Tag Archives: women

Baroness Elsa von Freytag-Loringhoven, Marcel Duchamp, and the Fountain

There is a controversy over one of the important pieces (it’s considered foundational) of modern art, “Fountain.”

The original Fountain by Marcel Duchamp photographed by Alfred Stieglitz at the 291 (Art Gallery) after the 1917 Society of Independent Artists exhibit. Stieglitz used a backdrop of The Warriors by Marsden Hartley to photograph the urinal. The entry tag is clearly visible. [downloaded from https://en.wikipedia.org/wiki/Fountain_%28Duchamp%29

Elsa von Freytag-Loringhoven the real artist behind the ‘Fountain’

According to Theo Paijmans in his June 2018 article (abstract) on See All This, the correct attribution is not Marcel Duchamp,

In 1917, when the United States was about to enter the First World War and women in the United Kingdom had just earned their right to vote, a different matter occupied the sentiments of the small, modernist art scene in New York. It had organised an exhibit where anyone could show his or her art against a small fee, but someone had sent in a urinal for display. This was against even the most avant-garde taste of the organisers of the exhibit. The urinal, sent in anonymously, without title and only signed with the enigmatic ‘R. Mutt’, quickly vanished from view. Only one photo of the urinal remains.

Theo Paijmans, June 2018

In 1935 famous surrealist artist André Breton attributed the urinal to Marcel Duchamp. Out of this grew the consensus that Duchamp was its creator. Over time Duchamp commissioned a number of replicas of the urinal that now had a name: Fountain – coined by a reviewer who briefly visited the exhibit in 1917. The original urinal had since long disappeared. In all probability it had been unceremoniously dumped on the trash heap, but ironically it was destined to become one of the most iconic works of modern art. In 2004, some five hundred artists and art experts heralded Fountain as the most influential piece of modern art, even leaving Picasso’s Les Demoiselles d’Avignon behind. Once again it cemented the reputation of Duchamp as one of the towering geniuses in the history of modern art.

But then things took a turn

Portrait of Elsa von Freytag-Loringhoven

In 1982 a letter written by Duchamp came to light. Dated 11 April 1917, it was written just a few days after that fateful exhibit. It contains one sentence that should have sent shockwaves through the world of modern art: it reveals the true creator behind Fountain – but it was not Duchamp. Instead he wrote that a female friend using a male alias had sent it in for the New York exhibition. Suddenly a few other things began to make sense. Over time Duchamp had told two different stories of how he had created Fountain, but both turned out to be untrue. An art historian who knew Duchamp admitted that he had never asked him about Fountain, he had published a standard-work on Fountain nevertheless. The place from where Fountain was sent raised more questions. That place was Philadelphia, but Duchamp had been living in New York.

Female friend

Who was living in Philadelphia? Who was this ‘female friend’ that had sent the urinal using a pseudonym that Duchamp mentions? That woman was, as Duchamp wrote, the future. Art history knows her as Elsa von Freytag-Loringhoven. She was a brilliant pioneering New York dada artist, and Duchamp knew her well. This glaring truth has been known for some time in the art world, but each time it has to be acknowledged, it is met with indifference and silence.

You have to pay to read the rest but See All This does include a video with the abstract for the article,

You may want to know one other thing, the magazine appears to be available only in Dutch. Taking that into account, here’s a link to the magazine along with some details about the experts who consulted with Paijmans,

This is an abstract from the Dutch article ‘Het urinoir is niet van Duchamp’ that is published in See All This art magazine’s summer issue. For his research, the author interviewed Irene Gammel (biographer of Elsa von Freytag-Loringhoven and professor at the Ryerson University in Toronto), Glyn Thompson (art historian, curator and writer), Julian Spalding (art critic and former director of Glasgow museums and galleries), and John Higgs (cultural historian and journalist).

The [2018] summer issue of See All This magazine is dedicated to 99 genius women in the art world, to celebrate the voice of women and the 100th anniversary of women’s right to vote in the Netherlands in 2019. Buy this issue online.

It’s certainly a provocative thesis and it seems there’s a fair degree of evidence to support it. Although there is an alternative attribution, also female. From the Baroness Elsa von Freytag-Loringhoven Wikipedia entry (Note: Links have been removed),

In a letter written by Marcel Duchamp to his sister Suzanne dated April 11, 1917 he refers to his famous ready-made, Fountain (1917) and states: “One of my female friends under a masculine pseudonym, Richard Mutt, sent in a porcelain urinal as a sculpture.”[33] Some have claimed that the friend in question was the Baroness, but Francis Naumann, the New York-based critic and expert on Dada who put together a compilation of Duchamp’s letters and organized Making Mischief: Dada Invades New York for the Whitney Museum of American Art in 1997, explains this “female friend” is Louise Norton who contributed an essay to The Blind Man discussing Fountain. Norton was living at 110 West 88th Street in New York City and this address is partially discernible (along with “Richard Mutt”) on the paper entry ticket attached to the object, as seen in Stieglitz’s photograph of Fountain.[emphases mine]

Or is it Louise Norton?

The “Fountain” Wikipedia entry does not clarify matters (Note: Links have been removed),

Marcel Duchamp arrived in the United States less than two years prior to the creation of Fountain and had become involved with Dada, an anti-rational, anti-art cultural movement, in New York City. According to one version, the creation of Fountain began when, accompanied by artist Joseph Stella and art collector Walter Arensberg, he purchased a standard Bedfordshire model urinal from the J. L. Mott Iron Works, 118 Fifth Avenue. The artist brought the urinal to his studio at 33 West 67th Street, reoriented it to a position 90 degrees from its normal position of use, and wrote on it, “R. Mutt 1917”.[3][4]

