Tag Archives: World Economic Forum

Nano-neurons from a French-Japanese-US research team

This news about nano-neurons comes from a Nov. 8, 2017 news item on defenceweb.co.za,

Researchers from the Joint Physics Unit CNRS/Thales, the Nanosciences and Nanotechnologies Centre (CNRS/Université Paris Sud), in collaboration with American and Japanese researchers, have developed the world’s first artificial nano-neuron with the ability to recognise numbers spoken by different individuals. Just like the recent development of electronic synapses described in a Nature article, this electronic nano-neuron is a breakthrough in artificial intelligence and its potential applications.

A Sept. 19, 2017 Thales press release, which originated the news item, expands on the theme,

The latest artificial intelligence algorithms are able to recognise visual and vocal cues with high levels of performance. But running these programs on conventional computers uses 10,000 times more energy than the human brain. To reduce electricity consumption, a new type of computer is needed. It is inspired by the human brain and comprises vast numbers of miniaturised neurons and synapses. Until now, however, it had not been possible to produce a stable enough artificial nano-neuron which would process the information reliably.

Today [Sept. 19, 2017 or July 27, 2017 when the paper was published in Nature?]], for the first time, researchers have developed a nano-neuron with the ability to recognise numbers spoken by different individuals with 99.6% accuracy. This breakthrough relied on the use of an exceptionally stable magnetic oscillator. Each gyration of this nano-compass generates an electrical output, which effectively imitates the electrical impulses produced by biological neurons. In the next few years, these magnetic nano-neurons could be interconnected via artificial synapses, such as those recently developed, for real-time big data analytics and classification.

The project is a collaborative initiative between fundamental research laboratories and applied research partners. The long-term goal is to produce extremely energy-efficient miniaturised chips with the intelligence needed to learn from and adapt to the constantly ever-changing and ambiguous situations of the real world. These electronic chips will have many practical applications, such as providing smart guidance to robots or autonomous vehicles, helping doctors in their diagnosis’ and improving medical prostheses. This project included researchers from the Joint Physics Unit CNRS/Thales, the AIST, the CNS-NIST, and the Nanosciences and Nanotechnologies Centre (CNRS/Université Paris-Sud).

About the CNRS
The French National Centre for Scientific Research is Europe’s largest public research institution. It produces knowledge for the benefit of society. With nearly 32,000 employees, a budget exceeding 3.2 billion euros in 2016, and offices throughout France, the CNRS is present in all scientific fields through its 1100 laboratories. With 21 Nobel laureates and 12 Fields Medal winners, the organization has a long tradition of excellence. It carries out research in mathematics, physics, information sciences and technologies, nuclear and particle physics, Earth sciences and astronomy, chemistry, biological sciences, the humanities and social sciences, engineering and the environment.

About the Université Paris-Saclay (France)
To meet global demand for higher education, research and innovation, 19 of France’s most renowned establishments have joined together to form the Université Paris-Saclay. The new university provides world-class teaching and research opportunities, from undergraduate courses to graduate schools and doctoral programmes, across most disciplines including life and natural sciences as well as social sciences. With 9,000 masters students, 5,500 doctoral candidates, an equivalent number of engineering students and an extensive undergraduate population, some 65,000 people now study at member establishments.

About the Center for Nanoscale Science & Technology (Maryland, USA)
The CNST is a national user facility purposely designed to accelerate innovation in nanotechnology-based commerce. Its mission is to operate a national, shared resource for nanoscale fabrication and measurement and develop innovative nanoscale measurement and fabrication capabilities to support researchers from industry, academia, NIST and other government agencies in advancing nanoscale technology from discovery to production. The Center, located in the Advanced Measurement Laboratory Complex on NIST’s Gaithersburg, MD campus, disseminates new nanoscale measurement methods by incorporating them into facility operations, collaborating and partnering with others and providing international leadership in nanotechnology.

About the National Institute of Advanced Industrial Science and Technology (Japan)
The National Institute of Advanced Industrial Science and Technology (AIST), one of the largest public research institutes in Japan, focuses on the creation and practical realization of technologies useful to Japanese industry and society, and on bridging the gap between innovative technological seeds and commercialization. For this, AIST is organized into 7 domains (Energy and Environment, Life Science and Biotechnology, Information Technology and Human Factors, Materials and Chemistry, Electronics and Manufacturing, Geological

About the Centre for Nanoscience and Nanotechnology (France)
Established on 1 June 2016, the Centre for Nanosciences and Nanotechnologies (C2N) was launched in the wake of the joint CNRS and Université Paris-Sud decision to merge and gather on the same campus site the Laboratory for Photonics and Nanostructures (LPN) and the Institut d’Electronique Fondamentale (IEF). Its location in the École Polytechnique district of the Paris-Saclay campus will be completed in 2017 while the new C2N buildings are under construction. The centre conducts research in material science, nanophotonics, nanoelectronics, nanobiotechnologies and microsystems, as well as in nanotechnologies.

There is a video featuring researcher Julie Grollier discussing their work but you will need your French language skills,

(If you’re interested, there is an English language video published on youtube on Feb. 19, 2017 with Julie Grollier speaking more generally about the field at the World Economic Forum about neuromorphic computing,  https://www.youtube.com/watch?v=Sm2BGkTYFeQ

Here’s a link to and a citation for the team’s July 2017 paper,

Neuromorphic computing with nanoscale spintronic oscillators by Jacob Torrejon, Mathieu Riou, Flavio Abreu Araujo, Sumito Tsunegi, Guru Khalsa, Damien Querlioz, Paolo Bortolotti, Vincent Cros, Kay Yakushiji, Akio Fukushima, Hitoshi Kubota, Shinji Yuasa, Mark D. Stiles, & Julie Grollier. Nature 547, 428–431 (27 July 2017) doi:10.1038/nature23011 Published online 26 July 2017

This paper is behind a paywall.

