Tag Archives: Zika virus

Happy Canada Day! Breakdancing at the 2024 Paris Summer Olympics: physics in action + heat, mosquitoes, and sports

Happy July 1, 2024, also known as, Canada Day!

Onto breakdancing (or breaking), which for the first time will be an official event at the 2024 Paris Summer Olympics. Amy Pope, principal lecturer, physics and astronomy, Clemson University (South Carolina, US), has written a June 12, 2024 essay for The Conversation that describes breakdancing as physics in action, (h/t June 13, 2024 news item in phys.org), Note: Links have been removed,

Two athletes square off for an intense dance battle. The DJ starts spinning tunes, and the athletes begin twisting, spinning and seemingly defying gravity, respectfully watching each other and taking turns showing off their skill.

The athletes converse through their movements, speaking through a dance that celebrates both athleticism and creativity. While the athletes probably aren’t consciously thinking about the physics behind their movements, these complex and mesmerizing dances demonstrate a variety of different scientific principles.

Breaking, also known as breakdancing, originated in the late 1970s in the New York City borough of the Bronx. Debuting as an Olympic sport in the 2024 Summer Olympics, breaking will showcase its dynamic moves on a global stage. This urban dance style combines hip-hop culture, acrobatic moves and expressive footwork.

Since its inception, breaking has evolved into a competitive art form. An MC narrates the movements, while a DJ mixes songs to create a dynamic atmosphere. The Olympics will feature two events: one for men, called B-boys, and one for women, called B-girls. In these events, athletes will face off in dance battles.

… Success in this sport requires combining dance moves from three basic categories: top rock, down rock and freeze.

And now for the physics of it all, from Pope’s June 12, 2024 essay, Note: Links have been removed,

Top rock moves [emphasis mine] are performed while standing up, focusing on fancy footwork and hand movements. These movements are reminiscent of hip-hop dancing.

Top rock moves rely on having lots of friction between an athlete’s shoes and the floor. Friction is the force [emphasis miine] that resists when you slide something across a surface.

This friction allows the athlete to take very quick steps and to stop abruptly. The dancers must intuitively understand inertia, or the fact that their bodies will continue in the direction they’re moving unless they are acted upon by an external force. To stop abruptly, athletes need to engage their muscles, getting their shoes to grip the ground to stop themselves from continuing forward.

Down rock moves [emphasis mine] are performed while on the floor. Athletes may spin in circles with their head, back, elbows or shoulders touching the ground and their feet in the air. B-boys and B-girls rely heavily on an internal knowledge of physics to complete these moves.

Consider the physics of a backspin. A backspin occurs when the athlete is on their back with their feet lifted in the air, rotating around a specific area of their back.

Sitting on the floor, the athlete’s left foot stays in contact with the floor while they spread their right leg wide, gathering linear momentum [emphasis mine] as they sweep their right leg toward their left foot in a wide arc. Then, they release their left leg from contact with the ground and roll onto their back.

Now that only their back is in contact with the ground, the linear momentum from their leg turns into angular momentum [emphasis mine], which rotates the athlete around an axis that extends upward from their back’s contact point with the ground. This move turns magical when they bring their legs and arms inward, toward the axis of rotation. This principal is called conservation of angular momentum.

When an athlete brings their mass in more closely to the axis of rotation, the athlete’s rotations speed up. Extending their legs and arms once again and moving their mass away from the axis of rotation will cause the competitor to slow their rotation speed down. Once they slow down, they can transition to another move.

Freeze [emphasis mine] occurs when athletes come to a stop in a funky pose, often occurring in time to the music and in an upside-down position. To freeze effectively, the athlete must have full control over their center of mass, placing it right above the point of their body that is in contact with the floor. The center of mass is the average position of all the parts of an athlete, weighted according to their masses. The “balance point” where the entire mass of the athlete seems to be concentrated is the center of mass.

Athletes are most stable when their center of mass is as close to the ground as possible. You will see many competitors freeze with arms bent in an effort to lower their center of mass. This lowered center of mass reduces their distance from the floor and minimizes the tendency of their body to rock to one side or the other due to torque.

Torque is a twisting force [emphasis mine], like the force used to turn a wrench. The torque depends on two things: the amount of force you apply, and how far from the pivot point you apply the force. With an athlete’s center of mass closer to the ground, the athlete decreases the distance between the pivot point – the ground – and where the force of gravity is applied – the athlete’s center of mass.