According to another version, Duchamp did not create Fountain, but rather assisted in submitting the piece to the Society of Independent Artists for a female friend. In a letter dated 11 April 1917 Duchamp wrote to his sister Suzanne telling her about the circumstances around Fountain’s submission: “Une de mes amies sous un pseudonyme masculin, Richard Mutt, avait envoyé une pissotière [urinal] en porcelaine comme sculpture” (“One of my female friends, who had adopted the male pseudonym, Richard Mutt, sent me a porcelain urinal as a sculpture.”)[5][6] Duchamp never identified his female friend, but two candidates have been proposed: the Dadaist Elsa von Freytag-Loringhoven[7][8] whose scatological aesthetic echoed that of Duchamp, or Louise Norton, who contributed an essay to The Blind Man discussing Fountain. Norton, who recently had separated from her husband, was living at the time in an apartment owned by her parents at 110 West 88th Street in New York City, and this address is partially discernible (along with “Richard Mutt”) on the paper entry ticket attached to the object, as seen in Stieglitz’s photograph.[9]

Rhonda Roland Shearer in the online journal Tout-Fait (2000) has concluded that the photograph is a composite of different photos, while other scholars such as William Camfield have never been able to match the urinal shown in the photo to any urinals found in the catalogues of the time period.[10] [emphases mine]

Attributing “Fountain” to a woman changes my understanding of the work. It seems to me. After all, it’s a woman submitting a urinal (plumbing designed specifically for the male anatomy) as a work of art.What was she (whichever she) is saying?

It’s tempting to read a commentary on patriarchy and art into the piece but von Freytag-Loringhoven (I’ll get to Norton next) may have had other issues in mind, from her Wikipedia entry (Note: Links have been removed),

There has been substantial new research indicating that some artworks attributed to other artists of the period can now either be attributed to the Baroness, or raise the possibility that she may have created the works. One work, called God (1917) had for a number of years been attributed to the artist Morton Livingston Schamberg. The Philadelphia Museum of Art, whose collection includes God, now credits the Baroness as a co-artist of this piece. Amelia Jones idenitified that this artwork’s concept and title was created by the Baroness, however, it was constructed by both Shamberg and the Baroness.[30] This sculpture, God (1917), involved a cast iron pumbing trap and a wooden mitre box, assembled in a phallic-like manner. [31] Her concept behind the shape and choice of materials is indicative of her commentary on the worship and love that Americans have for plumbing that trumps all else; additionally, it is revealing of the Baroness’s rejection of technology. [emphases mine]

As for Norton, unfortunately I’m not familiar with her work and this is the only credible reference to her that I’ve been able to find (Note: The link is in an essay on Duchamp and the “Fountain” on the Phaidon website [scroll down to the ninth paragraph]),

Allen Norton was an American poet and literary editor of the 1910s and 20s. He and his wife Louise Norton [emphasis mine] edited the little magazine Rogue, published from March 1915 to December 1916.

There is another Louise Norton, an artist who has a Wikipedia entry but that suggests this is an entirely different ‘Louise’.

Of the two and for what it’s worth, I find von Freytag-Loringhoven to be the more credible candidate. Nell Frizzell in her Nov. 7, 2014 opinion piece for the Guardian has absolutely no doubts on the matter (Note: Links have been removed),

Men may fill them, but it takes a woman to take the piss out of a urinal. Or so Julian Spalding, the former director of Glasgow Museums, and the academic Glyn Thompson have claimed. The argument, which has been swooshing around the cistern of contemporary art criticism since the 1980s, is that Duchamp’s famous artwork Fountain – a pissoir laid on its side – was actually the creation of the poet, artist and wearer of tin cans, Baroness Elsa von Freytag-Loringhoven.

That Von Freytag-Loringhoven has been written out of the story is not only a great injustice, it is also a formidable loss to art history. This was a woman, after all, whose idea of getting gussied-up for a private view was to scatter her outfit liberally with flattened tin cans and stuffed parrots. A woman who danced on verandas in little more than a pair of stockings, some feathers and enough bangles to shake out the percussion track from Walk Like an Egyptian. A woman who draped her way through several open marriages, including one to Oscar Wilde’s translator Felix Paul Greve (who faked his own suicide to escape his creditors and flee with her to America)….

Mind you, there is a difference between theft and misattribution. While Valerie Solanas, the somewhat troubled feminist and writer of the Scum manifesto, openly accused Andy Warhol of stealing her script Up Your Ass and even attempted to murder him, other works exist in a more complicated, murky grey area. Matisse certainly directed the creation of his gouaches découpées – large collage works made by pasting torn-off pieces of gouache-painted paper – yet it is impossible to draw the line between where his creativity ends and that of his assistants intention begins. Similarly, while John Milton’s daughters ostensibly simply transcribed their father’s work, how can we say that in the act of writing they were not also editing, questioning, suggesting imagery and offering phrasing?

Art historians and academics have pointed out that in 1917 Duchamp wrote to his sister, recounting how “one of my female friends under a masculine pseudonym, Richard Mutt, sent in a porcelain urinal as a sculpture”. Duchamp revealed that this model of urinal wasn’t even in production at the factory where he claimed to have picked it up; and that this artwork bore a more than passing similarity to the Elsa von Freytag-Loringhoven readymade sculpture called God, both in appearance and concept.

Here is “God,”

“God” By Baroness Elsa von Freytag-Loringhoven and Morton Schamberg (1917)Museum of Fine Arts, Houston Blue pencil.svg wikidata:Q1565911  Source/Photographer: TgGFztK3lZWxdg at Google Cultural Institute, zoom level maximum

The “Fountain” graced this blog previously in a March 8, 2016 posting about an exhibition titled: “Mashup: The Birth of Modern Culture” at the Vancouver Art Gallery where I did not have an inkling as to this controversy.  Given the zeitgeist surrounding women and their issues, it’s an interesting time to learn of it.

Equality doesn’t necessarily lead to greater women’s STEM (science, technology, engineering, and mathematics) participation?

It seems counter-intuitive but societies where women have achieved greater equality see less participation by women in STEM (science, technology, engineering and mathematics) than countries where women are treated differently. This rather stunning research was released on February 14, 2018 (yes, Valentine’s Day).

Women, equality, STEM

Both universities involved in this research have made news/press releases available. First, there’s the February 14, 2018 Leeds Beckett University (UK) press release,

Countries with greater gender equality see a smaller proportion of women taking degrees in science, technology, engineering and mathematics (STEM), a new study by Leeds Beckett has found.