The Center for Nanotechnology in Society at the University of California at Santa Barbara offers a ‘swan song’ in three parts

I gather the University of California at Santa Barbara’s (UCSB) Center for Nanotechnology in Society is ‘sunsetting’ as its funding runs out. A Nov. 9, 2016 UCSB news release by Brandon Fastman describes the center’s ‘swan song’,

After more than a decade, the UCSB Center for Nanotechnology in Society research has provided new and deep knowledge of how technological innovation and social change impact one another. Now, as the national center reaches the end of its term, its three primary research groups have published synthesis reports that bring together important findings from their 11 years of activity.

The reports, which include policy recommendations, are available for free download at the CNS web site at

http://www.cns.ucsb.edu/irg-synthesis-reports.

The ever-increasing ability of scientists to manipulate matter on the molecular level brings with it the potential for science fiction-like technologies such as nanoelectronic sensors that would entail “merging tissue with electronics in a way that it becomes difficult to determine where the tissue ends and the electronics begin,” according to a Harvard chemist in a recent CQ Researcher report. While the life-altering ramifications of such technologies are clear, it is less clear how they might impact the larger society to which they are introduced.

CNS research, as detailed the reports, addresses such gaps in knowledge. For instance, when anthropologist Barbara Herr Harthorn and her collaborators at the UCSB Center for Nanotechnology in Society (CNS-UCSB), convened public deliberations to discuss the promises and perils of health and human enhancement nanotechnologies, they thought that participants might be concerned about medical risks. However, that is not exactly what they found.

Participants were less worried about medical or technological mishaps than about the equitable distribution of the risks and benefits of new technologies and fair procedures for addressing potential problems. That is, they were unconvinced that citizens across the socioeconomic spectrum would share equal access to the benefits of therapies or equal exposure to their pitfalls.

In describing her work, Harthorn explained, “Intuitive assumptions of experts and practitioners about public perceptions and concerns are insufficient to understanding the societal contexts of technologies. Relying on intuition often leads to misunderstandings of social and institutional realities. CNS-UCSB has attempted to fill in the knowledge gaps through methodologically sophisticated empirical and theoretical research.”

In her role as Director of CNS-UCSB, Harthorn has overseen a larger effort to promote the responsible development of sophisticated materials and technologies seen as central to the nation’s economic future. By pursuing this goal, researchers at CNS-UCSB, which closed its doors at the end of the summer, have advanced the role for the social, economic, and behavioral sciences in understanding technological innovation.

Harthorn has spent the past 11 years trying to understand public expectations, values, beliefs, and perceptions regarding nanotechnologies. Along with conducting deliberations, she has worked with toxicologists and engineers to examine the environmental and occupational risks of nanotechnologies, determine gaps in the U.S. regulatory system, and survey nanotechnology experts. Work has also expanded to comparative studies of other emerging technologies such as shale oil and gas extraction (fracking).

Along with Harthorn’s research group on risk perception and social response, CNS-UCSB housed two other main research groups. One, led by sociologist Richard Appelbaum, studied the impacts of nanotechnology on the global economy. The other, led by historian Patrick McCray, studied the technologies, communities, and individuals that have shaped the direction of nanotechnology research.

Appelbaum’s research program included studying how state policies regarding nanotechnology – especially in China and Latin America – has impacted commercialization. Research trips to China elicited a great understanding of that nation’s research culture and its capacity to produce original intellectual property. He also studied the role of international collaboration in spurring technological innovation. As part of this research, his collaborators surveyed and interviewed international STEM graduate students in the United States in order to understand the factors that influence their choice whether to remain abroad or return home.

In examining the history of nanotechnology, McCray’s group explained how the microelectronics industry provided a template for what became known as nanotechnology, examined educational policies aimed at training a nano-workforce, and produced a history of the scanning tunneling microscope. They also penned award-winning monographs including McCray’s book, The Visioneers: How a Group of Elite Scientists Pursued Space Colonies, Nanotechnologies, and Limitless Future.

Reaching the Real World

Funded as a National Center by the US National Science Foundation in 2005, CNS-UCSB was explicitly intended to enhance the understanding of the relationship between new technologies and their societal context. After more than a decade of funding, CNS-UCSB research has provided a deep understanding of the relationship between technological innovation and social change.

New developments in nanotechnology, an area of research that has garnered $24 billion in funding from the U.S. federal government since 2001, impact sectors as far ranging as agriculture, medicine, energy, defense, and construction, posing great challenges for policymakers and regulators who must consider questions of equity, sustainability, occupational and environmental health and safety, economic and educational policy, disruptions to privacy, security and even what it means to be human. (A nanometer is roughly 10,000 times smaller than the diameter of a human hair.)  Nanoscale materials are already integrated into food packaging, electronics, solar cells, cosmetics, and pharmaceuticals. They are far in development for drugs that can target specific cells, microscopic spying devices, and quantum computers.

Given such real-world applications, it was important to CNS researchers that the results of their work not remain confined within the halls of academia. Therefore, they have delivered testimony to Congress, federal and state agencies (including the National Academies of Science, the Centers for Disease Control and Prevention, the Presidential Council of Advisors on Science and Technology, the U.S. Presidential Bioethics Commission and the National Nanotechnology Initiative), policy outfits (including the Washington Center for Equitable Growth), and international agencies (including the World Bank, European Commission, and World Economic Forum). They’ve collaborated with nongovernmental organizations. They’ve composed policy briefs and op eds, and their work has been covered by numerous news organizations including, recently, NPR, The New Yorker, and Forbes. They have also given many hundreds of lectures to audiences in community groups, schools, and museums.

Policy Options

Most notably, in their final act before the center closed, each of the three primary research groups published synthesis reports that bring together important findings from their 11 years of activity. Their titles are:

Exploring Nanotechnology’s Origins, Institutions, and Communities: A Ten Year Experiment in Large Scale Collaborative STS Research

Globalization and Nanotechnology: The Role of State Policy and International Collaboration

Understanding Nanotechnologies’ Risks and Benefits: Emergence, Expertise and Upstream Participation.

A sampling of key policy recommendations follows:

1.     Public acceptability of nanotechnologies is driven by: benefit perception, the type of application, and the risk messages transmitted from trusted sources and their stability over time; therefore transparent and responsible risk communication is a critical aspect of acceptability.

