Tag Archives: Yongfeng Lu

More on the blue tarantula noniridescent photonics

Covered in an Oct. 19, 2016 posting here, some new details have been released about noniridescent photonics and blue tarantulas, this time from the Karlsruhe Institute of Technology (KIT) in a Nov. 17, 2016 (?) press release (also on EurekAlert; h/t Nanowerk Nov. 17, 2016 news item) ,

Colors are produced in a variety of ways. The best known colors are pigments. However, the very bright colors of the blue tarantula or peacock feathers do not result from pigments, but from nanostructures that cause the reflected light waves to overlap. This produces extraordinarily dynamic color effects. Scientists from Karlsruhe Institute of Technology (KIT), in cooperation with international colleagues, have now succeeded in replicating nanostructures that generate the same color irrespective of the viewing angle. DOI: 10.1002/adom.201600599

In contrast to pigments, structural colors are non-toxic, more vibrant and durable. In industrial production, however, they have the drawback of being strongly iridescent, which means that the color perceived depends on the viewing angle. An example is the rear side of a CD. Hence, such colors cannot be used for all applications. Bright colors of animals, by contrast, are often independent of the angle of view. Feathers of the kingfisher always appear blue, no matter from which angle we look. The reason lies in the nanostructures: While regular structures are iridescent, amorphous or irregular structures always produce the same color. Yet, industry can only produce regular nanostructures in an economically efficient way.

Radwanul Hasan Siddique, researcher at KIT in collaboration with scientists from USA and Belgium has now discovered that the blue tarantula does not exhibit iridescence in spite of periodic structures on its hairs. First, their study revealed that the hairs are multi-layered, flower-like structure. Then, the researchers analyzed its reflection behavior with the help of computer simulations. In parallel, they built models of these structures using nano-3D printers and optimized the models with the help of the simulations. In the end, they produced a flower-like structure that generates the same color over a viewing angle of 160 degrees. This is the largest viewing angle of any synthetic structural color reached so far.


Flower-shaped nanostructures generate the color of the blue tarantula. (Graphics: Bill Hsiung, University of Akron)

 


The 3D print of the optimized flower structure is only 15 µm in dimension. A human hair is about three times as thick. (Photo: Bill Hsiung, Universtiy of Akron)

Apart from the multi-layered structure and rotational symmetry, it is the hierarchical structure from micro to nano that ensures homogeneous reflection intensity and prevents color changes.

Via the size of the “flower,” the resulting color can be adjusted, which makes this coloring method interesting for industry. “This could be a key first step towards a future where structural colorants replace the toxic pigments currently used in textile, packaging, and cosmetic industries,” says Radwanul Hasan Siddique of KIT’s Institute of Microstructure Technology, who now works at the California Institute of Technology. He considers short-term application in textile industry feasible.


The synthetically generated flower structure inspired by the blue tarantula reflects light in the same color over a viewing angle of 160 degrees. (Graphics: Derek Miller)  

Dr. Hendrik Hölscher thinks that the scalability of nano-3D printing is the biggest challenge on the way towards industrial use. Only few companies in the world are able to produce such prints. In his opinion, however, rapid development in this field will certainly solve this problem in the near future.

Once again, here’s a link to and a citation for the paper,

Tarantula-Inspired Noniridescent Photonics with Long-Range Order by Bor-Kai Hsiung, Radwanul Hasan Siddique, Lijia Jiang, Ying Liu, Yongfeng Lu, Matthew D. Shawkey, and Todd A. Blackledge. Advanced Materials DOI: 10.1002/adom.201600599 Version of Record online: 11 OCT 2016

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

The paper is behind a paywall. You can see the original Oct. 19, 2016 posting for my comments and some excerpts from the paper.

Noniridescent photonics inspired by tarantulas

Last year, I was quite taken with a structural colour story centering on tarantulas which was featured in my Dec. 7, 2015 posting.