Dubbed the ‘gender equality paradox’, the research found that countries such as Albania and Algeria have a greater percentage of women amongst their STEM graduates than countries lauded for their high levels of gender equality, such as Finland, Norway or Sweden.

The researchers, from Leeds Beckett’s School of Social Sciences and the University of Missouri, believe this might be because countries with less gender equality often have little welfare support, making the choice of a relatively highly-paid STEM career more attractive.

The study, published in Psychological Science, also looked at what might motivate girls and boys to choose to study STEM subjects, including overall ability, interest or enjoyment in the subject and whether science subjects were a personal academic strength.

Using data on 475,000 adolescents across 67 countries or regions, the researchers found that while boys’ and girls’ achievement in STEM subjects was broadly similar, science was more likely to be boys’ best subject.

Girls, even when their ability in science equalled or excelled that of boys, were often likely to be better overall in reading comprehension, which relates to higher ability in non-STEM subjects.

Girls also tended to register a lower interest in science subjects. These differences were near-universal across all the countries and regions studied.

This could explain some of the gender disparity in STEM participation, according to Leeds Beckett Professor in Psychology Gijsbert Stoet.

“The further you get in secondary and then higher education, the more subjects you need to drop until you end with just one.

“We are inclined to choose what we are best at and also enjoy. This makes sense and matches common school advice.

“So, even though girls can match boys in terms of how well they do at science and mathematics in school, if those aren’t their best subjects and they are less interested in them, then they’re likely to choose to study something else.”

The researchers also looked at how many girls might be expected to choose further study in STEM based on these criteria.

They took the number of girls in each country who had the necessary ability in STEM and for whom it was also their best subject and compared this to the number of women graduating in STEM.

They found there was a disparity in all countries, but with the gap once again larger in more gender equal countries.

In the UK, 29 per cent of STEM graduates are female, whereas 48 per cent of UK girls might be expected to take those subjects based on science ability alone. This drops to 39 per cent when both science ability and interest in the subject are taken into account.

Countries with higher gender equality tend also to be welfare states, providing a high level of social security for their citizens.

Professor Stoet said: “STEM careers are generally secure and well-paid but the risks of not following such a path can vary.

“In more affluent countries where any choice of career feels relatively safe, women may feel able to make choices based on non-economic factors.

“Conversely, in countries with fewer economic opportunities, or where employment might be precarious, a well-paid and relatively secure STEM career can be more attractive to women.”

Despite extensive efforts to increase participation of women in STEM, levels have remained broadly stable for decades, but these findings could help target interventions to make them more effective, say the researchers.

“It’s important to take into account that girls are choosing not to study STEM for what they feel are valid reasons, so campaigns that target all girls may be a waste of energy and resources,” said Professor Stoet.

“If governments want to increase women’s participation in STEM, a more effective strategy might be to target the girls who are clearly being ‘lost’ from the STEM pathway: those for whom science and maths are their best subjects and who enjoy it but still don’t choose it.

“If we can understand their motivations, then interventions can be designed to help them change their minds.”

Then, there’s the February 14, 2018 University of Missouri news release, some of which will be repetitive,

The underrepresentation of girls and women in science, technology, engineering and mathematics (STEM) fields occurs globally. Although women currently are well represented in life sciences, they continue to be underrepresented in inorganic sciences, such as computer science and physics. Now, researchers from the University of Missouri and Leeds Beckett University in the United Kingdom have found that as societies become wealthier and more gender equal, women are less likely to obtain degrees in STEM. The researchers call this a “gender-equality paradox.” Researchers also discovered a near-universal sex difference in academic strengths and weaknesses that contributes to the STEM gap. Findings from the study could help refine education efforts and policies geared toward encouraging girls and women with strengths in science or math to participate in STEM fields.

The researchers found that, throughout the world, boys’ academic strengths tend to be in science or mathematics, while girls’ strengths are in reading. Students who have personal strengths in science or math are more likely to enter STEM fields, whereas students with reading as a personal strength are more likely to enter non-STEM fields, according to David Geary, Curators Professor of Psychological Sciences in the MU College of Arts and Science. These sex differences in academic strengths, as well as interest in science, may explain why the sex differences in STEM fields has been stable for decades, and why current approaches to address them have failed.

“We analyzed data on 475,000 adolescents across 67 countries or regions and found that while boys’ and girls’ achievements in STEM subjects were broadly similar in all countries, science was more likely to be boys’ best subject,” Geary said. “Girls, even when their abilities in science equaled or excelled that of boys, often were likely to be better overall in reading comprehension, which relates to higher ability in non-STEM subjects. As a result, these girls tended to seek out other professions unrelated to STEM fields.”

Surprisingly, this trend was larger for girls and women living in countries with greater gender equality. The authors call this a “gender-equality paradox,” because countries lauded for their high levels of gender equality, such as Finland, Norway or Sweden, have relatively few women among their STEM graduates. In contrast, more socially conservative countries such as Turkey or Algeria have a much larger percentage of women among their STEM graduates.

“In countries with greater gender equality, women are actively encouraged to participate in STEM; yet, they lose more girls because of personal academic strengths,” Geary said. “In more liberal and wealthy countries, personal preferences are more strongly expressed. One consequence is that sex differences in academic strengths and interests become larger and have a stronger influence college and career choices than in more conservative and less wealthy countries, creating the gender-equality paradox.”

The combination of personal academic strengths in reading, lower interest in science, and broader financial security explains why so few women choose a STEM career in highly developed nations.

“STEM careers are generally secure and well-paid but the risks of not following such a path can vary,” said Gijsbert Stoet, Professor in Psychology at Leeds Beckett University. “In more affluent countries where any choice of career feels relatively safe, women may feel able to make choices based on non-economic factors. Conversely, in countries with fewer economic opportunities, or where employment might be precarious, a well-paid and relatively secure STEM career can be more attractive to women.”

Findings from this study could help target interventions to make them more effective, say the researchers. Policymakers should reconsider failing national policies focusing on decreasing the gender imbalance in STEM, the researchers add.