2.     Social risks, particularly issues of equity and politics, are primary, not secondary, drivers of perception and need to be fully addressed in any new technology development. We have devoted particular attention to studying how gender and race/ethnicity affect both public and expert risk judgments.

3.     State policies aimed at fostering science and technology development should clearly continue to emphasize basic research, but not to the exclusion of supporting promising innovative payoffs. The National Nanotechnology Initiative, with its overwhelming emphasis on basic research, would likely achieve greater success in spawning thriving businesses and commercialization by investing more in capital programs such as the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, self-described as “America’s seed fund.”

4.     While nearly half of all international STEM graduate students would like to stay in the U.S. upon graduation, fully 40 percent are undecided — and a main barrier is current U.S. immigration policy.

5.     Although representatives from the nanomaterials industry demonstrate relatively high perceived risk regarding engineered nanomaterials, they likewise demonstrate low sensitivity to variance in risks across type of engineered nanomaterials, and a strong disinclination to regulation. This situation puts workers at significant risk and probably requires regulatory action now (beyond the currently favored voluntary or ‘soft law’ approaches).

6.     The complex nature of technological ecosystems translates into a variety of actors essential for successful innovation. One species is the Visioneer, a person who blends engineering experience with a transformative vision of the technological future and a willingness to promote this vision to the public and policy makers.

Leaving a Legacy

Along with successful outreach efforts, CNS-UCSB also flourished when measured by typical academic metrics, including nearly 400 publications and 1,200 talks.

In addition to producing groundbreaking interdisciplinary research, CNS-UCSB also produced innovative educational programs, reaching 200 professionals-in-training from the undergraduate to postdoctoral levels. The Center’s educational centerpiece was a graduate fellowship program, referred to as “magical” by an NSF reviewer, that integrated doctoral students from disciplines across the UCSB campus into ongoing social science research projects.

For social scientists, working side-by-side with science and engineering students gave them an appreciation for the methods, culture, and ethics of their colleagues in different disciplines. It also led to methodological innovation. For their part, scientists and engineers were able to understand the larger context of their work at the bench.

UCSB graduates who participated in CNS’s educational programs have gone on to work as postdocs and professors at universities (including MIT, Stanford, U Penn), policy experts (at organizations like the Science Technology and Policy Institute and the Canadian Institute for Advanced Research), researchers at government agencies (like the National Institute for Standards and Technology), nonprofits (like the Kauffman Foundation), and NGOs. Others work in industry, and some have become entrepreneurs, starting their own businesses.

CNS has spawned lines of research that will continue at UCSB and the institutions of collaborators around the world, but its most enduring legacy will be the students it trained. They bring a true understanding of the complex interconnections between technology and society — along with an intellectual toolkit for examining them — to every sector of the economy, and they will continue to pursue a world that is as just as it technologically advanced.

I found the policy recommendations interesting especially this one:

5.     Although representatives from the nanomaterials industry demonstrate relatively high perceived risk regarding engineered nanomaterials, they likewise demonstrate low sensitivity to variance in risks across type of engineered nanomaterials, and a strong disinclination to regulation. This situation puts workers at significant risk and probably requires regulatory action now (beyond the currently favored voluntary or ‘soft law’ approaches).

Without having read the documents, I’m not sure how to respond but I do have a question.  Just how much regulation are they suggesting?

I offer all of the people associated with the center my thanks for all their hard work and my gratitude for the support I received from the center when I presented at the Society for the Study of Nanotechnologies and Other Emerging Technology (S.Net) in 2012. I’m glad to see they’re going out with a bang.

Graphene and water (G20 Water commentary)

Tim Harper’s, Chief Executive Officer (CEO) of G2O Water, July 13, 2015 commentary was published on Nanotechnology Now. Harper, a longtime figure in the nanotechnology community (formerly CEO of Cientifica, an emerging technologies consultancy and current member of the World Economic Forum, not unexpectedly focused on water,

In the 2015 World Economic Forum’s Global Risks Report survey participants ranked Water Crises as the biggest of all risks, higher than Weapons of Mass Destruction, Interstate Conflict and the Spread of Infectious Diseases (pandemics). Our dependence on the availability of fresh water is well documented, and the United Nations World Water Development Report 2015 highlights a 40% global shortfall between forecast water demand and available supply within the next fifteen years. Agriculture accounts for much of the demand, up to 90% in most of the world’s least-developed countries, and there is a clear relationship between water availability, health, food production and the potential for civil unrest or interstate conflict.

The looming crisis is not limited to water for drinking or agriculture. Heavy metals from urban pollution are finding their way into the aquatic ecosystem, as are drug residues and nitrates from fertilizer use that can result in massive algal blooms. To date, there has been little to stop this accretion of pollutants and in closed systems such as lakes these pollutants are being concentrated with unknown long term effects.

Ten years ago, following discussions with former Israeli Prime Minister Shimon Peres, I organised a conference in Amsterdam called Nanowater to look at how nanotechnology could address global water issues. [emphasis mine] While the meeting raised many interesting points, and many companies proposed potential solutions, there was little subsequent progress.

Rather than a simple mix of one or two contaminants, most real world water can contain hundreds of different materials, and pollutants like heavy metals may be in the form of metal ions that can be removed, but are equally likely to be bound to other larger pieces of organic matter which cannot be simply filtered through nanopores. In fact the biggest obstacle to using nanotechnology in water treatment is the simple fact that small holes are easily blocked, and susceptibility to fouling means that most nanopore membranes quickly become barriers instead of filters.

Fortunately some recent developments in the ‘wonder material’ graphene may change the economics of water. One of the major challenges in the commercialisation of graphene is the ability to create large areas of defect-free material that would be suitable for displays or electronics, and this is a major research topic in Europe where the European Commission is funding graphene research to the tune of a billion euros. …

Tim goes on to describe some graphene-based solutions including a technology developed at the University of South Carolina, which is also mentioned in a July 16, 2015 G20 Water press release,

Fouling of nano/ultrafiltration membranes in oil/water separation is a longstanding issue and a major economic barrier for their widespread adoption. Currently membranes typically show severe fouling, resulting from the strong adhesion of oil on the membrane surface and/or oil penetration inside the membranes. This greatly degrades their performance and shortens service lifetime as well as increasing the energy usage.