Athletes need great strength to halt their motion mid-movement because they have to apply a force to resist the change in inertia.

It’s not just about the moves, clothing is a factor, Pope’s June 12, 2024 essay,

Many sports require a specific uniform. Breaking doesn’t – an athlete can wear whatever they want – but the right outfit will maximize their chance of success.

The athlete wants a shirt that minimizes the friction between their body and the ground during a spin. Lettering or images on the back of the shirt will add friction, which hinders an athlete’s ability to perform some down rock moves. An athlete may choose to wear long sleeves if they plan to slide on their elbows, as bare skin in contact with the floor provides more friction.

Athletes also have to think about the headgear they wear. …

There’s a bit more information about the breakdancing competition on the 2024 Olympics website.I cannot find a full list of athletes for the August 9, 2024 (B-Girls) and August 10, 2024 (B-Boys) competitions. There is this June 2, 2024 article (from the Associated Press) on the CBC (Canadian Broadcasting Corporation) online news website,

Victor Montalvo (B-boy Victor), United States: A breaker who describes himself as a student of old school b-boys from the founding era of hip-hop, the 30-year-old Montalvo, who is from Kissimmee, Florida, qualified for Paris by besting all other b-boys at the 2023 WDSF World Breaking Championship in Belgium.

Sunny Choi (B-girl Sunny), United States: The 35-year-old Choi, a cheerful Queens, New York-bred breaker, has long been an ambassador for b-girls globally. She qualified for the Paris Games with her win at the 2023 Pan American Games in Chile.

Philip Kim (B-boy Phil Wizard), Vancouver, Canada: Consistently ranked in the top three b-boys in the international breaking competitive community, Kim secured a spot for Paris when he came out on top at last year’s Pan American Games.

Dominika Banevič (B-girl Nicka), Lithuania: Banevič was the youngest in her category at last year’s WDSF World Breaking Championship, when she punched her ticket to Paris. Banevič turns 17 this month.

I thought the competition would be dominated by Americans and certainly wasn’t expecting to see a Lithuanian (Dominika Banevič or ‘Nicka’) listed as a competitor to watch. The Canadian (Philip Kim or ‘Phil Wizard’) is also a surprise. Who knew Vancouver was home to a leading B-boy?

Two comments: heat and mosquitoes (dengue and other fevers)

The organizers of the Paris 2024 Summer Olympics are to be complimented for their work towards making the games ‘green’ but that is a complex process.

Heat

For example, the Canadian Broadcasting Corporation (CBC) ran a news item on The National news telecast on June 17, 2024 (see telecast for embedded video clip) regarding concerns about and preparations for heat,

Preparing for extreme heat at the Paris Olympics

Paris Olympic organizers plan to make this summer’s games the greenest ever, but that includes offering less air conditioning to cut down on energy use. [emphases mine] As temperatures rise globally, some suggest the organizers should take extreme heat into account when awarding cities with the next big Olympic games.

Some of the reporting in the CBC news item is based on information from a June 18, 2024 University of Portsmouth (UK) press release, Note: Links have been removed,

Leading athletes are warning that intense heat at the Paris Olympics in July-August 2024 could lead to competitors collapsing and in worst case scenarios dying during the Games. [emphasis mine]

Eleven Olympians, including winners of five World Championships and six Olympic medals, have come together with climate scientists and leading heat physiologists Professor Mike Tipton and Dr Jo Corbett from the University of Portsmouth to unpack the serious threat extreme heat poses for athletes in a new Rings of Fire report.

Dr Corbett, Associate Professor of Environmental Physiology in the School of Sport, Health and Exercise Science at the University of Portsmouth, said: “A warming planet will present an additional challenge to athletes, which can adversely impact on their performance and diminish the sporting spectacle of the Olympic Games,. Hotter conditions also increase the potential for heat illness amongst all individuals exposed to high thermal stress, including officials and spectators, as well as athletes.”

“For athletes, from smaller performance-impacting issues like sleep disruption and last-minute changes to event timings, to exacerbated health impacts and heat related stress and injury, the consequences can be varied and wide-ranging. With global temperatures continuing to rise, climate change should increasingly be viewed as an existential threat to sport,” said Lord Sebastian Coe, President of World Athletics and four-time Olympic medallist.