The University of Missouri also produced a brief video featuring Professor David Geary discussing the work,

Here’s a link to and a citation for the paper,

The Gender-Equality Paradox in Science, Technology, Engineering, and Mathematics Education by Gijsbert Stoet, David C. Geary. Psychological Studies https://doi.org/10.1177/0956797617741719 First Published February 14, 2018 Research Article

This paper is behind a paywall.

Gender equality and STEM: a deeper dive

Olga Khazan in a February 18, 2018 article for The Atlantic provides additional insight (Note: Links have been removed),

Though their numbers are growing, only 27 percent of all students taking the AP Computer Science exam in the United States are female. The gender gap only grows worse from there: Just 18 percent of American computer-science college degrees go to women. This is in the United States, where many college men proudly describe themselves as “male feminists” and girls are taught they can be anything they want to be.

Meanwhile, in Algeria, 41 percent of college graduates in the fields of science, technology, engineering, and math—or “STEM,” as its known—are female. There, employment discrimination against women is rife and women are often pressured to make amends with their abusive husbands.

According to a report I covered a few years ago, Jordan, Qatar, and the United Arab Emirates were the only three countries in which boys are significantly less likely to feel comfortable working on math problems than girls are. In all of the other nations surveyed, girls were more likely to say they feel “helpless while performing a math problem.”

… this line of research, if it’s replicated, might hold useful takeaways for people who do want to see more Western women entering STEM fields. In this study, the percentage of girls who did excel in science or math was still larger than the number of women who were graduating with STEM degrees. That means there’s something in even the most liberal societies that’s nudging women away from math and science, even when those are their best subjects. The women-in-STEM advocates could, for starters, focus their efforts on those would-be STEM stars.

Final thoughts

This work upends notions (mine anyway) about equality and STEM with regard to women’s participation in countries usually described as ‘developed’ as opposed to ‘developing’. I am thankful to have my ideas shaken up and being forced to review my assumptions about STEM participation and equality of opportunity.

John Timmer in a February 19, 2018 posting on the Ars Technica blog offers a critique of the research and its conclusions,

… The countries where the science-degree gender gap is smaller tend to be less socially secure. The researchers suggest that the economic security provided by fields like engineering may have a stronger draw in these countries, pulling more women into the field.

They attempt to use a statistical pathway analysis to see if the data is consistent with this being the case, but the results are inconclusive. It may be right, but there would be at least one other strong factor that they have not identified involved.

Timmer’s piece is well worth reading.

For some reason the discussion about a lack of social safety nets and precarious conditions leading women to greater STEM participation reminds me of a truism about the arts. Constraints can force you into greater creativity. Although balance is necessary as you don’t want to destroy what you’re trying to encourage. In this case, it seems that comfortable lifestyles can lead women to pursue that which comes more easily whereas women trying to make a better life in difficult circumstance will pursue a more challenging path.

Simon Fraser University (Vancouver, Canada) and its president’s (Andrew Petter) dream colloquium: women in technology

I’m a little late with this event news (sadly,. I only received the information yesterday, Sept. 20, 2017) but even with two event dates already past (happily, videos for the two events have been posted), there are still several “Women in Technology” events to attend or view live according to the Simon Fraser University (SFU) President’s Dream Colloquium: Women in Technology; Attaining, Retaining, and Promoting Diverse Talent’s webpage text by Wan Yee Lok,

Women in Technology: Attracting, Retaining and Promoting Diverse Talent is a seven-part public [emphasis mine] lecture series beginning on Sept. 13. Key experts from around the world will identify challenges to gender equity and discover solutions for improving recruitment, retention and leadership options for women.

Diversity and inclusion are critical to high-tech corporate success. Yet statistics reveal that less than 25 per cent of those working in the science, technology, engineering and math sectors (STEM) are women, and that they earn seven-and-a-half per cent less than men.

“There is a crucial need to achieve gender equality in the tech sector, especially at a time when it is growing faster than ever,” says colloquium organizer Lesley Shannon, an SFU engineering science professor. She holds the Natural Sciences and Engineering Research Council (NSERC) Chair for Women in Science and Engineering for the B.C. and Yukon region.

“We hope the colloquium will help people engage in a multidisciplinary dialogue about the value of creating more space in technology for women and other under-represented groups.”

Six of the lectures are free, except for Cathy O’Neil’s lecture on Oct. 26.

The President’s Dream Colloquium schedule is as follows:

Sept. 13: SFU KEY presents: We the Data
Juliette Powell, founder, Turing AI and WeTheData.org, author of 33 Million People in the Room

Sept. 14: Diversity 101: The Case for Diversity in Technology
Maria Klawe, president, Harvey Mudd College

Sept. 21: Women in Media and Advertising
Shari Graydon, catalyst, Informed Opinions

Oct. 12: Social Psychological Phenomena
Steven Spencer, the Robert K. and Dale J. Weary Chair in Social Psychology, Ohio State University

Oct. 26: Gender and Bias in Algorithmic Design
Cathy O’Neil, author, Weapons of Math Destruction [tickets are $5 for students; $15 for the rest of us; go here to buy tickets, click on green button in the upper right, below the banner; the event will be held at SFU’s Harbour Centre Vancouver location]

Nov 9: Gendered Language
Danielle Gaucher, associate professor, Department of Psychology, University of Winnipeg

Nov. 23: Women as Leaders and Innovators
Jo Miller, founder, Be Leaderly

Lectures will be webcast live and available on the President’s Dream Colloquium website, www.sfu.ca/womenintech.

SFU engineering science professor Lesley Shannon is the colloquium organizer as well as the Natural Sciences and Engineering Research Council (NSERC) Chair for Women in Science and Engineering for the B.C. and Yukon region.

 

As a part of the colloquium, students can enroll in a graduate course covering a broad range of topics related to diversity in the technology sector. Shannon says the course will focus on women and their role in technology as well as issues that affect other under‐represented groups.

“I hope the course will establish a foundation for future managers, supervisors, sponsors, mentors and others wanting to pursue leadership roles to work towards creating a level playing field in technology and other industries,” says Shannon.

The colloquium course (SAR 897) is still accepting students. Visit go.sfu.ca to enroll.