G2O™s bio inspired approach uses graphene oxide (GO) for the fabrication of fully-recoverable membranes for high flux, antifouling oil/water separation via functional and structural mimicking of fish scales. The ultra-thin, amphiphilic, water-locking GO coating mimics the thin mucus layer covering fish scales, while the combination of corrugated GO flakes and intrinsic roughness of the porous supports successfully reproduces the hierarchical roughness of fish scales. Cyclic membrane performance evaluation tests revealed circa 100% membrane recovery by facile surface water flushing, establishing their excellent easy-to-recover capability.

The pore sizes can be tuned to specific applications such as water desalination, oil/water separation, storm water treatment and industrial waste water recovery. By varying the GO concentration in water, GO membranes with different thickness can be easily fabricated via a one-time filtration process.
G2O™s patented graphene oxide technology acts as a functional coating for modifying the surface properties of existing filter media resulting in:
Higher pure water flux;
High fouling resistance;
Excellent mechanical strength;
High chemical stability;
Good thermal stability;
Low cost.

We’re going through a water shortage here in Vancouver, Canada after a long spring season which distinguished itself with a lack of rain and the introduction of a heatwave extending into summer. It is by no means equivalent to the situation in many parts of the world but it does give even those of us who are usually waterlogged some insight into what it means when there isn’t enough water.

For more insight into water crises with a special focus on the Middle East (notice Harper mentioned Israel’s former Prime Minister Shimon Peres in his commentary), I have a Feb. 24, 2014 posting (Water desalination to be researched at Oman’s newly opened Nanotechnology Laboratory at Sultan Qaboos University) and a June 25, 2013 post (Nanotechnology-enabled water resource collaboraton between Israel and Chicago).

You can check out the World Economic Forum’s Outlook on the Global Agenda 2015 here.

The Outlook on the Global Agenda 2015 features an analysis of the Top 10 trends which will preoccupy our experts for the next 12-18 months as well as the key challenges facing the world’s regions, an overview of global leadership and governance, and the emerging issues that will define our future.

G20 Water can be found here.

Global Agenda Council on Emerging Technologies announces its 2013 list of top 10 emerging technologies

On Feb. 18, 2012 I published a list of technologies with life and globe changing impacts supplied by the World Economic Forum’s (WEF) Global Agenda Council on Emerging Technologies and, coincidentally, I’m publishing another such list from the Global Agenda Council on exactly the same day in 2013.  Although I’m not alone, Nanowerk has published a Feb. 18, 2013 news item featuring this year’s list, others published the list last week.

From a Feb. 14, 2013 post by Tim Harper (a member of the Global Agenda Council) on his Cientifica company’s Insight blog,

OnLine Electric Vehicles (OLEV)

Already widely used to exchange digital information, wireless technology can now also deliver electric power to moving vehicles. In next-generation electric cars, pick-up coil sets under the vehicle floor receive power remotely via an electromagnetic field broadcast from cables installed under the road surface. The current also charges an onboard battery used to power the vehicle when it is out of range. As electricity is supplied externally, these vehicles require only a fifth the battery capacity of a standard electric car, and can achieve transmission efficiencies of over 80 percent. Online electric vehicles are currently undergoing road tests in Seoul, South Korea.

3-D printing and remote manufacturing

Three-dimensional printing allows the creation of solid structures from a digital computer file, potentially revolutionising the economics of manufacturing if objects can be printed remotely in the home or office rather than requiring time and energy for transportation. The process involves layers of material being deposited on top of each other in order to create free-standing structures from the bottom up. Blueprints from computer-aided design are sliced into cross-section for print templates, allowing virtually-created objects to be used as models for ‘hard copies’ made from plastics, metal alloys or other materials.

Self-healing materials

One of the defining characteristics of living organisms is the inherent ability to repair physical damage done to them. A growing trend in biomimicry is the creation of non-living structural materials that also have the capacity to heal themselves when cut, torn or cracked. Self-healing materials which can repair damage without external human intervention could give manufactured goods longer lifetimes and reduce the demand for raw materials, as well as improving the inherent safety of structural materials used in construction or to form the bodies of aircraft.

Energy-efficient water purification

Water scarcity is a worsening ecological problem in many parts of the world due to competing demands from agriculture, cities and other human uses. Where freshwater systems are over-used or exhausted, desalination from the sea offers near-unlimited water but at the expense of considerable use of energy – mostly from fossil fuels – to drive evaporation or reverse osmosis systems. Emerging technologies offer the potential for significantly higher energy efficiency in desalination or purification of wastewater, potentially reducing energy consumption by 50 percent or more. Techniques such as forward osmosis can additionally improve efficiency by utilising low-grade heat from thermal power production or renewable heat produced by solar-thermal geothermal installations.

Carbon dioxide (CO2) conversion and use

Long-promised technologies for the capture and underground sequestration of carbon dioxide have yet to be proven commercially viable, even at the scale of a single large power station. New technologies that convert the unwanted CO2 into saleable goods can potentially address both the economic and energetic shortcomings of conventional CCS strategies. One of the most promising approaches uses biologically-engineered photosynthetic bacteria to turn waste CO2 into liquid fuels or chemicals, in low-cost, modular solar converter systems. Whilst only operational today at the acre scale, individual systems are expected to reach hundreds of acres within as little as two years. Being 10 to 100 times as productive per unit of land area, these systems address one of the main environmental constraints on biofuels from agricultural or algal feedstock, and could supply lower carbon fuels for automobiles, aviation or other large-scale liquid fuel users.