The Tokyo Games became known as the “hottest in history,” with temperatures exceeding 34°C and humidity reaching nearly 70 per cent, leading to severe health risks for competitors. The Paris Games have the potential to surpass that, with climate change driven by the burning of fossil fuels contributing to record heat streaks during the past months.

2023 was the hottest year on record according to the EU’s [European Union] Copernicus Climate Change Service and 2024 has continued this streak. April 2024 was warmer globally than any previous April in the record books, said experts at Copernicus.

The Rings of Fire report discusses the deadly heatwave in France in 2003 – which killed over 14,000 people – and subsequent years of record-breaking temperatures, exceeding 42°C. It underscores the heightened risk of extreme heat during the Paris Olympics, especially considering the significant rise in the region’s temperatures since the city last hosted the Games a century ago.

You can find the Rings of Fire report here and the Corpernicus Climate Change Service here.

Mosquitoes and dengue and other fevers

Obviously, the world is changing as you can see in this June 18, 2024 Institut Pasteur press release (also on EurekAlert),

Olympics: how many days does it take for mosquitoes in Greater Paris to transmit arboviruses, and what preventive measures are needed?

The number of imported cases of dengue in the Greater Paris region increased significantly in the first few months of 2024. In the run-up to the Olympic Games, with huge numbers of international visitors set to come to Paris – especially from endemic dengue countries –, we need to be vigilant. Scientists from the Institut Pasteur, in collaboration with the Regional Mosquito Control Agency (ARD) and the National Reference Center for Arboviruses (Inserm-Irba), have demonstrated that the tiger mosquito, now present in Greater Paris, is capable of transmitting five viruses (West Nile, chikungunya, Usutu, Zika and dengue) within different time frames ranging from 3 to 21 days, at an external temperature of 28°C. These results highlight the importance of stepping up surveillance of imported cases of arboviruses this summer. The study was published on May 16 [2024] in Eurosurveillance.

Between January 1 and April 19, 2024, 1,679 imported dengue cases were reported in mainland France, 13 times more than the number reported over the same period the previous year (source SPF). It is likely that this number will increase during the Olympic Games, as more people come to Paris from countries that are endemic regions for other arboviruses. The vector for dengue transmission is Aedes albopictus, more commonly known as the tiger mosquito. Arboviruses are transmitted when a female mosquito bites a virus carrier and ingests viral particles. One particular feature of arboviruses is that they can replicate in mosquitoes (unlike other viruses such as influenza, which are destroyed when ingested by mosquitoes). The viral particles multiply and spread within the mosquito, reaching the salivary glands in a few days. When the female mosquito bites another human, she injects the virus while taking her blood meal.

The tiger mosquito is now present in 78 départements in mainland France, and this together with other climate change-related factors is facilitating vector-borne transmission. Scientists from the Institut Pasteur’s Arboviruses and Insect Vectors Unit, in collaboration with the Regional Vector Control Agency (ARD) and the National Reference Center for Arboviruses (Inserm-Irba), therefore decided to analyze the ability of Aedes albopictus in Greater Paris to transmit five arboviruses at a temperature of 28°C, which is likely in the region at this time of year, and counted the number of days between initial infection and the possibility of the virus being transmitted through a further mosquito bite. As well as the dengue, chikungunya and Zika viruses, which we already know can be transmitted by the tiger mosquito, the scientists studied the Usutu and West Nile viruses, which are naturally transmitted by another mosquito species, Culex pipiens (known as the “common mosquito”). Culex pipiens mosquitoes transmit viruses to humans after feeding on birds, which act as viral reservoirs.

Tiger mosquito susceptible to five arboviruses

Working in a BSL3 laboratory, the scientists studied the ability of tiger mosquitoes to transmit these five viruses and determined the extrinsic incubation period required for the virus to reach the mosquito’s salivary glands in sufficient quantities to infect a human. At 28°C, West Nile virus needs three days before it can be transmitted to humans by mosquitoes. The incubation period is 3 to 7 days for chikungunya and Usutu, and 14 to 21 days for dengue and Zika.(1) 

This information is crucial to gage the additional risk represented by the upcoming Olympic Games in Paris, which will see significant intermingling of populations combined with the return of travelers from endemic regions and a season conducive to mosquito proliferation. The findings can also be used to develop suitable control strategies.

