Tag Archives: Yu Shuhong

A lotus root-inspired hydrogel fiber for surgical sutures

By FotoosRobin – originally posted to Flickr as Lotus root, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=4826529

The lotus (Nelumbo nucifera) rhizome (mass of roots) is not the prettiest part of the lotus but its fibers (and presumably fiber from other parts of the lotus plant) served as inspiration for a hydrogel that might be used as a surgical suture according to a Jan. 14, 2021 news item on phys.org (Note: Links have been removed),

“The lotus roots may break, but the fiber remains joined”—an old Chinese saying that reflects the unique structure and mechanical properties of the lotus fiber. The outstanding mechanical properties of lotus fibers can be attributed to their unique spiral structure, which provides an attractive model for biomimetic design of artificial fibers.

In a new study published in Nano Letters, a team led by Prof. Yu Shuhong from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) reported a bio-inspired lotus-fiber-mimetic spiral structure bacterial cellulose (BC) hydrogel fiber with high strength, high toughness, excellent biocompatibility, good stretchability, and high energy dissipation.

A Jan. 14, 2021 University of Science and Technology of China press release on the Chinese Academy of Sciences website (also on EurekAlert), which originated the news item, describes the new hydrogel in more detail,

Unlike polymer-based hydrogel, the newly designed biomimetic hydrogel fiber (BHF) is based on the BC hydrogel with 3D cellulose nanofiber networks produced by bacteria. The cellulose nanofibers provide the reversible hydrogen bonding network that results in unique mechanical properties.

The researchers applied a constant tangential force to the pretreated BC hydrogel along the cross-sectional direction. Then, the two sides of the hydrogel were subjected to opposite tangential forces, and local plastic deformation occurred.

The hydrogen bonds in the 3D network of cellulose nanofibers were broken by the tangential force, causing the hydrogel strip to twist spirally and the network to slip and deform. When the tangential force was removed, the hydrogen bonds reformed between the nanofibers, and the spiral structure of the fiber was fixed.

Benefited from lotus-fiber-mimetic spiral structure, the toughness of BHF can reach ?116.3 MJ m-3, which is more than nine times higher than those of non-spiralized BC hydrogel fiber. Besides, once the BHF is stretched, it is nearly non-resilient.

Combining outstanding mechanical properties with excellent biocompatibility derived from BC, BHF is a promising hydrogel fiber for biomedical material, especially for surgical suture, a commonly used structural biomedical material for wound repair.

Compared with commercial surgical suture with higher modulus, the BHF has similar modulus and strength to soft tissue, like skin. The outstanding stretchability and energy dissipation of BHF allow it to absorb energy from the tissue deformation around a wound and effectively protect the wound from rupture, which makes BHF an ideal surgical suture.

What’s more, the porous structure of BHF also allows it to adsorb functional small molecules, such as antibiotics or anti-inflammatory compounds, and sustainably release them on wounds. With an appropriate design, BHF would be a powerful platform for many medical applications.

Here’s a link to and a citation for the paper,

Bio-Inspired Lotus-Fiber-like Spiral Hydrogel Bacterial Cellulose Fibers by Qing-Fang Guan, Zi-Meng Han, YinBo Zhu, Wen-Long Xu, Huai-Bin Yang, Zhang-Chi Ling, Bei-Bei Yan, Kun-Peng Yang, Chong-Han Yin, HengAn Wu, and Shu-Hong Yu. Nano Lett. 2021, XXXX, XXX, XXX-XXX DOI: https://doi.org/10.1021/acs.nanolett.0c03707 Publication Date:January 5, 2021 Copyright © 2021 American Chemical Society

This paper is behind a paywall.

Bacterial cellulose nanofibers made strong and tough

Despite all the promise that nanocellulose offers, scientists don’t seem to have found significant applications for the material . In the software industry, they used to call it ‘a killer app’, i.e., an application everyone would start using (e.g. Facebook or Google) thereby making much money for its developer(s)..

This July 31, 2019 news item on phys.org describes research that may help scientists develop a nanocellulose ‘killer app’,

High-performance biomass-based nanocomposites are emerging as promising materials for future structural and functional applications due to their environmentally friendly, renewable and sustainable characteristics. Bio-sourced nanocelluloses [sic] (a kind of nanofibers [sic]) obtained from plants and bacterial fermentation are the most abundant raw materials on earth. They have attracted tremendous attention recently due to their attractive inherent merits including biodegradability, low density, thermal stability, global availability from renewable resources, as well as impressive mechanical properties. These features make them appropriate building blocks for spinning the next generation of advanced macrofibers for practical applications.

In past decades, various strategies have been pursued to gain cellulose-based macrofibers with improved strength and stiffness. However, nearly all of them have been achieved at the expense of elongation and toughness, because strength and toughness are always mutually exclusive for man-made structural materials. Therefore, this dilemma is quite common for previously reported cellulose-based macrofibers, which greatly limited their practical applications.

In a new article published in the National Science Review, Recently, a bionics research team led by Prof. Yu Shuhong from the University of Science and Technology of China (USTC) sought an inspiration to solve this problem from biological structures. …

A July 31, 2019 Science China Press news release on EurekAlert, which originated the news item, provides a few moretechnical details,

… They found that the widespread biosynthesized fibers, such as some plant fibers, spider silk and animal hairs, all have some similar features. They are both strong and tough, and have hierarchical helical structures across multiple length scales with stiff and strong nanoscale fibrous building blocks embedded in soft and energy dissipating matrices.

Inspired by these structural features in biosynthesized fibers, they presented a design strategy to make nanocellulose-based macrofibers with similar structural features. They used bacterial cellulose nanofibers as the strong and stiff building blocks, sodium alginate as the soft matrix. By combining a facile wet-spinning process with a subsequent multiple wet-twisting procedure, they successfully obtained biomimetic hierarchical helical nanocomposite macrofibers, and realized impressive improvement of their tensile strength, elongation and toughness simultaneously as expected.

This achievement certifies the validity of their bioinspired design and provides a potential route for further creating many other strong and tough nanocomposite fiber materials for diverse applications.

Here’s a link to and a citation for the paper,

Bioinspired hierarchical helical nanocomposite macrofibers based on bacterial cellulose nanofibers by Huai-Ling Gao, Ran Zhao, Chen Cui, Yin-Bo Zhu, Si-Ming Chen, Zhao Pan, Yu-Feng Meng, Shao-Meng Wen, Chuang Liu, Heng-An Wu, Shu-Hong Yu. National Science Review, nwz077, https://doi.org/10.1093/nsr/nwz077 Published: 21 June 2019

This paper appears to be open access.