Enhanced nutrition to drive health at the molecular level

Even in developed countries millions of people suffer from malnutrition due to nutrient deficiencies in their diets. Efforts to improve the situation by changing diets have met with limited success.  Now modern genomic techniques have been applied to determine at the gene sequence level the vast number of naturally-consumed proteins which are important in the human diet. The proteins identified may have advantages over standard protein supplements in that they can supply a greater percentage of essential amino acids, and have improved solubility, taste, texture and nutritional characteristics. The large-scale production of pure human dietary proteins based on the application of biotechnology to molecular nutrition can deliver health benefits such as in muscle development, managing diabetes or reducing obesity.

Remote sensing

The increasingly widespread use of sensors that allow often passive responses to external stimulae will continue to change the way we respond to the environment, particularly in the area of health. Examples include sensors that continually monitor bodily function – such as heart rate, blood oxygen and blood sugar levels – and if necessary trigger a medical response such as insulin provision. Advances rely on wireless communication between devices, low power sensing technologies and, sometimes, active energy harvesting.  Other examples include vehicle-to-vehicle sensing for improved safety on the road.

Precise drug delivery through nanoscale engineering

Pharmaceuticals which can be precisely delivered at the molecular level within or around the cell offer unprecedented opportunities for more effectively treatments while reducing unwanted side effects. Targeted nanoparticles that adhere to diseased tissue allow for the micro-scale delivery of potent therapeutic compounds while minimizing their impact on healthy tissue, and are now advancing in medical trials. After almost a decade of research, these new approaches are now finally showing signs of clinical utility, through increasing the local concentration and exposure time of the required drug and thereby increasing its effectiveness. As well as improving the effects of current drugs, these advances in nanomedicine promise to rescue other drugs, which would otherwise be rejected due to their dose-limiting toxicity.

Organic electronics and photovoltaics

Organic electronics – a type of printed electronics – is the use of organic materials such as polymers to create electronic circuits and devices. In contrast to traditional (silicon based) semiconductors that are fabricated with expensive photolithographic techniques, organic electronics can be printed using low-cost, scalable processes such as ink jet printing- making them extremely cheap compared with traditional electronics devices, both in terms of the cost per device and the capital equipment required to produce them. While organic electronics are currently unlikely to compete with silicon in terms of speed and density, they have the potential to provide a significant edge in terms of cost and versatility. The cost implications of printed mass-produced solar photovoltaic collectors for example could accelerate the transition to renewable energy.

Fourth-generation reactors and nuclear waste recycling

Current once-through nuclear power reactors only utilise 1% of the potential energy available in uranium, leaving the rest radioactively contaminated as nuclear ‘waste’. Whilst the technical challenge of geological disposal is manageable, the political challenge of nuclear waste seriously limits the appeal of this zero-carbon and highly scaleable energy technology. Spent-fuel recycling and breeding uranium-238 into new fissile material – known as ‘Nuclear 2.0’ – would extend already-mined uranium resources for centuries while dramatically reducing the volume and long-term toxicity of wastes, whose radioactivity will drop below the level of the original uranium ore on a timescale of centuries rather millennia. This makes geological disposal much less of a challenge (and arguably even unnecessary) and nuclear waste a minor environmental issue compared to hazardous wastes produced by other industries. Fourth-generation technologies, including liquid metal-cooled fast reactors, are now being deployed in several countries and are offered by established nuclear engineering companies.

You can also find the list in the World Economic Forum’s Feb. 14, 2013 posting by David King (currently the chair of the Global Agenda Council on Emerging Technologies). There’s also more information about the Global Agenda Council here.

List of 10 emerging technologies with life- and globe-changing impacts

The World Economic Forum (WEF) holds a number of meetings around the world and has many working committees/councils. The Global Agenda Council on Emerging Technologies is tasked to examine trends and possible impacts that various emerging technologies and to discuss strategies for dealing with the impacts on our collective future.

The Global Agenda Council has just released a list of the trends expected to have major impacts in the near future (the rest of 2012).

From the Feb. 16, 2012 news item on Nanowerk,

Below, the Global Agenda Council on Emerging Technologies presents the technological trends expected to have major social, economic and environmental impacts worldwide in 2012. They are listed in order of greatest potential to provide solutions to global challenges:

1. Informatics for adding value to information The quantity of information now available to individuals and organizations is unprecedented in human history, and the rate of information generation continues to grow exponentially. Yet, the sheer volume of information is in danger of creating more noise than value, and as a result limiting its effective use. Innovations in how information is organized, mined and processed hold the key to filtering out the noise and using the growing wealth of global information to address emerging challenges.

2. Synthetic biology and metabolic engineering The natural world is a testament to the vast potential inherent in the genetic code at the core of all living organisms. Rapid advances in synthetic biology and metabolic engineering are allowing biologists and engineers to tap into this potential in unprecedented ways, enabling the development of new biological processes and organisms that are designed to serve specific purposes – whether converting biomass to chemicals, fuels and materials, producing new therapeutic drugs or protecting the body against harm.

3. Green Revolution 2.0 – technologies for increased food and biomass Artificial fertilizers are one of the main achievements of modern chemistry, enabling unprecedented increases in crop production yield. Yet, the growing global demand for healthy and nutritious food is threatening to outstrip energy, water and land resources. By integrating advances across the biological and physical sciences, the new green revolution holds the promise of further increasing crop production yields, minimizing environmental impact, reducing energy and water dependence, and decreasing the carbon footprint.

4. Nanoscale design of materials The increasing demand on natural resources requires unprecedented gains in efficiency. Nanostructured materials with tailored properties, designed and engineered at the molecular scale, are already showing novel and unique features that will usher in the next clean energy revolution, reduce our dependence on depleting natural resources, and increase atom-efficiency manufacturing and processing.

5. Systems biology and computational modelling/simulation of chemical and biological systems For improved healthcare and bio-based manufacturing, it is essential to understand how biology and chemistry work together. Systems biology and computational modelling and simulation are playing increasingly important roles in designing therapeutics, materials and processes that are highly efficient in achieving their design goals, while minimally impacting on human health and the environment.

