Tag Archives: Zimbabwe

Zimbabwe’s plans for nanotechnology-enabled drug treatments for tuberculosis and HIV/AIDS

It’s a big gamble for a country that has a relatively small national budget but Zimbabwe is focusing a significant chunk of its science funding to nanotechnology-enabled drug treatments according to the Dec. 11, 2012 news article by Munyaradzi Makoni for scidev.net,

The Zimbabwean government has shown signs of embracing nanotechnology, earmarking it for extensive funding from the science ministry’s 2013 budget for new programmes.

According to Rungano Karimanzira, director of commercialisation of research and development at the ministry, 60 per cent of the new programme funding has been allocated to nanotechnology — a move announced with the unveiling of the national budget last month (16 November).

After years of political instability and international isolation, Zimbabwe now aims to revive science and use nanotechnology to research and produce drugs, particularly treatments for tuberculosis (TB) and HIV/AIDS.

Clive Mphambela’s Nov. 16, 2012 article for the Zimbabwe Independent (accessed Dec. 13, 2012 from The Zimbabwe Situation) describes the country’s 2013 budget and Zimbabwe’s economic situation,

FINANCE Minister Tendai Biti yesterday presented a paltry US$3,8 billion
“developmental budget”, describing it as the most difficult to construct in
the short life of the inclusive government.

Biti’s budget is smaller than South Africa’s retail chain supermarket group,
Pick n Pay whose average annual turnover is R55,3 billion (US$6,1 billion).

However, he said numerous downside risks, including potential political
instability, threatened his budget.

Biti said the multitude of challenges facing the economy required a
fundamental re-think of the state, economics and development in Zimbabwe.

“In this regard, the 2013 national budget seeks to offer leadership and
direction on the bold structural measures that must be taken to unleash
Zimbabwe’s growth potential in pursuit of the MTP’s [Medium Term Plan] vision of constructing a
modern democratic developmental state,” said Biti.

The Finance minister proposed a 15-point roadmap which would in the
short-term seek to reverse the current slow-down and refocus the economy on
a higher growth trajectory.

Even before the 2013 budget was announced, Zimbabwe’s national nanotechnology programme was making news (from the Makoni article),

The country’s first national nanotechnology programme was launched in October by science and technology development minister Heneri Dzinotyiwei during the opening of the Zimbabwe Nanotechnology Centre (ZINC) at the University of Zimbabwe in Harare.

Dzinotyiwei said the programme will focus on developing medicinal drugs, and will identify and undertake studies in nanomedicine geared towards bringing benefits to the entire country.

“We hope that we can ultimately dedicate around US$1 million to the nanotechnology programme,” he said.

ZINC and its nanomedicine-focused partnership with the University of Zimbabwe, the University of Buffalo and Chinhoyi University of Technology was mentioned here in a Sept. 24, 2012 posting.

Zimbabwe and its international nanotechnology center, ZINC

A Sept.24, 2012 news item on Nanowerk provides information about a new nanotechnology center in Zimbabwe,

With 14 percent of Zimbabwe’s population living with HIV/AIDS and tuberculosis as a co-infection, the need for new drugs and new formulations of available treatments is crucial.

To address these issues, two of the University at Buffalo’s [UB] leading research centers, the Institute for Lasers, Photonics and Biophotonics (ILPB), and the New York State Center of Excellence in Bioinformatics and Life Sciences have signed on to launch the Zimbabwe International Nanotechnology Center (ZINC) — a national nanotechnology research program — with the University of Zimbabwe (UZ) and the Chinhoyi University of Technology (CUT).

This collaborative program will initially focus on research in nanomedicine and biosensors at UZ and energy at CUT. ZINC has grown out of the NIH [US National Institute of Health] Fogarty International Center, AIDS International Training and Research Program (AITRP) that was awarded to UB and UZ in 2008 to conduct HIV research training and build research capacity in Zimbabwe and neighboring countries in southern Africa.

I decided to find out more about Zimbabwe and found a map and details in a Wikipedia essay,

Location of Zimbabwe within the African Union (accessed Sept. 24, 2012 from the Wikipedia essay on Zimbabwe)

Zimbabwe (… officially the Republic of Zimbabwe) is a landlocked country located in Southern Africa, between the Zambezi and Limpopo rivers. It is bordered by South Africa to the south, Botswana to the southwest, Zambia and a tip of Namibia to the northwest (making this area a quadripoint) and Mozambique to the east. The capital is Harare. Zimbabwe achieved recognised independence from Britain in April 1980, following a 14-year period as an unrecognised state under the predominantly white minority government of Rhodesia, which unilaterally declared independence in 1965. Rhodesia briefly reconstituted itself as black-majority ruled Zimbabwe Rhodesia in 1979, but this order failed to gain international acceptance.

Zimbabwe has three official languages: English, Shona and Ndebele.