“If a case of dengue is detected in the Greater Paris region, we now know that disinsection is required within 21 days. We can use these results to adjust our time frame for action and optimize our approach,” explains Anna-Bella Failloux, Head of the Institut Pasteur’s Arboviruses and Insect Vectors Unit, who led the study. “Depending on the temperatures we experience in and around Paris this summer, our findings will be essential for adjusting control measures as needed.”

What precautions should be taken in the run-up to the Olympics?

Health care professionals are trained to detect the symptoms of arboviruses if people indicate that they have recently been to an endemic country. The difficulty of surveillance is that many cases are asymptomatic: although dengue is a notifiable disease, up to 80% of cases lead to few or no symptoms. If a diagnosis of one of these diseases is confirmed, an inquiry is carried out by France’s Regional Health Agencies to determine where the individuals live or spent time in the days before the diagnosis, so that they can identify the areas where disinsection is needed. Anyone coming back from a foreign trip who experiences fever or aches is advised to see their family physician immediately and indicate the region they recently returned from.

“The alert system in France is effective. The applicable procedure and measures are already well established because France’s overseas territories in endemic regions have provided us with expertise in these diseases and know-how on epidemiological monitoring. My team is affiliated with the Arbo-France network, and we are contacted as soon as an arbovirus is detected,” continues Anna-Bella Failloux.

Since 2006, vector control measures in France have led to increased surveillance of tiger mosquitoes between May 1 and November 30 each year. This involves monitoring mosquito populations in areas where they are likely to be present; disease surveillance coordinated by Santé publique France based on reporting of viruses such as dengue, chikungunya and Zika by health care professionals; and raising awareness among people living in areas where mosquitoes have been reported. France’s Regional Health Agencies (ARS) and their operators are responsible for managing reporting, monitoring the presence of mosquitoes and taking rapid action in response to human cases of infection (vector control).

This research, which focused on mosquitoes in the Greater Paris region for this first study, will soon be extended to the rest of mainland France. Extrinsic incubation periods vary from one tiger mosquito population to the next because of differences in their genetic makeup and in local temperatures. 

Find out more:

Video: “We are going to have to learn to live with tiger mosquitoes” – Anna-Bella Failloux

Disease-carrying mosquitoes – French Ministry of Employment, Health and Solidarity (sante.gouv.fr)

  1. It is important to point out that for Usutu and West Nile, the ability of tiger mosquitoes to transmit these viruses to humans in real-life conditions, outside the experimental setting, is yet to be demonstrated, as they are naturally transmitted by Culex pipiens, another mosquito species.

Here’s a link to and a citation for the paper,

Aedes albopictus is a competent vector of five arboviruses affecting human health, greater Paris, France, 2023 by Chloé Bohers, Marie Vazeille, Lydia Bernaoui, Luidji Pascalin, Kevin Meignan, Laurence Mousson, Georges Jakerian, Anaïs Karchh, Xavier de Lamballerie, Anna-Bella Failloux. Euro Surveill. 2024; 29 (20): pii=2400271. DOI: https://doi.org/10.2807/1560-7917.ES.2024.29.20.2400271

This paper is open access.

I covered the movement of dengue fever and malaria into the Northern Hemisphere in an August 10, 2023 posting,

The World Health Organization (WHO) notes that dengue fever cases have increased exponentially since 2000 (from the March 17, 2023 version of the WHO’s “Dengue and severe dengue” fact sheet),

Global burden

The incidence of dengue has grown dramatically around the world in recent decades, with cases reported to WHO increased from 505 430 cases in 2000 to 5.2 million in 2019. A vast majority of cases are asymptomatic or mild and self-managed, and hence the actual numbers of dengue cases are under-reported. Many cases are also misdiagnosed as other febrile illnesses (1).

One modelling estimate indicates 390 million dengue virus infections per year of which 96 million manifest clinically (2). Another study on the prevalence of dengue estimates that 3.9 billion people are at risk of infection with dengue viruses.

The disease is now endemic in more than 100 countries in the WHO Regions of Africa, the Americas, the Eastern Mediterranean, South-East Asia and the Western Pacific. The Americas, South-East Asia and Western Pacific regions are the most seriously affected, with Asia representing around 70% of the global disease burden.

