Tag Archives: L. Rafael Reif

MIT (Massachusetts Institute of Technology) signs agreement with Mexican university, Tecnológico de Monterrey

The deal signed by the Massachusetts Institute of Technology (MIT) and one of the largest universities in Latin America covers a five-year period and its initial focus is on nanoscience and nanotechnology. From a Nov. 3, 2014 news item on Azonano,

MIT has established a formal relationship with Tecnológico de Monterrey, one of Latin America’s largest universities, to bring students and faculty from Mexico to Cambridge [Massachusetts, US] for fellowships, internships, and research stays in MIT labs and centers. The agreement will initially focus on research at the frontier of nanoscience and nanotechnology.

An Oct. 31, 2014 MIT news release, which originated the news item, describes the deal and the longstanding relationship between the two institutions,

The agreement was celebrated today with a signing ceremony at MIT attended by a delegation from Tecnológico de Monterrey that included President Salvador Alva; the chairman of the board of trustees, José Antonio Fernández Carbajal; Mexico’s ambassador to the United States, Eduardo Medina Mora; and Daniel Hernández Joseph, the consul general of Mexico in Boston.

“We feel honored for the confidence that the MIT community has placed in us,” Alva says. “Our goal is to educate even more entrepreneurial leaders with the capacity and the motivation to solve humanity’s grand challenges. Leaders capable of creating and sustaining economic and social value. Leaders that will transform the lives of millions of people.”

The agreement sets the stage for increasing long-term cooperation and collaboration between the two universities with an initial academic program that will enable undergraduates, graduate students, postdocs, and junior faculty from Tecnológico de Monterrey to visit the MIT campus, where they will be embedded in labs and centers alongside MIT faculty and students. The participants will gain direct experience in disciplines and topics that match their interests. The program may change or expand its focus after five years.

“The goal for the first five years is to provide students and scholars from Tecnológico de Monterrey with a world-class research experience in nanoscience and nanotechnology and to accelerate research programs of critical importance to Mexico and the world,” says Jesús del Álamo, the Donner Professor of Electrical Engineering, who will coordinate the program at MIT. “And because faculty hosts of participants in the initial program will be recruited from any MIT academic department with relevant activities, we will be able to accommodate interests in nanoscale research over a very broad intellectual front.”

MIT is currently constructing a new facility, MIT.nano, that will be a key resource for future extensions of the program. The new 200,000-square-foot facility, which is being constructed on the site of Building 12 at the center of the MIT campus, will house state-of-the-art cleanroom, imaging, and prototyping facilities supporting research with nanoscale materials and processes — in fields including energy, health, life sciences, quantum sciences, electronics, and manufacturing.

In honor of the new relationship, the facility’s Computer-Aided Visualization Environment will be named after Tecnológico de Monterrey, says Vladimir Bulović, the Fariborz Maseeh Chair in Emerging Technology and faculty lead for the MIT.nano building project.

“When it is completed, MIT.nano will enable students and faculty from Tecnológico de Monterrey to learn and work in one of the most advanced facilities in the world and will give them invaluable experience at the forefront of innovation,” says Bulović, who is also the associate dean for innovation in MIT’s School of Engineering and co-chair of the MIT Innovation Initiative.

Tecnológico de Monterrey is one of the largest universities in Latin America, with nearly 100,000 high school, undergraduate, and graduate students; 31 campuses in Mexico; and 19 international locations and branches in the Americas, Europe, and Japan. This week’s agreement establishes a new relationship between MIT and Tecnológico de Monterrey, but the two institutions have a shared history.

Tecnológico de Monterrey was founded in 1943 by Eugenio Garza Sada, who graduated from MIT in 1914 with a degree in civil engineering. After studying at MIT, Garza Sada — with his brother, Roberto, who graduated from MIT in 1918 — grew his family’s brewery in Mexico into a company that today is known as FEMSA, the largest beverage company in Mexico and Latin America. Tecnológico de Monterrey’s founding director-general was León Ávalos Vez, a mechanical engineer from the MIT Class of 1929.

“We believe that both MIT and Tecnológico de Monterrey play a leadership role in shaping minds and creating knowledge, in serving as catalysts for innovation, entrepreneurship and economic growth, but they also have a responsibility to address the critical problems in the world,” says Fernández, the chairman of the board of trustees at Tecnológico de Monterrey. “This agreement will encourage the implementation of educational programs and accelerate research in nanotechnology in ways that will truly make a difference.”

The new program will commence next spring, with the first students and faculty targeted to come to MIT next summer [2015].

It’ll be interesting to note if this exchange ever reverses and MIT students start visiting Tecnológico de Monterrey campuses. It seems there’s a quite a selection with 31 in Mexico and 19 in various locations internationally.