A reminder after the last few paragraphs of the event text, you don’t actually have to be a student to attend the lectures although for anyone who doesn’t want to make the trek up the hill (SFU is located on a hill in Burnaby, BC) for the majority of the events, there is the livestream video. For those who can’t make the scheduled times, given that both the Sept. 13 and Sept. 14, 2017 event videos have been posted, they are being pretty quick about uploading the videos afterwards.

I have mentioned Cathy O’Neil here a couple of times, more substantively in a Feb. 28, 2017 posting about a major’ big data’ collaboration between the province of BC and the state of Washington (for Cathy O’Neil, scroll down to the subsection titled: Algorithms and big data) and briefly at the end in a May 24, 2017 posting that was chiefly concerned with bias in algorithms.

Café Scientifique (Vancouver, Canada) May 30, 2017 talk: Jerilyn Prior redux

I’m not sure ‘redux’ is exactly the right term but I’m going to declare it ‘close enough’. This upcoming talk was originally scheduled for March 2016 (my March 29, 2016 posting) but cancelled when the venerable The Railway Club abruptly closed its doors after 84 years of operation.

Our next café will happen on TUESDAY MAY 30TH, 7:30PM in the back room
at YAGGER'S DOWNTOWN (433 W Pender). Our speaker for the evening
will be DR. JERILYNN PRIOR, a is Professor of Endocrinology and
Metabolism at the University of British Columbia, founder and scientific
director of the Centre for Menstrual Cycle and Ovulation Research
(CeMCOR), director of the BC Center of the Canadian Multicenter
Osteoporosis Study (CaMOS), and a past president of the Society for
Menstrual Cycle Research.  The title of her talk is:

IS PERIMENOPAUSE ESTROGEN DEFICIENCY?
SORTING ENGRAINED MISINFORMATION ABOUT WOMEN’S MIDLIFE REPRODUCTIVE
TRANSITION

43 years old with teenagers a full-time executive director of a not for
profit is not sleeping, she wakes soaked a couple of times a night, not
every night but especially around the time her period comes. As it does
frequently—it is heavy, even flooding. Her sexual interest is
virtually gone and she feels dry when she tries.

Her family doctor offered her The Pill. When she took it she got very
sore breasts, ankle swelling and high blood pressure. Her brain feels
fuzzy, she’s getting migraines, gaining weight and just can’t cope.
. . .
What’s going on? Does she need estrogen “replacement”?  If yes,
why when she’s still getting flow? Does The Pill work for other women?
_WHAT DO WE KNOW ABOUT THE WHAT, WHY, HOW LONG AND HOW TO HELP
SYMPTOMATIC PERIMENOPAUSAL WOMEN?_

We hope to see you there!

As I noted in March 2016, this seems more like a description for a workshop on perimenopause  and consequently of more interest for doctors and perimenopausal women than the audience that Café Scientifique usually draws. Of course, I  could be completely wrong.

Nanotechnology and Pakistan

I don’t often get information about nanotechnology in Pakistan so this March 6, 2017 news article by Mrya Imran on the TheNews.com website provides some welcome insight,

Pakistan has the right level of expert human resource and scientific activity in the field of nanotechnology. A focused national strategy and sustainable funding can make Pakistan one of the leaders in this sector.

These views were expressed by Professor of Physics in University of Illinois and Founder and President of NanoSi Advanced Technology, Inc. Dr Munir H. Nayfeh.  Dr Nayfeh, along with Executive Director, Centre for Nanoscale Science and Technology, and Research Faculty, Department of Agricultural and Biological Engineering, University of Illinois, Dr. Irfan Ahmad and Associate Professor and Director of Medical Physics Programme, Pritzker School of Medicine, University of Chicago, Dr. Bulent Aydogan were invited by COMSATS Institute of Information Technology (CIIT) to deliver lectures on nanotechnology research and entrepreneurship with special focus on cancer nanomedicine.

The objective of the visit was to motivate and mentor faculty and students at COMSATS and also to provide feedback to campus administration and the Federal Ministry of Science and Technology on strategic initiatives to help develop the next generation of science and engineering workforce in Pakistan.

A story of success for the Muslim youth from areas affected by conflict and war, Dr Nayfeh, a Palestinian by origin, was brought up in a conflict area by a mother who did not know how to read and write. For him, the environment was actually a motivator to work hard and study. “My mother was uneducated but she always wanted her children to get the highest degree possible and both my parents supported us in whatever way possible to achieve our dreams,” he recalled.

Comparing Pakistan with other developing countries in scientific research enterprise, he said that despite lack of resources, he has observed some decent amount of research outcome from the existing setups. About their visits to different labs, he said that they found faculty members and researchers in need of for more and more funds. “I don’t blame them as I am also looking for more and more fund even in America. This is a positive sign which shows that these set ups are alive and want to do more.”

Dr. Nayfeh is greatly impressed with the number of women researchers and students in Pakistan. “In Tunisia and Algeria, there were decent number of women in this field but Pakistan has the most and there are more publications coming out of Pakistan as compared to other developing countries.”

If you have the time, I suggest you read the article in its entirety.

US report on Women, minorities, and people with disabilities in science and engineerin

A Jan. 31, 2017 news item on ScienceDaily announces a new report from the US National Science Foundation’s (NSF) National Center for Science and Engineering Statistics (NCSES),

The National Center for Science and Engineering Statistics (NCSES) today [Jan. 31, 2017,] announced the release of the 2017 Women, Minorities, and Persons with Disabilities in Science and Engineering (WMPD) report, the federal government’s most comprehensive look at the participation of these three demographic groups in science and engineering education and employment.

The report shows the degree to which women, people with disabilities and minorities from three racial and ethnic groups — black, Hispanic and American Indian or Alaska Native — are underrepresented in science and engineering (S&E). Women have reached parity with men in educational attainment but not in S&E employment. Underrepresented minorities account for disproportionately smaller percentages in both S&E education and employment

Congress mandated the biennial report in the Science and Engineering Equal Opportunities Act as part of the National Science Foundation’s (NSF) mission to encourage and strengthen the participation of underrepresented groups in S&E.