6. Utilization of carbon dioxide as a resource Carbon is at the heart of all life on earth. Yet, managing carbon dioxide releases is one of the greatest social, political and economic challenges of our time. An emerging innovative approach to carbon dioxide management involves transforming it from a liability to a resource. Novel catalysts, based on nanostructured materials, can potentially transform carbon dioxide to high value hydrocarbons and other carbon-containing molecules, which could be used as new building blocks for the chemical industry as cleaner and more sustainable alternatives to petrochemicals.

7. Wireless power Society is deeply reliant on electrically powered devices. Yet, a significant limitation in their continued development and utility is the need to be attached to the electricity grid by wire – either permanently or through frequent battery recharging. Emerging approaches to wireless power transmission will free electrical devices from having to be physically plugged in, and are poised to have as significant an impact on personal electronics as Wi-Fi had on Internet use.

8. High energy density power systems Better batteries are essential if the next generation of clean energy technologies are to be realized. A number of emerging technologies are coming together to lay the foundation for advanced electrical energy storage and use, including the development of nanostructured electrodes, solid electrolysis and rapid-power delivery from novel supercapacitors based on carbon-based nanomaterials. These technologies will provide the energy density and power needed to supercharge the next generation of clean energy technologies.

9. Personalized medicine, nutrition and disease prevention As the global population exceeds 7 billion people – all hoping for a long and healthy life – conventional approaches to ensuring good health are becoming less and less tenable, spurred on by growing demands, dwindling resources and increasing costs. Advances in areas such as genomics, proteomics and metabolomics are now opening up the possibility of tailoring medicine, nutrition and disease prevention to the individual. Together with emerging technologies like synthetic biology and nanotechnology, they are laying the foundation for a revolution in healthcare and well-being that will be less resource intensive and more targeted to individual needs.

10. Enhanced education technology New approaches are needed to meet the challenge of educating a growing young population and providing the skills that are essential to the knowledge economy. This is especially the case in today’s rapidly evolving and hyperconnected globalized society. Personalized IT-based approaches to education are emerging that allow learner-centred education, critical thinking development and creativity. Rapid developments in social media, open courseware and ubiquitous access to the Internet are facilitating outside classroom and continuous education.

Members of the Global Agenda Council had this to say about the list (from the Feb. 15, 2012 news release from Cientifica),

Many of the technology trends are currently below the radar of most policy makers. Council member Tim Harper [CEO, Cientifica] emphasized that “Technology is a very powerful tool for change. If the Arab Spring demonstrated that many governments are still unsure how to respond to mature and simple to grasp technologies such as Facebook and Twitter, then they run the risk of being absolutely powerless in the face of science-based technological change.”

Innovation in nanotechnology, biotechnology and information technology is already helping solve pressing challenges as diverse as efficient “renewable” energy sources, malnutrition and hunger, access to clean water, disease diagnosis and treatment, “green” technologies, and global climate change and sustainability.

Council Chair Professor Sang Yup Lee at the Korea Advanced Institute of Science and Technology (KAIST) explained that “Accelerating progress in science and technology has stimulated a new age of discovery, and many of the technologies identified by the council are critical to building a sustainable and resilient future.” Regarding job creation through emerging technologies, Council Vice-Chair Javier Garcia Martinez said, “There are no generally applicable shortcuts in the path that goes from emerging technologies to new industries and job creation. This path includes sufficient and sustained funding leaving enough incentive to the founders and real focus on scale, reliability, and safety.” The report also cautions that without new understanding, tools and capabilities, ranging from public policy to investment models, their safe and successful development is far from guaranteed. Among the trends are advances in informatics, biotechnology, medicine, materials, education, and resource usage.

Informatics for adding value to information and handling “big data” for “data to decision” is highlighted, and has been the focus of idea generation during this year’s Davos forum. In particular, the intelligent technologies for creating valuable information out of noisy data need to be developed.

In the biological domain, synthetic biology and metabolic engineering are expected to become increasingly important in manufacturing new drugs and producing chemicals and materials from renewable resources. Systems biology and computational modelling and simulation of chemical and biological systems are playing increasingly important roles in helping design therapeutics, materials and processes that are highly efficient in achieving their design goals, while minimally impacting on human health, resources, and the environment. Innovative technologies for a second green revolution that provide security in food supply for growing population and biomass for biorefineries are also selected.

Nanomaterials designed and engineered at the molecular scale are expected to continue to provide novel solutions to energy, water, and other resource-based challenges. Also listed are breakthrough technologies that potentially turn carbon dioxide from a global liability to a valuable resource.

The list also includes wireless power, high energy-density power systems, personalized medicine and nutrition, and enhanced education technologies.

Director of World Economic Forum Andrew Hagan said, “We believe that these emerging technologies to be announced annually by the council will provide a chance for all stakeholders to link technology trends to the global megatrends and solutions to the mega-challenges. The challenge will not just be the new ideas but leaving the old ones behind.”

You can find out more about the Global Agenda Council on Emerging Technologies here.

Innovation discussion in Canada lacks imagination

Today, Feb. 18, 2011, is the last day you have to make a submission to the federal government of Canada’s Review of Federal Support to Research and Development.

By the way, the  expert panel appointed and tasked with carrying out this consultation consists of:

Mr. Thomas Jenkins – Chair
Dr. Bev Dahlby
Dr. Arvind Gupta
Ms. Monique F. Leroux
Dr. David Naylor
Mrs. Nobina Robinson

They represent a mix of industry and academic representatives; you can read more about them here. You will have to click for each biography. Unfortunately, neither the website nor the consultation paper offer a list of members of the panel withbiographies that are grouped together for easy scanning.

One sidenote, big kudos to whomever decided this was a good idea (from the Review web page),

Important note: Submissions received by the panel will be made publicly available on this site as early as March 4, 2011.[emphases mine] * The name and organizational affiliation of the individual making the submission will be posted on the site; however, contact information (i.e., email addresses, phone numbers and postal addresses) will not be posted, unless that information is embedded in the submission itself.

This initiative can be viewed in two ways: (a) necessary housecleaning of funding programmes for research and development (R&D) that are not effective and (b) an attempt to kickstart more innovation, i.e. better ties between government R&D efforts and industry to achieve more productivity, in Canada. From the consultation paper‘s introduction,

WHY A REVIEW?