Cobalt Blue Tarantula [downloaded from http://www.tarantulaguide.com/tarantula-pictures/cobalt-blue-tarantula-4/]

Cobalt Blue Tarantula [downloaded from http://www.tarantulaguide.com/tarantula-pictures/cobalt-blue-tarantula-4/]

On Oct. 17, 2016 I was delighted to receive an email with the latest work from the same team who this time around crowdfunded resources to complete their research. Before moving on to the paper, here’s more from the team’s crowdfunder on Experiment was titled “The Development of Non-iridescent Structurally Colored Material Inspired by Tarantula Hairs,”

Many vibrant colors in nature are produced by nanostructures rather than pigments. But their application is limited by iridescence – changing hue and brightness with viewing angles. This project aims to mimic the nanostructures that tarantulas use to produce bright, non-iridescent blue colors to inspire next-generation, energy efficient, wide-angle color displays. Moreover, one day non-iridescent structural colorants may replace costly and toxic pigments and dyes.

What is the context of this research?

We recently discovered that some tarantulas produce vivid blue colors using unique nanostructures not found in other blue organisms like birds and Morpho butterflies. We described a number of different nanostructures that help explain how blue color evolved at least eight times within tarantulas. These colors are also remarkably non-iridescent so that they stay bright blue even at wide viewing angles, unlike the “flashy” structural colors seen in many birds and butterflies. We hypothesize that although the hue is produced by multilayer nanostructure, it is the hierarchical morphology of the hairs controls iridescence. We would like to validate our results from preliminary optical simulations by making nano-3D printed physical prototypes with and without key features of the tarantula hairs.

What is the significance of this project?

While iridescence can make a flashy signal to a mating bird or butterfly, it isn’t so useful in optical technology. This limits the application of structural colors in human contexts, even though they can be more vibrant and resist fading better than traditional pigment-based colors. For example, despite being energy efficient and viewable in direct sunlight, this butterfly-inspired color display, that utilizes principles of structural colors, has never made it into the mainstream because iridescence limits its viewing angle. We believe this limitation could be overcome using tarantula-inspired nanostructures that could be mass-produced in an economically viable way through top-down approaches. Those nanostructures may even be used to replace pigments and dyes someday!

What are the goals of the project?

We have designed five models that vary in complexity, incorporating successively more details of real tarantula hairs. We would like to fabricate those five designs by 3D nano-printing, so that we can test our hypothesis experimentally and determine which features produce blue and which remove iridescence. We’ll start making those designs as soon as we reach our goal and the project is fully funded. Once these designs are made, we will compare the angle-dependency of the colors produced by each design through angle-resolved reflectance spectrometry. We’ll also compare them visually through photography by taking series of shots from different angles similar to Fig. S4. Through those steps, we’ll be able to identify how each feature of the complex nanostructure contributes to color.

Budget
Ultra-high resolution (nano-scale) 3D printing
$6,000
To fund nano 3D printing completely
$1,700

This project has been designed using Biomimicry Thinking, and is a follow-up to our published, well-received tarantula research. In order to test our hypothesis, we are planning to use Photonic Professional GT by nanoscribe to fabricate tarantula hair-inspired prototypes by 3D printing nanostructures within millimeter sized swatches. To be able to 3D print nanostructures across these relatively large-sized swatches is critical to the success of our project. Currently, there’s no widely-accessible technology out there that meets our needs other than Photonic Professional GT. However, the estimated cost just for 3D printing those nanostructures alone is $20,000. So far, we have successfully raised and allocated $13,000 of research funds through conventional means, but we are still $7,000 short. Initial trial of our most complex prototype was a success. Therefore, we’re here, seeking your help. Please help us make this nano fabrication happen, and make this project a success! Thank you!