Dengue is spreading to new areas including Europe, [emphasis mine] and explosive outbreaks are occurring. Local transmission was reported for the first time in France and Croatia in 2010 [emphasis mine] and imported cases were detected in 3 other European countries.

The researchers from the University of Central Florida (UCF) couldn’t have known when they began their project to study mosquito bites and disease that Florida would register its first malaria cases in 20 years this summer, …

It seems pretty clear that there’s increasing concern about mosquito-borne diseases no matter where you live.

It looks like mega-sports events attract more visitors than you might expect.

Combat yellow fever mosquito with carbon black nanoparticles?

This April 19, 2022 news item on Nanowerk announces mosquito research from Ohio State University (OSU), Note: A link has been removed,

Before being accidentally introduced to the New World by the 16th century slave trade, the yellow fever mosquito was a species native only to Africa. Highly adaptable, it has since become an invasive species in North America, but researchers at The Ohio State University may have found a way to squash the pesky population in its juvenile stages.

Recently published in the journal Insects (“Larvicidal Activity of Carbon Black against the Yellow Fever Mosquito Aedes aegypti”), a new paper describes how mosquitoes have evolved a natural resistance to some chemical insecticides, and offers an alternative called carbon black, a type of carbon-based nanoparticles, or CNPs [when it’s specifically carbon black nanoparticles, it may sometimes be abbreviated to CBNPs; more about that at the end of this post].

An April 18, 2022 OSU news release (also on EurekAlert), which originated the news item, describes the work in more detail,

Study co-author and an associate professor of entomology at Ohio State, Peter Piermarini described CNPs as “microscopic” materials made out of organic elements. The study used a modified version of carbon black called Emperor 1800, which is often used to coat automobiles black. While CNPs are a relatively new scientific development, they have been considered as new tools to control various insect and pest infestations, he said.

“If we can learn more about how carbon black works and how to use it safely, we could design a commercially available nanoparticle that is highly effective against insecticide-resistant mosquitoes,” Piermarini said.

The yellow fever mosquito, or Aedes aegypti, is a species of mosquito known for spreading not just yellow fever, but also diseases like the Zika virus, dengue fever and chikungunya fever. Adults rarely fly more than a few hundred meters from where they emerge, but their abundance leads to steady transmission of diseases – enough to claim tens of thousands of lives every year and hospitalize hundreds of thousands more people.

Because of this, the mosquito is considered to be one of the deadliest animals on the planet. For this study, the researchers’ goal was to figure out how toxic these nanomaterials could be to mosquito larvae, or the immature form of the insect.

Contrary to popular belief, not all mosquitoes set their sights on turning our blood into their latest meal. Male mosquitoes subsist only on flower nectar; it’s the females that will consume both flower nectar and blood in a bid to provide their eggs with enough protein to grow.

When female mosquitoes are ready to lay their eggs, they return to standing pools of water, like lakes or birdbaths, to release them. After they hatch, these larvae will stay in the water for about a week until they reach adulthood, and take wing.

To test whether Emperor 1800 would be effective in stopping that process, researchers worked with two different strains of the yellow fever mosquito inside the lab, one extremely susceptible to typical chemical insecticides, and the other, extremely resistant to them.

By applying the carbon black nanomaterials to the water during the earliest stages of the mosquito’s life cycle and checking in 48 hours later, they were able to determine that CNPs kill mosquito larvae both quickly and efficiently.

“Given the properties of carbon black, it has the most potential for killing larvae because it can be suspended in water,” Piermarini said. Their findings showed that the material seemed to accumulate on the mosquito larvae’s head, abdomen, and even in its gut, meaning that at some point, the larvae were ingesting smaller particles of carbon black.

“Our hypothesis is that these materials may be physically obstructing their ability to perform basic biological functions. It could be blocking their digestion, or might be interfering with their ability to breathe,” said Piermarini.

However, there was one thing that Piermarini found particularly surprising.

When first suspended in water, carbon black appeared equally toxic to larvae of insecticide-resistant and insecticide-susceptible mosquitoes, but the longer the carbon black was suspended in water before treating them. it became more toxic to the insecticide-resistant larvae.

“When you first apply the CNP solution it has similar toxicity against both strains,” Piermarini said. “But when you let the suspension age for a few weeks, it tends to become more potent against the resistant strain of mosquitoes.”