A Jan. 31, 2017 NSF news release (also on EurekAlert), which originated the news item, provides information about why the report is issued every two years and provides highlights from the 2017 report,

“An important part of fulfilling our mission to further the progress of science is producing current, accurate information about the U.S. STEM workforce,” said NSF Director France Córdova. “This report is a valuable resource to the science and engineering policy community.”

NSF maintains a portfolio of programs aimed at broadening participation in S&E, including ADVANCE: Increasing the Participation and Advancement of Women in Academic Science and Engineering Careers; LSAMP: the Louis Stokes Alliances for Minority Participation; and NSF INCLUDES, which focuses on building networks that can scale up proven approaches to broadening participation.

The digest provides highlights and analysis in five topic areas: enrollment, field of degree, occupation, employment status and early career doctorate holders. That last topic area includes analysis of pilot study data from the Early Career Doctorates Survey, a new NCSES product. NCSES also maintains expansive WMPD data tables, updated periodically as new data become available, which present the latest S&E education and workforce data available from NCSES and other agencies. The tables provide the public access to detailed, field-by-field information that includes both percentages and the actual numbers of people involved in S&E.

“WMPD is more than just a single report or presentation,” said NCSES Director John Gawalt. “It is a vast and unique information resource, carefully curated and maintained, that allows anyone (from the general public to highly trained researchers) ready access to data that facilitate and support their own exploration and analyses.”

Key findings from the new digest include:

  • The types of schools where students enroll vary among racial and ethnic groups. Hispanics, American Indians or Alaska Natives and Native Hawaiians or Other Pacific Islanders are more likely to enroll in community colleges. Blacks and Native Hawaiian or Other Pacific Islanders are more likely to enroll in private, for profit schools.
  • Since the late 1990s, women have earned about half of S&E bachelor’s degrees. But their representation varies widely by field, ranging from 70 percent in psychology to 18 percent in computer sciences.
  • At every level — bachelor’s, master’s and doctorate — underrepresented minority women earn a higher proportion of degrees than their male counterparts. White women, in contrast earn a smaller proportion of degrees than their male counterparts.
  • Despite two decades of progress, a wide gap in educational attainment remains between underrepresented minorities and whites and Asians, two groups that have higher representation in S&E education than they do in the U.S. population.
  • White men constitute about one-third of the overall U.S. population; they comprise half of the S&E workforce. Blacks, Hispanics and people with disabilities are underrepresented in the S&E workforce.
  • Women’s participation in the workforce varies greatly by field of occupation.
  • In 2015, scientists and engineers had a lower unemployment rate compared to the general U.S. population (3.3 percent versus 5.8 percent), although the rate varied among groups. For example, it was 2.8 percent among white women in S&E but 6.0 percent for underrepresented minority women.

For more information, including access to the digest and data tables, see the updated WMPD website.

Caption: In 2015, women and some minority groups were represented less in science and engineering (S&E) occupations than they were in the US general population.. Credit: NSF

Ministry’s new women’s shirt: a technical marvel

It seems there’s another entry into the textile business, a women’s dress shirt made of a technical textile. A Sept. 13, 2016 article by Elizabeth Segran for Fast Company describes this ‘miracle’ piece of apparel,

There are few items of clothing professional women love more than a well-draped silk shirt. They’re the equivalent of men’s well-tailored Oxford shirts: classic, elegant, and versatile enough to look appropriate in almost any business context. But they’re also difficult to maintain: Silk wrinkles easily, doesn’t absorb perspiration, and needs to be dry cleaned.

Boston-based fashion brand Ministry (formerly Ministry of Supply) has heard our lament. …

Ministry gathered …  feedback and spent two years creating a high-performance women’s work shirt as part of its debut womenswear collection, launching today [Sept. 13, 2016]. Until now, the five-year-old company has been focused on creating menswear made with cutting-edge new textiles, but cofounder Gihan Amarasiriwardena explains that when they were developing the womenswear collection, they didn’t just remake their men’s garments in women’s sizes.

Here’s an image of the shirt in black,

[downloaded from http://ministry.co/collections/womens]

[downloaded from http://ministry.co/collections/womens]

Segran’s article mostly extolls its benefits but there is a little technical information,

Their brand-new, aptly named Easier Than Silk Shirt looks and feels like silk, but is actually made from a Japanese technical fabric (i.e., a textile engineered to perform functions, like protecting the wearer from extremely high temperatures). It drapes nicely, wicks moisture, is wrinkle-resistant, and can be thrown in a regular washer and dryer. I tested the shirt on a typical Monday. This meant getting dressed at 7 a.m., taking my baby to a health checkup—where she proceeded to drool on me—wiping myself off for a lunch interview, then heading to a coffee shop to write for several hours before going to a book launch party. By the time I got home that evening and looked in the mirror, the shirt was somehow crease-free and there were no moisture blotches in sight.

When Ministry claims to “engineer a shirt,” it does not mean this in a metaphorical sense. The by [sic] three MIT students, Amarasiriwardena, Aman Advani, and Kit Hickey; the former two were trained as engineers. Every aspect of Ministry’s design process incorporates scientific thinking, from introducing NASA temperature-regulating textile technology into dress shirts to using equipment to test each garment before it hits the market. The Ministry headquarters in Boston is full of machines, including one that pulls at fabric to see how well it is able to recover from being stretched, and computer systems that offer 3D modeling of the human form.

I wonder if Teijin (first mentioned here in a July 19, 2010 posting about their now defunct ‘morphotex’ [based on the nanostructures on a Morpho butterfly’s wing] fabric) is the Japanese company producing Ministry’s technical textile. Ministry’s company website is less focused on the technology than on the retail aspect of their business so if the technical information is there, it’s not immediately obvious.

Beatrix Potter and her science on her 150th birthday

July 28, 2016 was the 150th anniversary of Beatrix Potter‘s birthday. Known by many through her children’s books, she has left an indelible mark on many of us. Hop-skip-jump.com has a description of an extraordinary woman, from their Beatrix Potter 150 years page,

An artist, storyteller, botanist, environmentalist, farmer and impeccable businesswoman, Potter was a visionary and a trailblazer. Single-mindedly determined and ambitious she overcame professional rejection, academic humiliation, and personal heartbreak, going on to earn her fortune and a formidable reputation.