Getting back to Zimbabwe, Alan on the Science Business website posted on Sept. 24, 2012 about ZINC and the partnership (excerpted from the posting),

University at Buffalo in New York and two universities in the southern African nation of Zimbabwe will collaborate on a new nanotechnology research program in pharmacology. University of Zimbabwe in Harare and the Chinhoyi University of Technology in Mashonaland West, working with Buffalo’s Institute for Lasers, Photonics, and Biophotonics, along with New York State Center of Excellence in Bioinformatics and Life Sciences also on the Buffalo campus, will establish the Zimbabwe International Nanotechnology Center (ZINC).

ZINC aims to develop an international research and training capability in nanotechnology that advances the field as contributor to Zimbabwe’s economic growth. The collaboration is expected to focus on research in nanomedicine and biosensors for health care at University of Zimbabwe, while the Chinhoyi University of Technology partnership will conduct research related to energy.

The University of Buffalo Sept. 24, 2012 news release provides more details,

The UB ILPB and TPRC [Translational Pharmacy Research Core] collaboration recognized that the fields of pharmacology and therapeutics have increasingly developed links with emerging areas within the field of nanosciences in an attempt to develop tissue/organ targeted strategies that will lead to disease treatment and eradication. Research teams will focus on emerging technologies, initially focused in nanobiotechnology and nanomedicine for health care.

“Developing nanoformulations for HIV and tuberculosis diagnostics and therapeutics, as well as new tuberculosis drug development, are just a few of the innovative strategies to address these co-infections that this research collaboration can provide,” said Morse [Gene D. Morse, PharmD, Professor of Pharmacy Practice, associate director of the New York State Center of Excellence in Bioinformatics and Life Sciences and director of the Translational Pharmacy Research Core {TPRC}].

“In addition, the development of new nanotechnology-related products will jumpstart the economy and foster new economic initiatives in Zimbabwe that will yield additional private-public partnerships.”

Morse says that the current plans for a “Center of Excellence” in clinical and translational pharmacology in Harare at UZ will create a central hub in Africa, not just for Zimbabwe but for other countries to gain new training and capacity building in many exciting aspects of nanotechnology as well.

Good luck to ZINC and its partners!

Nanotechnology in the developing world/global south

Sometimes it’s called the ‘developing world’, sometimes it’s called the ‘global south’ and there have been other names before these. In any event, the organization, Nanotechnology for Development (Nano-dev) has released a policy brief about nanotechnology and emerging economies (?). Before discussing the brief, I have found a little information on the organization. From the Nano-dev home page,

Nanotechnology for development is a research project that aims at understanding how nanotechnology can contribute to development. By investigating way people deal with nanotechnology in Kenya, India and the Netherlands, the project will flesh out appropriate ways for governing nanotechnology for development.

Nanotechnology is a label for technologies at the nano-scale, roughly between 1 and 100 nanometers. This is extremely small. By comparison, the diameter of one human hair is about 60,000 nanometers. At this scale materials acquire all sorts of new characteristics that can be used in a wide range of novel applications. This potentially includes cheaper and more efficient technologies that can benefit the world’s poor, such as cheap water filters, efficient solar powered electricity, and portable diagnostic tests.

The four team members on the Nano-dev project are (from the Project Team page):

Pankaj Sekhsaria’s project seeks to understand the cultures of innovation in nanotechnology research in India, particularly in laboratories. He has a Bachelors Degree in Mechanical Engineering from Pune University in India and a MA in Mass Communication from the Jamia Milia Islamia in New Delhi, India.

Trust Saidi’s research is on travelling nanotechnologies. He studied BSc in Geography and Environmental Studies at Zimbabwe Open University, BSc Honours in Geography at University of Zimbabwe, MSc in Public Policy and Human Development at Maastricht Graduate School of Governance, Maastricht University.

Charity Urama’s project investigates the role of knowledge brokerage in nanotechnology for development. She obtained her BSc Botany from the faculty of Biological Sciences, University of Nigeria, Nsukka and MSc from the school of Biological and Environmental Sciences, Faculty of Life sciences, University of Aberdeen (UK).

Koen Beumer focuses on the democratic risk governance of nanotechnologies for development. Koen Beumer studied Arts and Culture (BA) and Cultures of Arts, Science and Technology (MPhil, cum laude) at Maastricht University.

According to the April 4, 2012 news item on Nanowerk about the brief,

The key message of the policy brief is that nanotechnology can have both positive and negative consequences for countries in the global South. These should be pro-actively dealt with.

The positive consequences of nanotechnology include direct benefits in the form of solutions to the problems of the poor and indirect benefits in the form of economic growth. The negative consequences of nanotechnology include direct risks to human health and the environment and indirect risks such as a deepening of the global divide. Core challenges to harnessing nanotechnology for development include risk governance, cultures of innovation, knowledge brokerage and travelling technology.

What I found particularly interesting in the policy brief is the analysis of nanotechnology efforts in countries that are not usually mentioned  (from the policy brief),

There are large differences amongst countries in the global South. Some countries, like India, Egypt, Brazil and South Africa, have invested substantial sums of money through dedicated programs. Often these are large countries with emerging economies. Dedicated programs and strategies have been generated with strong political support.