Although they couldn’t determine the reason behind the time-lapsed deaths, the study concluded that these new nanomaterials could be extremely beneficial to controlling the species when applied as a preventive treatment to mosquito breeding grounds.

But before it can be utilized by the public, Piermarini said, carbon black needs to undergo rigorous testing to ensure it won’t harm humans and the environment as a whole.

Co-authors were Erick Martinez Rodriguez, a visiting scholar currently in the Ohio State Entomology Graduate program, Parker Evans, a previous PhD student in the Ohio State Translational Plant Sciences Graduate program, and Megha Kalsi, a previous postdoctoral researcher in entomology. This research was supported by Ohio State’s College of Food, Agricultural, and Environmental Sciences and Vaylenx LLC.

Here’s a link to and a citation for the paper,

Larvicidal Activity of Carbon Black against the Yellow Fever Mosquito Aedes aegypti by Erick J. Martínez Rodríguez, Parker Evans, Megha Kalsi, Noah Rosenblatt, Morgan Stanley, and Peter M. Piermarini. Insects 2022, 13(3), 307 DOI: https://doi.org/10.3390/insects13030307 Published: 20 March 2022

The paper appears to be open access.

The naming of things

The nomenclature for carbon at the nanoscale is a little confusing to me. As best as I can determine all of the elements have multiple names at the nanoscale but it’s only with carbon that subcategories function as categories themselves. For example, fullerenes (C60s), single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), and mulit-walled carbon nanotubes (MWCNTs) are subcategories that stand on their own but, sometimes, are referred to as carbon nanoparticles, which is the main category. I checked carbon black nanoparticles online and found a number of instances where it was abbreviated to CBNP and it can also be a CNP since it is found under the carbon nanoparticle category as per this Wikipedia entry.

Spotting the difference between dengue and Zika infections with gold nanosensors

This July 29, 2020 news item on Nanowerk features research from Brazil,

A new class of nanosensor developed in Brazil could more accurately identify dengue and Zika infections, a task that is complicated by their genetic similarities and which can result in misdiagnosis.

The technique uses gold nanoparticles and can “observe” viruses at the atomic level, according to a study published in Scientific Reports (“Nanosensors based on LSPR are able to serologically differentiate dengue from Zika infections”).

Belonging to the Flavivirus genus in the Flaviviridae family, Zika and dengue viruses share more than 50 per cent similarity in their amino acid sequence. Both viruses are spread by mosquitos and can have long-term side effects. The Flaviviridae virus family was named after the yellow fever virus and comes from the Latin word for golden, or yellow, in colour.

“Diagnosing [dengue virus] infections is a high priority in countries affected by annual epidemics of dengue fever. The correct diagnostic is essential for patient managing and prognostic as there are no specific antiviral drugs to treat the infection,” the authors say.

More than 1.8 million people are suspected to have been infected with dengue so far this year in the Americas, with 4000 severe cases and almost 700 deaths, the Pan American Health Organization says. The annual global average is estimated to be between 100 million and 400 million dengue infections, according to the World Health Organization.

Flávio Fonseca, study co-author and researcher at the Federal University of Minas Gerais, tells SciDev.Net it is almost impossible to differentiate between dengue and Zika viruses.

“A serologic test that detects antibodies against dengue also captures Zika-generated antibodies. We call it cross-reactivity,” he says.

Meghie Rodrigues’ July 29, 2020 article for SciDev.net, which originated the news item, delves further into the work,

Co-author and virologist, Maurício Nogueira, tells SciDev.Net that avoiding cross-reactivity is crucial because “dengue is a disease that kills — and can do so quickly if the right diagnosis is not made. As for Zika, it offers risks for foetuses to develop microcephaly, and we can’t let pregnant women spend seven or eight months wondering whether they have the virus or not.”

There is also no specific antiviral treatment for Zika and the search for a vaccine is ongoing.

Virus differentiation is important to accurately measure the real impact of both diseases on public health. The most widely used blood test, the enzyme-linked immunosorbent assay (ELISA), is limited in its ability to tell the difference between the viruses, the authors say.