MIT.nano: new nanotechnology research hub for 2018 and the Self-Assembly Lab

MIT (Massachusetts Institute of Technology) has released an unheard of (as far as I’m concerned) two announcements about a new building, MIT.nano. The shorter announcement mentions priorities (from an April 30, 2014 news item on Azonano),

“If you have your hands on the right tools,” says MIT President L. Rafael Reif, “we believe even big problems have answers.” And, he adds, “A state-of-the-art nano facility is the highest priority for MIT, because nanoscience and nanotechnology are omnipresent in innovation today.”

The longer announcement (from an April 30,2014 news item on Azonano) gives more details about the proposed building,

MIT.nano will house two interconnected floors of cleanroom laboratories containing fabrication spaces and materials growth laboratories, greatly expanding the Institute’s capacity for research involving components that are measured in billionths of a meter — a scale at which cleanliness is paramount, as even a single speck of dust vastly exceeds the nanoscale. The building will also include the “quietest” space on campus — a floor optimized for low vibration and minimal electromagnetic interference, dedicated to advanced imaging technologies — and a floor of teaching laboratory space. Finally, the facility will feature an innovative teaching and research space, known as a Computer-Aided Visualization Environment (CAVE), allowing high-resolution views of nanoscale features.

The longer announcement made in this April 30, 2014 MIT news release which provides more details about the building, the thinking that went into its location, and its special requirements,

The four-level MIT.nano will replace the existing Building 12, and will retain its number, occupying a space alongside the iconic Great Dome. It will be interconnected with neighboring buildings, and accessible from MIT’s Infinite Corridor — meaning, Bulović [electrical engineering professor Vladimir Bulović] says, that the new facility will be just a short walk from the numerous departments that will use its tools.

Users of the new facility, he adds, are expected to come from more than 150 research groups at MIT. They will include, for example, scientists who are working on methods to “print” parts of human organs for transplantation; who are creating superhydrophobic surfaces to boost power-plant efficiency; who work with nanofluids to design new means of locomotion for machines, or new methods for purifying water; who aim to transform the manufacturing of pharmaceuticals; and who are using nanotechnology to reduce the carbon footprint of concrete, the world’s most ubiquitous building material.

Cleanroom facilities, by their nature, are among the most energy-intensive buildings to operate: Enormous air-handling machinery is needed to keep their air filtered to an extraordinarily high standard. Travis Wanat, the senior project manager at MIT who is overseeing the MIT.nano project, explains that while ventilation systems for ordinary offices or classrooms are designed to exchange the air two to six times per hour, cleanroom ventilation typically requires a full exchange 250 times an hour. The fans and filters necessary to handle this volume of air require an entire dedicated floor above each floor of cleanrooms in MIT.nano.

But MIT.nano will incorporate many energy-saving features: Richard Amster, director of campus engineering and construction, has partnered with Julie Newman, MIT’s director of sustainability. Together, they are working within MIT, as well as with the design and contracting teams, “to develop the most efficient building possible for cleanroom research and imaging,” Amster says.

Toward that end, MIT.nano will use heat-recovery systems on the building’s exhaust vents. The building will also be able to sense the local cleanroom environment and adjust the need for air exchange, dramatically reducing MIT.nano’s energy consumption. Dozens of other features aim to improve the building’s efficiency and sustainability.

Despite MIT.nano’s central location, the floor devoted to advanced imaging technology will have “more quiet space than anywhere on campus,” Bulović says: The facility is situated as far as possible from the noise of city streets and subway and train lines that flank MIT’s campus.

Indeed, protection from these sources of noise and mechanical vibration dictated the building’s location, from among five campus sites that were considered. According to national standards on ambient vibration, Bulović says, parts of MIT.nano will rate two levels better than the standard typically used for such high-quality imaging spaces.

Another important goal of the building’s design — by Wilson Architects in Boston — is the creation of environments that foster interactions among users, including those from different disciplines. The building’s location at a major campus “crossroads,” its extensive use of glass walls that allow views into lab and cleanroom areas, and its soaring lobbies and other common areas are all intended to help foster such interactions.

“Nanoscale research is inherently interdisciplinary, and this building was designed to encourage collaboration,” Bulović says.

The choice of MIT.nano’s central location is not without compromise, Bulović says: There is very limited access to the construction site — only three access roads, each with limited headroom — so planning for the activities of construction and delivery vehicles, and for the demolition of the current Building 12 and construction of MIT.nano, will present a host of logistical challenges. “It’s like building a ship in a bottle,” Bulović says.

But addressing those challenges will ultimately be well worth it, he says, pointing out that an estimated one-quarter of MIT’s graduate students and 20 percent of its researchers will make use of the facility. The new building “signifies the centrality of nanotechnology and nanomanufacturing for the needs of the 21st century. It will be a key innovation hub for the campus.”

