical breakthrough.  h/t’s Speaking up for Canadian Science for Business in Vancouver article and Nanotechnology Now for Harris & Harris Group press release and Economist article.

A June 22, 2015 article by Tyler Orton for Business in Vancouver describes D-Wave’s latest technical breakthrough,

“This updated processor will allow significantly more complex computational problems to be solved than ever before,” Jeremy Hilton, D-Wave’s vice-president of processor development, wrote in a June 22 [2015] blog entry.

Regular computers use two bits – ones and zeroes – to make calculations, while quantum computers rely on qubits.

Qubits possess a “superposition” that allow it to be one and zero at the same time, meaning it can calculate all possible values in a single operation.

But the algorithm for a full-scale quantum computer requires 8,000 qubits.

A June 23, 2015 Harris & Harris Group press release adds more information about the breakthrough,

Harris & Harris Group, Inc. (Nasdaq: TINY), an investor in transformative companies enabled by disruptive science, notes that its portfolio company, D-Wave Systems, Inc., announced that it has successfully fabricated 1,000 qubit processors that power its quantum computers.  D-Wave’s quantum computer runs a quantum annealing algorithm to find the lowest points, corresponding to optimal or near optimal solutions, in a virtual “energy landscape.”  Every additional qubit doubles the search space of the processor.  At 1,000 qubits, the new processor considers 21000 possibilities simultaneously, a search space which is substantially larger than the 2512 possibilities available to the company’s currently available 512 qubit D-Wave Two. In fact, the new search space contains far more possibilities than there are particles in the observable universe.

A June 22, 2015 D-Wave news release, which originated the technical details about the breakthrough found in the Harris & Harris press release, provides more information along with some marketing hype (hyperbole), Note: Links have been removed,

As the only manufacturer of scalable quantum processors, D-Wave breaks new ground with every succeeding generation it develops. The new processors, comprising over 128,000 Josephson tunnel junctions, are believed to be the most complex superconductor integrated circuits ever successfully yielded. They are fabricated in part at D-Wave’s facilities in Palo Alto, CA and at Cypress Semiconductor’s wafer foundry located in Bloomington, Minnesota.

“Temperature, noise, and precision all play a profound role in how well quantum processors solve problems.  Beyond scaling up the technology by doubling the number of qubits, we also achieved key technology advances prioritized around their impact on performance,” said Jeremy Hilton, D-Wave vice president, processor development. “We expect to release benchmarking data that demonstrate new levels of performance later this year.”

The 1000-qubit milestone is the result of intensive research and development by D-Wave and reflects a triumph over a variety of design challenges aimed at enhancing performance and boosting solution quality. Beyond the much larger number of qubits, other significant innovations include:

  •  Lower Operating Temperature: While the previous generation processor ran at a temperature close to absolute zero, the new processor runs 40% colder. The lower operating temperature enhances the importance of quantum effects, which increases the ability to discriminate the best result from a collection of good candidates.​
  • Reduced Noise: Through a combination of improved design, architectural enhancements and materials changes, noise levels have been reduced by 50% in comparison to the previous generation. The lower noise environment enhances problem-solving performance while boosting reliability and stability.
  • Increased Control Circuitry Precision: In the testing to date, the increased precision coupled with the noise reduction has demonstrated improved precision by up to 40%. To accomplish both while also improving manufacturing yield is a significant achievement.
  • Advanced Fabrication:  The new processors comprise over 128,000 Josephson junctions (tunnel junctions with superconducting electrodes) in a 6-metal layer planar process with 0.25μm features, believed to be the most complex superconductor integrated circuits ever built.
  • New Modes of Use: The new technology expands the boundaries of ways to exploit quantum resources.  In addition to performing discrete optimization like its predecessor, firmware and software upgrades will make it easier to use the system for sampling applications.

“Breaking the 1000 qubit barrier marks the culmination of years of research and development by our scientists, engineers and manufacturing team,” said D-Wave CEO Vern Brownell. “It is a critical step toward bringing the promise of quantum computing to bear on some of the most challenging technical, commercial, scientific, and national defense problems that organizations face.”