The researchers managed to raise $7, 708.00 in total, making this paper possible,

Tarantula-Inspired Noniridescent Photonics with Long-Range Order by Bor-Kai Hsiung, Radwanul Hasan Siddique, Lijia Jiang, Ying Liu, Yongfeng Lu, Matthew D. Shawkey, and Todd A. Blackledge. Advanced Materials DOI: 10.1002/adom.201600599 Version of Record online: 11 OCT 2016

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall but I did manage to get my hands on a copy. So here are a few highlights from the paper,

Pigment-based colorants are used for applications ranging from textiles to packaging to cosmetics.[1] However, structural-based alternatives can be more vibrant, durable, and eco-friendly relative to pigmentary colors.[2] Moreover, optical nanostructures are highly tunable, they can achieve a full color gamut by slight alterations to spacing.[3] However, light interference and/or diffraction from most photonic structures results in iridescence,[4] which limits their broader applications. Iridescent colors that change hue when viewed from different directions are useful for niche markets, such as security and anticounterfeiting, {emphasis mine} [5] but are not desirable for most applications, such as paints, coatings, electronic displays, and apparels. Hence, fabricating a photonic structure that minimizes iridescence is a key step to unlocking the potential applications of structural colors.

Noniridescent structural colors in nature are produced by coherent scattering of light by quasi-ordered, amorphous photonic structures (i.e., photonic glass),[6–10] or photonic polycrystals [9,11–14] that possess only short-range order. Iridescence is thought to be a fundamental component of photonic structures with long-range order, such as multilayers.[4] However, the complexity of short-range order photonic structures prohibits their design and fabrication using top-down approaches while bottom-up synthesis using colloidal suspension[15,16] or self-assembly[17–20] lack the tight controls over the spatial and temporal scales needed for industrial mass production. Photonic structures with long-range order are easier to model mathematically. Hence, long-range order photonic structures are intrinsically suitable for top-down fabrication, where precise feature placement and scalability can be guaranteed.

Recently, we found blue color produced by multilayer interference on specialized hairs from two species of blue tarantulas (Poecilotheria metallica (Figure 1a,b) and Lampropelma violaceopes) that was largely angle independent.[21] We hypothesize that the iridescent effects of the multilayer are reduced by hierarchical structuring of the hairs. Specifically, the hairs have: (1) high degrees of rotational symmetry, (2) hierarchy—with subcylindrical multilayers surrounding a larger, overarching multilayer cylinder, and (3) nanoscale surface grooves. Because all of these structures co-occur on the tarantulas, it is impossible to decouple them simply by observing nature. Here, we use optical simulation and nano-3D rapid prototyping to demonstrate that introducing design features seen in these tarantulas onto a multilayer photonic structure nearly eliminates iridescence. As far as we are aware, this is the first known example of a noniridescent structural color produced by a photonic structure with both short and long-range order. This opens up an array of new possibilities for photonic structure design and fabrication to produce noniridescent structural colors and is a key first step to achieving economically viable solutions for mass production of noniridescent structural color.  … (p. 1 PDF)

There is a Canadian security and anti-counterfeiting company (Nanotech Security Corp.), inspired by the Morpho butterfly and its iridescent blue, which got its start in Bozena Kaminska’s laboratory at Simon Fraser University (Vancouver, Canada).

Getting back to the paper, after a few twists and turns, they conclude with this,

This approach of producing noniridescent structural colors using photonic structures with long-range order (i.e., modified multilayer) has, to our knowledge, not been explored previously. Our findings reaffirm the value of using nature and the biomimetic process as a tool for innovation and our approach also may help to overcome the current inability of colloidal self-assembly to achieve pure noniridescent structural red due to single-particle scattering and/or multiple scattering.[25] As a result, our research provides a new and easy way for designing structural colorants with customizable hues (see Figure S6, Supporting Information, as one of the potential examples) and iridescent effects to satisfy the needs of different applications. While nano-3D printing of these nanostructures is not viable for mass production, it does identify the key features that are necessary for top-down fabrication. With promising nanofabrication techniques, such as preform drawing[26]—a generally scalable methodology that has been demonstrated for fabricating particles with complex internal architectures and continuously tunable diameters down to nanometer scale[27] – it is possible to mass produce these “designer structural colorants” in an economically viable manner. Our discovery of how to produce noniridescent structural colors using long-range order may therefore lead to a more sustainable future that does not rely upon toxic and wasteful synthetic pigments and dyes. (p. 5)

I’m glad to have gotten caught up with the work. Thank you, Bor-Kai Hsiung.