All current occupants of Building 12 will be relocated by June, when underground facilities work, to enable building construction, will commence; at that point, fences will be erected around the constriction zone. The existing Building 12 will be demolished in spring 2015 and construction of MIT.nano is slated to begin in summer 2015.

An April 25, 2014 news item on Nanowerk features an MIT researcher and research that seems ideally suited to this building initiative (Note: A link has been removed),

Skylar Tibbits … was constructing a massive museum installation with thousands of pieces when he had an epiphany. “Imagine yourself facing months on end assembling this thing, thinking there’s got to be a better way,” he says. A designer and architect, Tibbits was accustomed to modeling and fabricating his complex, architecturally sophisticated sculptures with computation. It suddenly struck him: “With all this information that was used to design the structure and communicate with fabrication machines, there’s got to be a way these parts can build themselves.”

This idea propelled Tibbits to enroll at MIT for dual master’s degrees in computer science, and design and computation — in pursuit of the idea, Tibbits says, “that you could program everything from bits, to atoms, and even large-scale structures.”

Today, Tibbits is breathing life into this vision. A research scientist in the Department of Architecture, and a TED2012 Senior Fellow, Tibbits has launched the Self-Assembly Lab at MIT, where like-minded engineers, scientists, designers, and architects transform commonplace materials into responsive, “smart” materials that can coalesce to form structures, all on their own. Deploying such novel techniques as 4-D printing in collaboration with Stratasys, a firm at the forefront of three-dimensional modeling, Tibbits is experimenting with new products and processes from nano to human scale. [emphasis mine]

An April 24, 2014 MIT news release expands on this “nano to human scale” research,

Although still in its infancy, Tibbits’s research might someday make a profound impact on building and construction. One project, called Logic Matter, encodes simple decision-making in a materials, using only that substance’s properties, shape, and geometry. Bricks, for instance, could be programmed to analyze their own loading conditions or orientation and might contain blueprints to build a wall or guide someone in the construction process. “We don’t have to change what we build with,” Tibbits says. “We take seemingly dumb materials and make them more responsive by combining them in elegant ways with geometry and activation energy.”

Natural processes — such as the replication of DNA, protein folding, and the growth of geometrically perfect crystals — inspired Tibbits. He knew these systems — which build complex structures extremely efficiently and can replicate and repair themselve — depend on a common formula: a simple sequence of instructions, programmable parts, energy, and some type of error correction. Mastering this recipe opens up a world of useful applications, Tibbits believes.

One illustrative project underway in Tibbits’s lab may lead to more resilient and efficient infrastructure. He is trying to program a type of peristalsis in water pipes, so they contract and relax like muscles. Unlike current pipes, which tend to break and require constant monitoring and energy input, Tibbits’s pipes can expand and shrink in response to changes in water volume, and could eventually undulate to abet flow. The goal is a “self-regulating system,” where pipes could even repair themselves in case of a puncture.

Self-assembling technologies may eventually help build space structures whose components deposit themselves in zero gravity environments without human intervention, and edifices that become more resilient in response to “noisy and potentially dangerous energies” from phenomena like earthquakes, hurricanes, and tsunamis, Tibbits says. These ideas may seem hard to believe, but “there are structures we can’t build today” that demand new approaches, Tibbits says. “We must ask where self-assembly can solve some of the world’s biggest challenges.”

I can’t resist the image MIT has provided,

Skylar Tibbits’s fluid crystallization project: Self-assembly holds the promise of breakthroughs in many fields. Photo: Len Rubenstein Courtesy: MIT

Skylar Tibbits’s fluid crystallization project: Self-assembly holds the promise of breakthroughs in many fields.
Photo: Len Rubenstein Courtesy: MIT

You can visit Tibbits’s MIT Self-Assembly Lab here.

EmTech México 2013

MIT (Massachusetts Institute of Technology) produces an annual emerging technologies conference (EmTech) on its own home ground of Cambridge, MA and also in India (mentioned in my Mar. 5, 2010 posting; scroll down 2/3 of the way), in China, in Spain (mentioned in my Oct. 28, 2011 posting; scroll down about 1/4 of the way) and, of particular interest to me, in México.

The ‘nanotechnology’ bombings in México in 2011 and in early 2013, mentioned most recently in my Mar. 14, 2013 posting, provide an interesting backdrop to the upcoming conference (EmTech México 29-30 mayo, 2013 • Ciudad de México).

The speaker list for the conference is, as expected, heavy with MIT faculty but it also boasts someone I’ve featured here from time to time, Tim Harper of Cientifica. Here’s the description they have for Tim (from the EmTech México speaker [biography] page),

Tim Harper es uno de los principales expertos en la comercialización de nanotecnología y de tecnologías emergentes. Le interesan además la biología sintética, la medicina regenerativa y la geoingeniería.