Innovation by business is a vital part of maintaining a high standard of living in Canada and building Canadian sources of global advantage. The Government of Canada plays an important role in fostering an economic climate that encourages business innovation, including by providing substantial funding through tax incentives and direct program support to enhance business research and development (R&D). Despite the high level of federal support, Canada continues to lag behind other countries in business R&D expenditures (see Figure 1), and this is believed to be a significant factor in contributing to the country’s weak productivity growth. Recognizing this, Budget 2010 announced a comprehensive review of federal support to R&D in order to maximize its contribution to innovation and to economic opportunities for business. (p. 1 print;  p. 3 PDF)

I’d like to offer a submission but I can’t for two reasons. (a)  I really don’t know much about the ‘housecleaning’ aspects. (b) The panel’s terms of reference vis à vis innovation are so constrained that any comments I could offer fall far outside it’s purview.

Here’s what I mean by ‘constrained terms of reference’ (from the consultation paper),

The Panel has been asked to provide advice related to the following questions:

§ What federal initiatives are most effective in increasing business R&D and facilitating commercially relevant R&D partnerships?

§ Is the current mix and design of tax incentives and direct support for business R&D and businessfocused R&D appropriate?

§ What, if any, gaps are evident in the current suite of programming, and what might be done to fill these gaps?

In addition, the Panel’s mandate specifies that its recommendations not result in an increase or decrease to the overall level of funding required for federal R&D initiatives. (p. 3 print; p. 5 PDF)

The ‘housecleaning’ effort is long overdue. Even good government programmes can outlive their usefulness while ineffective and/or bad programmes don’t get jettisoned soon enough or often enough. If you want a sense of just how complicated our current R & D funding system is, just check this out from Nassif Ghoussoub’s (Piece of Mind blog) Jan. 14, 2011 posting,

Now the number of programs that the government supports, and which are under review is simply mind boggling.

First, you have the largest piece of the puzzle, the $4-billion “Scientific Research and Experimental Develoment tax credit program” (SR&ED), which seems to be the big elephant in the room. I hardly know anything about this program, besides the fact that it is a federal tax incentive program, administered by the Canada Revenue Agency, that encourages Canadian businesses of all sizes, and in all sectors to conduct research and development in Canada. Former VP of the NRC and former President of Alberta Ingenuity, Peter Hackett, has lots to say about this. Also on youtube.

But you don’t need to be an expert to imagine the line-up of CEOs waiting to testify as to how important these tax incentives are to the country? “Paris vaut bien une messe” and a billion or four are surely worth testifying for.

Next, just take a look (below) at this illustrative list of more directly funded federal programs. Why “illustrative”?, because there is at least one hundred more!

Do you really think that anyone of the heads/directors/presidents (the shopkeepers!) of these programs (the shops!) are going to testify that their programs are deficient and need less funding? What about those individuals that are getting serious funding from these programs (the clients!)?

Nassif’s list is 50 (!) programmes long and he suggests there are another 100 of them? Yes, housecleaning is long overdue but as Nassif points out. the people most likely to submit comment about these programmes  are likely to be beneficiaries uninclined to see their demise.

There is another problem with this ‘housecleaning’ process in that they seem to be interested in ‘tweaking’ rather than renovating or rethinking the system. Rob Annan at the Researcher Forum (Don’t leave Canada behind) blog, titled his Feb. 4, 2011 post, Innovation vs. Invention, as he questions what we mean by innovation (excerpt from his posting),

I wonder if we’ve got the whole thing wrong.

The fact is: universities don’t produce innovation. For that matter, neither does industrial R&D.

What university and industrial research produces is invention.

The Blackberry is not an innovation, it’s an invention. A new cancer-fighting drug is not an innovation, it’s an invention. A more durable prosthetic knee is not an innovation, it’s an invention.

Universities can – and do – produce inventions.

In fact, they produce inventions at an astonishing rate. University tech transfer offices (now usually branded as “centres for innovation and commercialization”) register more intellectual property than could ever be effectively commercialized.

But innovation is distinct from invention. Innovation is about process.

Innovation is about finding more efficient ways to do things. Innovation is about increasing productivity. Innovation is about creating new markets – sometimes through the commercialization of inventions.

Innovation is about the how not about the what.

Thought-provoking, yes? I think a much broader scope needs to be taken if we’re going really discuss innovation in Canada. I’m talking about culture and making a cultural shift. One of the things I’ve noticed is that everyone keeps saying Canadians aren’t innovative. Fair enough. So, how does adding another government programme change that? As far as I can tell, most of the incentives that were created have simply encouraged people to game the system, which is what you might expect from people who aren’t innovative.

I think one of the questions that should have been asked is, how do you encourage the behaviour, in this case a cultural shift towards innovation, you want when your programmes haven’t elicited that behaviour?

Something else I’d suggest, let’s not confine the question(s) to the usual players as they’ll be inclined to offer more of the same. (There’s an old saying, if you’re a hammer, everything looks like a nail.)

Another aspect of making a cultural shift is modeling at least some of the behaviours. Here’s something what Dexter Johnson at the Nanoclast blog (IEEE Spectrum) noticed about US President Barack Obama’s January 2011 State of the Union address in his January 28, 2011 posting,

Earlier this week in the President’s State of the Union Address, a 16-year-old girl by the name Amy Chyao accompanied the First Lady at her seat.

No doubt Ms. Chyao’s presence was a bit of stage craft to underscore the future of America’s ingenuity and innovation because Ms. Chyao, who is still a high school junior, managed to synthesize a nanoparticle that when exposed to infrared light even when it is inside the body can be triggered like a bomb to kill cancer cells. [emphasis mine] Ms. Chyao performed her research and synthesis in the lab of Kenneth J. Balkus, Jr., a chemistry professor at the University of Texas at Dallas.

This is a remarkable achievement and even more so from someone still so young, so we would have to agree with Prof. Balkus’ assessment that “At some point in her future, she’ll be a star.”