As dengue has four variations, known as serotypes, the team created four different nanoparticles and covered each of them with a different dengue protein. They applied ELISA serum and a blood sample. The researchers found that sample antibodies bound with the viruses’ proteins, changing the pattern of electrons on the gold nanoparticle surface.

Should you check out Rodrigues’ entire article, you might want to take some time to explore SciDev.net to find science news from countries that don’t often get the coverage they should.

Here’s a link to and a citation for the researchers’ paper,

Nanosensors based on LSPR are able to serologically differentiate dengue from Zika infections by Alice F. Versiani, Estefânia M. N. Martins, Lidia M. Andrade, Laura Cox, Glauco C. Pereira, Edel F. Barbosa-Stancioli, Mauricio L. Nogueira, Luiz O. Ladeira & Flávio G. da Fonseca. Scientific Reports volume 10, Article number: 11302 (2020) DOI: https://doi.org/10.1038/s41598-020-68357-9 Published: 09 July 2020

This paper is open access.

Nanotechnology-enabled dengue virus vaccine

Here’s news of work-in-progress for a dengue virus vaccine and, possibly, a Zika virus vaccine too. From a Nov. ??, 2016 University of North Carolina news release,

Scientists at the UNC School of Medicine are working to develop a nanoparticle vaccine to protect against the four serotypes of dengue virus, which infects more than 350 million people across the globe each year.

Aravinda de Silva, PhD, professor of microbiology and immunology, and a post-doctoral researcher Stefan Metz, PhD, recently published the latest on their vaccine development efforts in PLOS Neglected Tropical Diseases.

The nanoparticle platform was produced with PRINT (Particle Replication in Non-wetting Templates) technology. Joseph DeSimone, PhD, the Chancellor’s Eminent Professor of Chemistry and a joint professor in the Department of Pharmacology at UNC, developed PRINT, a nano-molding technique, in 2004.

Rather than using a killed or attenuated virus to develop a vaccine for dengue, de Silva’s lab is focusing on “expressing the E protein and attaching it to nanoparticles to induce good immune responses,” Metz said.

The nanoparticle vaccine platform can be safer to certain populations than vaccines that use either live or killed virus, he said.

One of the many complexities about developing a successful dengue vaccine, Metz explained, is that there are four serotypes of the virus, which means researchers need to develop a vaccine that provides immunity against all four serotypes.

“There are currently several vaccines in trial and development for dengue,” Metz said. “One vaccine has gone through all three clinical trial phases and has been licensed in some countries. Although these vaccines produce good antibody responses, a large part of the population still wasn’t protected from each of the serotypes.

“With dengue, you need to vaccinate people against all four serotypes at once in order to protect people. That’s why we’re combing the different serotypes.”

In their most recent study, de Silva and Metz focused their efforts on the second serotype. Now, they’re moving forward with the same studies for serotypes one, three and four.

“In the study, we express the E protein, which is found on the surface of the virus particle,” Metz explained. “This protein is organized in a very complex way, and this complex organization exposes isotopes that are important to induce protective immune response.”

De Silva and Metz were recently named to a global research consortium to tackle Zika, and they’re using the same nanoparticle vaccine platform as they work to develop a Zika vaccine.

“Globally, if you look at the numbers, dengue is still a much bigger problem than Zika,” Metz said, noting that an estimated 25,000 people die from dengue infections each year. “If you get dengue, you might not even notice it. If you do get clinical symptoms during a first infection of dengue, you might feel like you have a feverish flu. A lot of people don’t even know it because if you’re not feeling well for a couple days, you don’t necessarily think that it’s caused by a dengue virus infection.

“However, if you were infected by the first serotype and you had a secondary infection with a different serotype, that’s when the more severe diseases can come up – stress syndromes, hemorrhagic diseases – those can be fatal diseases,” Metz said. “There are thousands and thousands of people dying from those diseases each year.”

Here’s a link to and a citation for the paper,

Precisely Molded Nanoparticle Displaying DENV-E Proteins Induces Robust Serotype-Specific Neutralizing Antibody Responses by Stefan W. Metz, Shaomin Tian, Gabriel Hoekstra, Xianwen Yi, Michelle Stone, Katie Horvath, Michael J. Miley, Joseph DeSimone, Chris J. Luft, Aravinda M. de Silva. PLOS http://dx.doi.org/10.1371/journal.pntd.0005071  Published: October 20, 2016

This paper is open access.