Harper es un emprendedor, inversor en tecnologías emergentes y asesor gubernamental en materia de estrategia tecnológica. Es fundador y CEO de Cientifica, la empresa más respetada a nivel mundial en materia de información nanotecnológica y pronósticos meteorológicos. Harper fue cofundador de la empresa Nanosight, donde desarrolló un innovador sistema de detección de nanopartículas.

Perteneció al  equipo de  ingenieros de la Agencia Espacial Europea en el centro de I+D en Norrdwijk (Países Bajos). Allí contribuyó decisivamente al lanzamiento del primer microscopio de fuerza atómica en el espacio, donde nunca se había analizado el polvo cósmico.

En 1999, Harper organizó en Sevilla (España) la primera conferencia del mundo sobre inversión en nanotecnología. Desde entonces dirige con éxito el World Nanoeconomic Congress en cuatro continentes. En el año 2002 fundó la European NanoBusiness Association, una sociedad sin ánimo de lucro cuyo objetivo es promover la competitividad europea en materia de nanotecnología.

I gather the conference will be held  in Spanish. My skills in this language are almost nonexistent but relying heavily on my poor French, here’s a rough translation of the first paragraph,

Tim Harper is an expert on the commercialization of nanotechnology and other emerging technologies. He also maintains a professional interest in the fields of synthetic biology, regenerative medicine, and geoengineering.

Here are a few of the other speakers listed on the EmTech México conference’s Ponentes page,

  • Jason Pontin, Director de MIT Technology Review
  • Mario Molina, Premio Nobel de Química (1995)
  • Niels Van Duinen, Director de Desarrollo de Negocio Internacional de Philips Lighting
  • Carlo Ratti, Director del grupo Senseable City Lab en el MIT
  • Marcelo Coelho, Diseñador e investigador del grupo Fluid Interfaces en el MIT Media Lab
  • Juan Pablo Puerta, Director de Ingenería, Etsy
  • Marisa Viveros, Vicepresidenta de Cyber Security Innovation de IBM

You can check out all of the Emtech conferences on this page.

One last note, MIT has its own baggage viz the recent suicide of Aaron Swartz. This essay on Wikipedia offers one of the more neutral descriptions. I’ve excerpted the introduction, (Note: Links and footnotes have been removed),

Aaron Hillel Swartz (November 8, 1986 – January 11, 2013) was an American computer programmer, writer, political organizer and Internet activist.

Swartz was involved in the development of the web feed format RSS,[ the organization Creative Commons,] the website framework web.py and the social news site Reddit, in which he was an equal partner after its merger with his Infogami company. Swartz also focused on sociology, civic awareness and activism. In 2010, he became a research fellow at Harvard University’s Edmond J. Safra Research Lab on Institutional Corruption, directed by Lawrence Lessig. He founded the online group Demand Progress, known for its campaign against the Stop Online Piracy Act.

On January 6, 2011, Swartz was arrested by MIT police on state breaking-and-entering charges, in connection with the systematic downloading of academic journal articles from JSTOR. Federal prosecutors eventually charged him with two counts of wire fraud and 11 violations of the Computer Fraud and Abuse Act, charges carrying a cumulative maximum penalty of $1 million in fines plus 35 years in prison, asset forfeiture, restitution and supervised release.

On January 11, 2013, two years after his initial arrest, Swartz was found dead in his Crown Heights, Brooklyn apartment, where he had hanged himself.

MIT president L. Rafael Reif has since ordered a review of MIT’s role in the tragedy noted in the Wikipedia essay and elsewhere. The essay on Aaron Swartz offers a fairly comprehensive overview of Swartz’s life and accomplishments, as well as, his legal situation and the circumstances surrounding his death.

A suicide is a complex event and it is not possible to hold any one person or institution to blame, tempting as it may be. Nonetheless, it must be said that it seems oddly dissonant that MIT which prides itself on its technological advancements  and membership in an elite, forward-thinking research community would be party to an action where prosecutors seemed more intent on punishment than on any principle of law relating to research and its dissemination. Whatever one thinks of Swartz’s actions, it is clear he was acting out of a spirit of civil disobedience (trying to set publicly funded research free).

In fact, the emerging technologies of yesteryear are have social impacts today such that the ways in which we view research and the scientific process are changing prompting questions such as ‘Who gets access to information and ideas?’ and, as  importantly, ‘When?’

I wonder if any of these events, the multiple bombings in México and MIT’s role in the Swartz case and suicide will have any sort of impact on this conference. I doubt it; there wasn’t a single philosopher on the speaker’s list.

Jason Pontin

Director de MIT Technology Review