A June 20, 2015 article in The Economist notes there is now commercial interest as it provides good introductory information about quantum computing. The article includes an analysis of various research efforts in Canada (they mention D-Wave), the US, and the UK. These excerpts don’t do justice to the article but will hopefully whet your appetite or provide an overview for anyone with limited time,

A COMPUTER proceeds one step at a time. At any particular moment, each of its bits—the binary digits it adds and subtracts to arrive at its conclusions—has a single, definite value: zero or one. At that moment the machine is in just one state, a particular mixture of zeros and ones. It can therefore perform only one calculation next. This puts a limit on its power. To increase that power, you have to make it work faster.

But bits do not exist in the abstract. Each depends for its reality on the physical state of part of the computer’s processor or memory. And physical states, at the quantum level, are not as clear-cut as classical physics pretends. That leaves engineers a bit of wriggle room. By exploiting certain quantum effects they can create bits, known as qubits, that do not have a definite value, thus overcoming classical computing’s limits.

… The biggest question is what the qubits themselves should be made from.

A qubit needs a physical system with two opposite quantum states, such as the direction of spin of an electron orbiting an atomic nucleus. Several things which can do the job exist, and each has its fans. Some suggest nitrogen atoms trapped in the crystal lattices of diamonds. Calcium ions held in the grip of magnetic fields are another favourite. So are the photons of which light is composed (in this case the qubit would be stored in the plane of polarisation). And quasiparticles, which are vibrations in matter that behave like real subatomic particles, also have a following.

The leading candidate at the moment, though, is to use a superconductor in which the qubit is either the direction of a circulating current, or the presence or absence of an electric charge. Both Google and IBM are banking on this approach. It has the advantage that superconducting qubits can be arranged on semiconductor chips of the sort used in existing computers. That, the two firms think, should make them easier to commercialise.

Google is also collaborating with D-Wave of Vancouver, Canada, which sells what it calls quantum annealers. The field’s practitioners took much convincing that these devices really do exploit the quantum advantage, and in any case they are limited to a narrower set of problems—such as searching for images similar to a reference image. But such searches are just the type of application of interest to Google. In 2013, in collaboration with NASA and USRA, a research consortium, the firm bought a D-Wave machine in order to put it through its paces. Hartmut Neven, director of engineering at Google Research, is guarded about what his team has found, but he believes D-Wave’s approach is best suited to calculations involving fewer qubits, while Dr Martinis and his colleagues build devices with more.

It’s not clear to me if the writers at The Economist were aware of  D-Wave’s latest breakthrough at the time of writing but I think not. In any event, they (The Economist writers) have included a provocative tidbit about quantum encryption,

Documents released by Edward Snowden, a whistleblower, revealed that the Penetrating Hard Targets programme of America’s National Security Agency was actively researching “if, and how, a cryptologically useful quantum computer can be built”. In May IARPA [Intellligence Advanced Research Projects Agency], the American government’s intelligence-research arm, issued a call for partners in its Logical Qubits programme, to make robust, error-free qubits. In April, meanwhile, Tanja Lange and Daniel Bernstein of Eindhoven University of Technology, in the Netherlands, announced PQCRYPTO, a programme to advance and standardise “post-quantum cryptography”. They are concerned that encrypted communications captured now could be subjected to quantum cracking in the future. That means strong pre-emptive encryption is needed immediately.

I encourage you to read the Economist article.

Two final comments. (1) The latest piece, prior to this one, about D-Wave was in a Feb. 6, 2015 posting about then new investment into the company. (2) A Canadian effort in the field of quantum cryptography was mentioned in a May 11, 2015 posting (scroll down about 50% of the way) featuring a profile of Raymond Laflamme, at the University of Waterloo’s Institute of Quantum Computing in the context of an announcement about science media initiative Research2Reality.