Picture still not worth 1000 words but here are the 2011 International Science and Engineering Visualization Challenge winners

About this time last year I wrote an impassioned piece on the importance of words (Feb. 22, 2012 posting) while making note of the 2010 International Science and Engineering Visualization Challenge winners. For the record, I haven’t changed my mind about the importance of either words or visuals; I still don’t believe that there’s a one size fits all approach to communicating about anything let alone science. (I have had more than one convo with graphic designers who bring up that ‘picture worth …’ as they explain why my words on the page are in a four-point font [I exaggerate but only mildly], so this protest was based on previous bad experiences rather than any hostility towards the Challenge.)

Science magazine (published by the American Association for the Advancement of Science [AAAS]) announced the winners for the 2011 International Science and Engineering Visualization Challenge today. Tomorrow, Science will feature the winning entries in its Feb. 3,  2012 issue. From the Feb. 2, 2012 news release on EurekAlert,

The international competition, currently in its ninth year, honors recipients who use visual media to promote understanding of scientific research. The criteria for judging the 212 entries, from 33 countries, included visual impact, effective communication, freshness and originality.

Here’s a brief description of the some of the winning entries,

Solve the Protein Puzzle: A multiplayer online computer game puzzle, called “Foldit,” that allows users to bend and fold amino acids into realistic proteins and solve the problem of protein folding was developed by Seth Cooper of the University of Washington, Seattle and his team.

“We strove to make the visualizations in folding both fun to look at and informative about where there are problems with the protein that players might be able to fix,” said Cooper, a first-place winner in the Interactive Games category. “We tried to make the visualizations clear and approachable, so the game can be played by people who don’t have a scientific background.”

View a Cell in 3D: The movie “Rapid Visual Inventory & Comparison of Complex 3D Structures” depicts a novel three-dimensional model view of a whole cell in minute detail and helps biologists better understand complex visual data for a general audience. The video was selected as the first-place Video category winner by the judges as well as the People’s Choice.

“Morphing the cell from the complicated native model to the simplified version and back gets general audiences excited about the subject matter and reminds even expert audiences of the complex interplay of randomness and specific interaction that enables life to exist,” said winning animator Graham T. Johnson of the Scripps Research Institute in San Diego, California, and now at the University of California San Francisco.

See the Beauty of a Mouse’s Eye: The first-place photograph, “Metabolomic Eye,” is a metabolic snapshot of the diversity of cells in a mouse eye retina, derived from a technique called computational molecular phenotyping (CMP), explained neuroscientist Bryan William Jones of the University of Utah’s Moran Eye Center in Salt Lake City. The image shows a unique view of normal tissue functioning and reveals complex metabolic signals while preserving the anatomical context of a tissue, added Jones.

Build a Human Body: “Build-a-Body is a great way to virtually learn about human anatomy,” said game designer Jeremy Friedberg of Spongelab Interactive about his educational science game, which won an Honorable Mention, that allows users to use drag and drop tools to learn about organs of the human body. “Our free, open platform fosters a global science community by stitching together educational content, teaching tools and powerful data surrounding class and student performance.”

Since I try to focus on nanotechnology for this blog, here’s a carbon nanotube image that won an honourable mention in this year’s competition in the illustration category,

Variable-diameter carbon nanotubes This 3-D illustration shows the production of variable-diameter carbon nanotubes. University of Nebraska-Lincoln electrical engineering professor, Dr. Yongfeng Lu, discovered laser-based production techniques that can precisely control the length, diameter and properties of carbon nanotubes. Using these highly electrically and thermally conductive nanotubes, Lu’s team developed methods to improve transistors and sensors that may one day speed up computers and other electrical devices, while minimizing energy consumption and heat generation. They also discovered how to control a carbon nanotube’s diameter from one end to the other, which alters its characteristics. Lu envisions variable-diameter nanotubes customized for specific uses. This 3-D illustration was developed to help Dr. Lu’s team to visualize these nano-scale discoveries for diverse audiences. [Image courtesy of Joel Brehm, University of Nebraska-Lincoln Office of Research and Economic Development

To me, they look like bowling pins made of pine cones.