In other countries in the global South things look different. Several African countries, like Nigeria, Kenya, Uganda and Zimbabwe have expressed their interest in nanotechnologies and some activities can indeed be observed. But generally this activity does not exceed the level of individual researchers and incidental funding. [p. 3]

In addition to the usual concerns expressed over human health, they mention this risk,

Furthermore, properties at the nano-scale may be used to imitate the properties of rare minerals, thus affecting the export rates of their main producers, usually countries in the global South. Nanotechnologies may thus have reverse effects on material demands and consequently on the export of raw materials by countries in the global South (Schummer 2007). [p. 3]

Interesting thought that nanotechnology research could pose a risk to the economic welfare of countries that rely on the export of raw materials. Canada, anyone? If you think about it, all the excitement over nanocellulose doesn’t have to be an economic boon for ‘forestry-based’ countries. If cellulose is the most abundant polymer on earth what’s stop other countries from using their own nanocellulose. After all, Brazilian researchers are working on nanocellulose fibres derived from pineapples and bananas (my Mar. 28, 2011 and June 16, 2011 postings).

One final thing from the April 4, 2012 news item on Nanowerk,

The NANO-DEV project is partnership of three research institutes led by Maastricht University, the Netherlands. Besides Maastricht University, it includes the University of Hyderabad (India) and the African Technology Policy Studies Network (Kenya).

About the BP oil spill, greening the desert, and using bicycle power to recharge your mobile

I found a couple more comments relating to the BP oil spill  in the Gulf. Pasco Phronesis offers this May 30, 2010 blog post, Cleaning With Old Technology, where the blogger, Dave Bruggeman, asks why there haven’t been any substantive improvements to the technology used for clean up,

The relatively ineffective measures have changed little since the last major Gulf of Mexico spill, the Ixtoc spill in 1979. While BP has solicited for other solutions to the problem (Ixtoc was eventually sealed with cement and relief wells after nine months), they appear to have been slow to use them.

It is a bit puzzling to me why extraction technology has improved but cleanup technology has not.

An excellent question.

I commented a while back (here) about another piece of nano reporting form Andrew Schneider. Since then, Dexter Johnson at Nanoclast has offered some additional thoughts (independent of reading Andrew Maynard’s 2020 Science post) about the Schneider report regarding ‘nanodispersants’ in the Gulf. From Dexter’s post,

Now as to the efficacy or dangers of the dispersant, I have to concur that it [nanodispersant] has not been tested. But it seems that the studies on the 118 oil-controlling products that have been approved for use by the EPA are lacking in some details as well. These chemicals were approved so long ago in some cases that the EPA has not been able to verify the accuracy of their toxicity data, and so far BP has dropped over a million gallons of this stuff into the Gulf.

Point well taken.

In the midst of this oil spill, it was good to come across a successful effort at regreening a desert. From the Fast Company article by Cliff Kuang,

Today, the Buckminster Fuller Institute announced the winner of its 2010 Challenge: Allan Savory, who has spent the last 50 years refining and evangelizing for a method of reversing desertification that he calls “holistic management.” The African Center for Holistic Management International, an NGO he helped found, will take home a $100,000 grant.

The Buckminster Fuller Challenge is meant to award big, sweeping solutions to seemingly intractable problems. …

… Savory’s prescription seems shockingly simple–and it’s taken him 50 years of work to convince others that he’s not crazy. The core of Holistic Management is simply grazing local livestock in super dense herds that mimic the grazing patterns of big-game (which have since disappeared). Those livestock in turn till the soil with their hooves and fertilize it with their dung–thus preparing the land for new vegetation in a cycle that was evolved over millions of years.

Savory works in Zimbabwe which is where the greatest success for this method is enjoyed but it has also been employed in the Rockies (between Montana, Wyoming, and Idaho Note: As a Canadian, I would not describe this area as the ‘northern Rockies’ as Kuang’s article does) and in the Australian outback.

… Savory’s African Center for Holistic Management has transformed 6,500 acres of land [in Zimbabwe]. There, even though livestock herds have increased by 400%, open water and fish have been found a half mile above where water had ever been known during dry season.

Bravo!

On a similar good news front, Nokia has announced a mobile phone charger that you can power up while riding your bicycle. From the Fast Company article by Addy Dugdale,

The Finnish firm’s [Nokia] Bicycle Charger Kit consists of a little bottle dynamo that you attach to the wheel of your bicycle to power up your phone as you pedal away. It comes with a phone holder that attaches to the handlebars using a hi-tech system composed of an elastic band and a plastic bag, in case of rain. Its price (in Kenya) is a little over $18 bucks, and it’s a wonder that no other phone manufacturer has thought of this before.

The Nokia Bicycle Charger Kit starts to work when you’re pedaling at just under 4mph and clicks off at 31mph. Hit 7.5mph and your bike will be charging your cell as quickly as a traditional charger would.

This reminds me a little of the projects where they try to create textiles that will harvest energy from your body that can be used to power mobile phones and other battery-powered devices that you carry around.