A July 27, 2016 posting by Alex Jackson on the Guardian science blogs provides more information about Potter’s science (Note: Links have been removed),

Influenced by family holidays in Scotland, Potter was fascinated by the natural world from a young age. Encouraged to follow her interests, she explored the outdoors with sketchbook and camera, honing her skills as an artist, by drawing and sketching her school room pets: mice, rabbits and hedgehogs. Led first by her imagination, she developed a broad interest in the natural sciences: particularly archaeology, entomology and mycology, producing accurate watercolour drawings of unusual fossils, fungi, and archaeological artefacts.

Potter’s uncle, Sir Henry Enfield Roscoe FRS, an eminent nineteenth-century chemist, recognised her artistic talent and encouraged her scientific interests. By the 1890s, Potter’s skills in mycology drew Roscoe’s attention when he learned she had successfully germinated spores of a class of fungi, and had ideas on how they reproduced. He used his scientific connections with botanists at Kew’s Royal Botanic Gardens to gain a student card for his niece and to introduce her to Kew botanists interested in mycology.

Although Potter had good reason to think that her success might break some new ground, the botanists at Kew were sceptical. One Kew scientist, George Massee, however, was sufficiently interested in Potter’s drawings, encouraging her to continue experimenting. Although the director of Kew, William Thistleton-Dyer refused to give Potter’s theories or her drawings much attention both because she was an amateur and a female, Roscoe encouraged his niece to write up her investigations and offer her drawings in a paper to the Linnean Society.

In 1897, Potter put forward her paper, which Massee presented to the Linnean Society, since women could not be members or attend a meeting. Her paper, On the Germination of the Spores of the Agaricineae, was not given much notice and she quickly withdrew it, recognising that her samples were likely contaminated. Sadly, her paper has since been lost, so we can only speculate on what Potter actually concluded.

Until quite recently, Potter’s accomplishments and her experiments in natural science went unrecognised. Upon her death in 1943, Potter left hundreds of her mycological drawings and paintings to the Armitt Museum and Library in Ambleside, where she and her husband had been active members. Today, they are valued not only for their beauty and precision, but also for the assistance they provide modern mycologists in identifying a variety of fungi.

In 1997, the Linnean Society issued a posthumous apology to Potter, noting the sexism displayed in the handling of her research and its policy toward the contributions of women.

A rarely seen very early Beatrix Potter drawing, A Dream of Toasted Cheese was drawn to celebrate the publication of Henry Roscoe’s chemistry textbook in 1899. Illustration: Beatrix Potter/reproduced courtesy of the Lord Clwyd collection (image by way of The Guardian newspaper)

A rarely seen very early Beatrix Potter drawing, A Dream of Toasted Cheese was drawn to celebrate the publication of Henry Roscoe’s chemistry textbook in 1899. Illustration: Beatrix Potter/reproduced courtesy of the Lord Clwyd collection (image by way of The Guardian newspaper)

I’m sure you recognized the bunsen burner. From the James posting (Note: A link has been removed),

London-born, Henry Roscoe, whose family roots were in Liverpool, studied at University College London, before moving to Heidelberg, Germany, where he worked under Robert Bunsen, inventor of the new-fangled apparatus that inspired Potter’s drawing. Together, using magnesium as a light source, Roscoe and Bunsen reputedly carried out the first flashlight photography in 1864. Their research laid the foundations of comparative photochemistry.

These excerpts do not give full justice to James’ piece which I encourage you to read in its entirety.

Should you be going to the UK and inclined to follow up further, there’s a listing of 2016 events being held to honour Potter on the UK National Trust’s Celebrating Beatrix Potter’s anniversary in the Lake District webpage.

Happy International Women’s Day March 8, 2016!

The UK’s Medical Research Council’s Clinical Science Centre and  Imperial College have found an interesting way to celebrate   International Women’s Day 2016 according to a March 8, 2016 posting by Stuart Clark for the Guardian (Note: Links have been removed),

Tonight [March 8, 2016] at the Royal Society, London, around a dozen women will be presented with Suffrage Science awards. Organised by the Medical Research Council’s Clinical Science Centre, Imperial College, they honour women’s contributions to science and are timing to coincide with International Women’s Day.

One of today’s awardees is Pippa Goldschmidt. She is being honoured for her work in science communication. With a PhD in astronomy, …

Her latest project is editing the short story collection I Am Because You Are. These stories all take their inspiration from Albert Einstein’s General Theory of Relativity, which is currently celebrating its 100th anniversary.

What can fiction bring to science?

Science is too often a closed book for many people, they study it at school and are bored by it, or find it difficult or irrelevant to their lives. But fiction has this incredible ability to reflect and examine all aspects of the real world, and writing fiction about science is a great way of opening it up to new audiences, and helping to demystify it.

Science is also heavily reliant on literary concepts, such as metaphors, to get its points across; we often hear the phrases ‘the Universe is like an expanding balloon’, or ‘DNA is like an alphabet’. So I think fiction and science have more in common with each other than may first appear.

Should you be able to attend, I’d be delighted to hear more about the event.

Next, I have a March 8, 2016 article by Lauren J. Young on Inverse.com (Note: Links have been removed),

Women have achieved a lot throughout history. That’s why today, on March 8, thousands of events are taking place in more than 40 countries across the world to celebrate International Women’s Day. This year’s theme is Planet 50-50 by 2030: Step it up for Gender Equality, alluding to the United Nations’ Sustainable Development Goals — a 15-year plan for growth and development in all countries including gender equality and education for all.

International Women’s Day dates back to February 28, 1909, when the Socialist Party of America observed it for the first time in the United States, and two years later, the leader of the Women’s Office for Germany’s Social Democratic Party, Clara Zetkin, expanded the idea internationally. It gained support by the United Nations in 1975, which strengthened the movement.

International Women’s Day is also a day to celebrate science: The United Nations created an interactive timeline documenting some of the most significant contributions made by women. Here are the three:

In Ancient Greece, Agnodice was one of the first female gynecologists. She risked her life to practice medicine even though women who were caught were sentenced to death.

You can find the UN timeline here.