However, Chyao was given to us as a shining example of the US potential for innovation, and, as a result, its competitiveness. So beyond stage craft, what is the assessment of innovation for the US in a time of emerging technologies such as nanotechnology? [emphasis mine]

As President Obama attempts to rally the nation with “This is our Sputnik moment”, Andrew Maynard over on his 20/20 blog tries to work out what innovation means in our current context as compared to what it meant 50 years ago at the dawn of the space race.

Notice the emphasis on innovation. Our US neighbours are as concerned as we are about this and what I find interesting is that there glimmers of a very different approach. Yes, Chyao’s presence was stagecraft but this kind of ‘symbolic communication’ can be incredibly important. I say ‘can’ because if it’s purely stagecraft then it will condemned as a cheap stunt but if they are able to mobilize ‘enough’ stories, programmes, education, etc. that support the notion of US ingenuity and innovation then you can see a cultural shift occur. [Perfection won’t be achieved; there will be failures. What you need are enough stories and successes.] Meanwhile, Canadians keep being told they’re not innovative and ‘we must do something’.

This US consultation may be more stagecraft but it shows that not all consultations have to be as thoroughly constrained as the Canadian one finishing today.  From Mike Masnick’s Feb. 9, 2011 posting (The White House Wants Advice On What’s Blocking American Innovation) on Techdirt,

The White House website kicked off a new feature this week, called Advise the Advisor, in which a senior staff member at the White House will post a YouTube video [there’s one in this posting on the Techdirt website] on a particular subject, asking the public to weigh in on that topic via a form. The very first such topic is one near and dear to our hearts: American Innovation. [emphasis mine] …

And here is the answer I provided:

Research on economic growth has shown time and time again the importance of basic innovation towards improving the standard of living of people around the world. Economist Paul Romer’s landmark research into innovation highlighted the key factor in economic growth is increasing the spread of ideas.

Traditionally, many people have considered the patent system to be a key driver for innovation, but, over the last few decades, research has repeatedly suggested that this is not the case. In fact, patents more frequently act as a hindrance to innovation rather than as a help to it. Recent research by James Bessen & Michael Meurer (reviewing dozens of patent studies) found that the costs of patents far outweigh the benefits.

This is a problem I see daily as the founder of a startup in Silicon Valley — often considered one of the most innovative places on earth. Patents are not seen as an incentive to innovation at all. Here, patents are simply feared. The fear is that anyone doing something innovative will be sued out of nowhere by someone with a broad patent. A single patent lawsuit can cost millions of dollars and can waste tons of resources that could have gone towards actual innovation. Firms in Silicon Valley tend to get patents solely for defensive purposes.

Getting back to Dexter, there is one other aspect of his comments that should be considered, the emphasis on ’emerging technologies’. The circumstances in which we currently find ourselves are hugely different than they were during the Industrial revolution, the arrival of plastics and pesticides, etc. We understand our science and technology and their impacts quite differently than we did even a generation ago and that requires a different approach to innovation than the ones we’ve used in the past. From Andrew Maynard’s Jan. 25, 2011 posting (2020 Science blog),

… if technology innovation is as important as Obama (and many others besides) believes it is, how do we develop the twenty first century understanding, tools and institutions to take full advantage of it?

One thing that is clear is that in connecting innovation to action, we will need new insights and “intelligence” on how to make this connection work in today’s world. These will need to address not only the process of technology innovation, but also how we develop and use it within an increasingly connected society, where more people have greater influence over what works – and what doesn’t – than ever before. This was the crux of a proposal coming out of the World Economic Forum Global Redesign Agenda earlier this year, which outlined the need for a new Global Center for Emerging Technologies Intelligence.

But beyond the need for new institutions, there is also the need for far more integrated approaches to building a sustainable future through technology innovation – getting away from the concept of technology innovation as something that is somebody else’s business, and making it everybody’s business. This was a central theme in the World Economic Forum report that Tim Harper of CIENTIFICA Ltd. and I published last week.

There’s a lot more to be said about the topic. Masnick did get a response of sorts to his submission about US innovation (from his Feb. 17, 2011 posting on Techdirt),

Tony was the first of a bunch of you to send over the news that President Obama’s top advisor, David Plouffe, has put up a blog post providing a preliminary overview of what he “heard” via the Ask the Advisor question, which we wrote about last week, concerning “obstacles to innovation.” The only indication that responses like mine were read was a brief mention about how some people complained about how the government, and particularly patent policy, got in the way of innovation:

Many respondents felt that too much government regulation stifled businesses and innovators and that the patent process and intellectual property laws are broken.

Unfortunately, rather than listening to why today’s patent system is a real and significant problem, it appears that Plouffe is using this to score political points for his boss …

Masnick hasn’t lost hope as he goes on to note in his posting.

For yet another perspective, I found Europeans weighed in on the innovation topic at the American Association for the Advancement of Science (AAAS) 2011 annual meeting this morning (Feb. 18, 2011). From a Government of Canada science blog (http://blogs.science.gc.ca/) posting, Mobilizing resources for research and innovation: the EU model, by Helen Murphy,

EU Commission Director-General of the Joint Research Centre Robert-Jan Smits spoke about what all countries agree on: that research and innovation are essential to prosperity — not just now, but even more so in the future.

He said European leaders are voicing the same message as President Obama, who in his recent State of the Union address linked innovation to “winning the future” — something he called the “Sputnik movement of our generation.”

Smits talked about the challenge of getting agreement among the EU’s 27 member countries on a growth strategy. But they have agreed; they’ve agreed to pursue growth that is smart (putting research and innovation at centre stage), sustainable (using resources efficiently and responsibly) and inclusive (leaving no one behind and creating new jobs).

The goal is ambitious: the EU aims to create nearly four million new jobs in Europe and increase the EU’s GDP by 700 billion Euros by 2025.

What I’m trying to say is that innovation is a big conversation and I hope that the expert panel for Canada’s current consultation on this matter will go beyond its terms reference to suggest that ‘housecleaning and tweaking’ should be part of a larger initiative that includes using a little imagination.