More investment money for Canada’s D-Wave Systems (quantum computing)

A Feb. 2, 2015 news item on Nanotechnology Now features D-Wave Systems (located in the Vancouver region, Canada) and its recent funding bonanza of $28M dollars,

Harris & Harris Group, Inc. (Nasdaq:TINY), an investor in transformative companies enabled by disruptive science, notes the announcement by portfolio company, D-Wave Systems, Inc., that it has closed $29 million (CAD) in funding from a large institutional investor, among others. This funding will be used to accelerate development of D-Wave’s quantum hardware and software and expand the software application ecosystem. This investment brings total funding in D-Wave to $174 million (CAD), with approximately $62 million (CAD) raised in 2014. Harris & Harris Group’s total investment in D-Wave is approximately $5.8 million (USD). D-Wave’s announcement also includes highlights of 2014, a year of strong growth and advancement for D-Wave.

A Jan. 29, 2015 D-Wave news release provides more details about the new investment and D-Wave’s 2014 triumphs,

D-Wave Systems Inc., the world’s first quantum computing company, today announced that it has closed $29 million in funding from a large institutional investor, among others. This funding will be used to accelerate development of D-Wave’s quantum hardware and software and expand the software application ecosystem. This investment brings total funding in D-Wave to $174 million (CAD), with approximately $62 million raised in 2014.

“The investment is a testament to the progress D-Wave continues to make as the leader in quantum computing systems,” said Vern Brownell, CEO of D-Wave. “The funding we received in 2014 will advance our quantum hardware and software development, as well as our work on leading edge applications of our systems. By making quantum computing available to more organizations, we’re driving our goal of finding solutions to the most complex optimization and machine learning applications in national defense, computing, research and finance.”

The funding follows a year of strong growth and advancement for D-Wave. Highlights include:

•    Significant progress made towards the release of the next D-Wave quantum system featuring a 1000 qubit processor, which is currently undergoing testing in D-Wave’s labs.
•    The company’s patent portfolio grew to over 150 issued patents worldwide, with 11 new U.S. patents being granted in 2014, covering aspects of D-Wave’s processor technology, systems and techniques for solving computational problems using D-Wave’s technology.
•    D-Wave Professional Services launched, providing quantum computing experts to collaborate directly with customers, and deliver training classes on the usage and programming of the D-Wave system to a number of national laboratories, businesses and universities.
•    Partnerships were established with DNA-SEQ and 1QBit, companies that are developing quantum software applications in the spheres of medicine and finance, respectively.
•    Research throughout the year continued to validate D-Wave’s work, including a study showing further evidence of quantum entanglement by D-Wave and USC  [University of Southern California] scientists, published in Physical Review X this past May.

Since 2011, some of the most prestigious organizations in the world, including Lockheed Martin, NASA, Google, USC and the Universities Space Research Association (USRA), have partnered with D-Wave to use their quantum computing systems. In 2015, these partners will continue to work with the D-Wave computer, conducting pioneering research in machine learning, optimization, and space exploration.

D-Wave, which already employs over 120 people, plans to expand hiring with the additional funding. Key areas of growth include research, processor and systems development and software engineering.

Harris & Harris Group offers a description of D-Wave which mentions nanotechnology and hosts a couple of explanatory videos,

D-Wave Systems develops an adiabatic quantum computer (QC).

Status
Privately Held

The Market
Electronics – High Performance Computing

The Problem
Traditional or “classical computers” are constrained by the sequential character of data processing that makes the solving of non-polynomial (NP)-hard problems difficult or potentially impossible in reasonable timeframes. These types of computationally intense problems are commonly observed in software verifications, scheduling and logistics planning, integer programming, bioinformatics and financial portfolio optimization.

D-Wave’s Solution
D-Wave develops quantum computers that are capable of processing data quantum mechanical properties of matter. This leverage of quantum mechanics enables the identification of solutions to some non-polynomial (NP)-hard problems in a reasonable timeframe, instead of the exponential time needed for any classical digital computer. D-Wave sold and installed its first quantum computing system to a commercial customer in 2011.

Nanotechnology Factor
To function properly, D-wave processor requires tight control and manipulation of quantum mechanical phenomena. This control and manipulation is achieved by creating integrated circuits based on Josephson Junctions and other superconducting circuitry. By picking superconductors, D-wave managed to combine quantum mechanical behavior with macroscopic dimensions needed for hi-yield design and manufacturing.

It seems D-Wave has made some research and funding strides since I last wrote about the company in a Jan. 19, 2012 posting, although there is no mention of quantum computer sales.