Finally, the UN has a separate International Day of Women and Girls in Science celebrated on Feb. 11 (presumably of each year).

April 2015 (US) National Math festival; inside story on math tournaments; US tv programme: The Great Math Mystery; and the SET Award (tech women in the movies and on tv)

I have three math items for this posting and one women in technology item, here they are in an almost date order.

X+Y

A British movie titled X+Y provides a fictionalized view of a team member on the British squad competing in an International Mathematics Olympiad.The Guardian’s science blog network hosted a March 11, 2015 review by Adam P. Goucher who also provides an insider’s view (Note: Links have been removed),

As a competition it is brutal and intense.

I speak from experience; I was in the UK team in 2011.

So it was with great expectation that I went to see X+Y, a star-studded British film about the travails of a British IMO hopeful who is struggling against the challenges of romance, Asperger’s and really tough maths.

Obviously, there were a few oversimplifications and departures from reality necessary for a coherent storyline. There were other problems too, but we’ll get to them later.

In order to get chosen for the UK IMO team, you must sit the first round test of the British Mathematical Olympiad (BMO1). About 1200 candidates take this test around the country.

I sat BMO1 on a cold December day at my sixth form, Netherthorpe School in Chesterfield. Apart from the invigilator and me, the room was completely empty, although the surroundings became irrelevant as soon as I was captivated by the problems. The test comprises six questions over the course of three and a half hours. As is the case with all Olympiad problems, there are often many distinct ways to solve them, and correct complete solutions are maximally rewarded irrespective of the elegance or complexity of the proof.

The highest twenty scorers are invited to another training camp at Trinity College, Cambridge, and the top six are selected to represent the UK at an annual competition in Romania.

In Romania, there was much maths, but we also enjoyed a snowball fight against the Italian delegation and sampled the delights of Romanian rum-endowed chocolate. Since I was teetotal at this point in time, the rum content was sufficient to alter my perception in such a way that I decided to attack a problem using Cartesian coordinates (considered by many to be barbaric and masochistic). Luckily my recklessness paid off, enabling me to scrape a much-coveted gold medal by the narrowest of margins.

The connection between the UK and Eastern Europe is rather complicated to explain, being intimately entangled with the history of the IMO. The inaugural Olympiad was held in Romania in 1959, with the competition being only open to countries under the Soviet bloc. A Hungarian mathematician, Béla Bollobás, competed in the first three Olympiads, seizing a perfect score on the third. After his PhD, Bollobás moved to Trinity College, Cambridge, to continue his research, where he fertilised Cambridge with his contributions in probabilistic and extremal combinatorics (becoming a Fellow of the Royal Society in the process). Consequently, there is a close relationship between Hungarian and Cantabrigian mathematics.

Rafe Spall’s character was very convincing, and his eccentricities injected some much-needed humour into the film. Similarly, Asa Butterfield’s portrayal of a “typical mathmo” was realistic. On the other hand, certain characters such as Richard (the team leader) were unnatural and exaggerated. In particular, I was disappointed that all of the competitors were portrayed as being borderline-autistic, when in reality there is a much more diverse mixture of individuals.

X+Y is also a love story, and one based on a true story covered in Morgan Matthews’ earlier work, the documentary Beautiful Young Minds. This followed the 2006 IMO, in China, where one of the members of the UK team fell in love and married the receptionist of the hotel the team were staying at. They have since separated, although his enamourment with China persisted – he switched from studying Mathematics to Chinese Studies.

It is common for relationships to develop during maths Olympiads. Indeed after a member of our team enjoyed a ménage-a-trois at an IMO in the 1980s, the committee increased the security and prohibited boys and girls from entering each others’ rooms.

The film was given a general release March 13, 2015 in the UK and is on the festival circuit elsewhere. Whether or not you can get to see the film, I recommend Goucher’s engaging review/memoir.

The Great Math Mystery and the SET award for the Portrayal of a Female in Technology

David Bruggeman in a March 13, 2015 post on his Pasco Phronesis blog describes the upcoming première of a maths installment in the NOVA series presented on the US PBS (Public Broadcasting Service), Note: Links have been removed,

… PBS has announced a new math special.  Mario Livio will host a NOVA special called The Great Math Mystery, premiering April 15.  Livio is an astrophysicist, science and math writer, and fan of science/culture mashups.  The mystery of the title is whether math(s) is invented or was discovered.

You can find out more about The Great Math Mystery here.

David also mentions this,

The Entertainment Industries Council is seeking votes for its first SET Award for Portrayal of a Female in Technology. … Voting on the award is via a Google form, so you will need a Google account to participate.  The nominees appear to be most of the women playing characters with technical jobs in television programs or recent films.  They are:

  • Annedroids on Amazon
  • Arrow: “Felicity Smoak” played by Emily Bett Rickards
  • Bones: “Angela Montenegro” played by Michaela Conlin

Here’s a video describing the competition and the competitors,

More details about the competition are available in David’s March 13, 2015 post or here or here. The deadline for voting is April 6, 2015. Here’s one more link, this one’s to the SET Awards website.

(US) National Math Festival

H/t to David Bruggeman again. This time it’s a Feb. 6, 2015 post on his Pasco Phronesis blog which announces (Note: Links have been removed),

On April 18 [2015], the Smithsonian Institution will host the first National Math Festival in Washington, D.C.  It will be the culmination of a weekend of events in the city to recognize outstanding math research, educators and books.

On April 16 there will be a morning breakfast briefing on Capitol Hill to discuss mathematics education.  It will be followed by a policy seminar in the Library of Congress and an evening gala to support basic research in mathematics and science.

You can find out more about the 2015 National Math Festival here (from the homepage),

On Saturday, April 18th, experience mathematics like never before, when the first-of-its-kind National Math Festival comes to Washington, D.C. As the country’s first national festival dedicated to discovering the delight and power of mathematics, this free and public celebration will feature dozens of activities for every age—from hands-on magic and Houdini-like getaways to lectures with some of the most influential mathematicians of our time.

The National Math Festival is organized by the Mathematical Sciences Research Institute (MSRI) and the Institute for Advanced Study (IAS) in cooperation with the Smithsonian Institution.

There you have it.