Monthly Archives: October 2023

Nanobody could lead to treatment for retinitis pigmentosa (a condition that leads to blindness)

This is an image illustrating the work but you’ll probably need to read the news release to understand the explanation offered,

Caption: This image depicts the crystal structure of two nanobodies binding to a rhodopsin dimer. The rhodopsin molecules are shown in green and blue, with 11-cis-retinal displayed in red. The figure emphasizes the significant interactions between the nanobodies (represented in a semi-transparent surface cartoon) and the extracellular surface of rhodopsin, including its N-terminal glycans highlighted in orange.. Credit: UCI [University of California at Irvine] School of Medicine

The research from the University of California at Irvine (UCI) has been featured twice, in an August 31, 2023 news item on phys.org and again in a September 7, 2023 news item on ScienceDaily.

An August 29, 2023 UCI news release (also on EurekAlert but published Sept. 6, 2023), which originated the news items, provides information about RP and the nanobodies,

A team of scientists from the University of California, Irvine, believe they have discovered a special antibody which may lead to a treatment for Retinitis Pigmentosa, a condition that causes loss of central vision, as well as night and color vision. 

The study, Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain, was published in Nature Communications. Authors of the study were Arum Wu, PhD, David Salom, PhD, John D. Hong, Aleksander Tworak, PhD, Philip D. Kiser, PharmD, PhD, and Krzysztof Palczewski, PhD, in the Department of Ophthalmology, Gavin Herbert Eye Institute, at the University of California, Irvine. Research was conducted  in collaboration with Jan Steyaert, PhD, at the Vrije Universiteit Brussel (VUB).

Retinitis Pigmentosa (RP) is a group of inherited eye diseases that affect the retina in the back of the eye. It is caused by the death of cells that detect light signals, known as photoreceptor cells. There is no known cure for RP, and the development of new treatments for this condition relies on cell and gene therapies. 

UCI researchers have targeted their study on a specific molecule which they believe will provide a treatment for Rhodopsin-associated autosomal dominant RP (adRP). The molecule, Rhodopsin, is a key light-sensing molecule in the human retina. It is found in rod photoreceptor cells, and mutations in the Rhodopsin gene are a primary cause of adRP. 

“More than 150 mutations in rhodopsin can cause Retinitis Pigmentosa, making it challenging to develop targeted gene therapies,” said Krzysztof Palczewski, PhD, Donald Bren Professor, UCI School of Medicine. “However due to the high prevalence of RP, there has been significant investment in research and development efforts to find novel treatments.”

Although Rhodopsin has been studied for over a century, key details of its mechanism for converting light into a cellular signal have been difficult to experimentally address.

For this study, researchers used a special type of llama-derived antibody, known as a nanobody, that can halt the process of Rhodopsin photoactivation, allowing it to be investigated at high resolution. 

“Our team has developed nanobodies that work through a novel mechanism of action. These nanobodies have high specificity and can recognize the target rhodopsin extracellularly,” said David Salom , PhD, researcher and project scientist, UCI School of Medicine. “This enables us to lock this GPCR in a non-signaling state.” 

Scientists discovered that these nanobodies target an unexpected site on the Rhodopsin molecule, near the location where retinaldehyde binds. They also found that the stabilizing effect of these nanobodies can also be applied to Rhodopsin mutants that are associated with retinal disease, suggesting their use as therapeutics. 

“In the future, we hope to involve the in vitro evolution of these initial set of nanobodies,” said Arum Wu, PhD, researcher and project scientist, UCI School of Medicine. “We will also evaluate the safety and effectiveness of a future nanobody gene therapy for RP.”

Researchers hope to improve nanobodies’ ability to recognize Rhodopsin from other species including mice, for which several pre-clinical models of adRP are available. They also have plans to use these nanobodies to address a long-term goal in the field of structurally resolving the key intermediate states of Rhodopsin from the inactive state to the fully ligand-activated state.

Here’s a link to and a citation for the paper,

Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain by Arum Wu, David Salom, John D. Hong, Aleksander Tworak, Kohei Watanabe, Els Pardon, Jan Steyaert, Hideki Kandori, Kota Katayama, Philip D. Kiser & Krzysztof Palczewski. Nature Communications volume 14, Article number: 5209 (2023) DOI: https://doi.org/10.1038/s41467-023-40911-9 Published: 25 August 2023

This paper is open access.

Artificial intelligence (AI) with ability to look inward performs better

An August 31, 2022 news item on ScienceDaily highlights the power of an introspective AI,

An artificial intelligence with the ability to look inward and fine tune its own neural network performs better when it chooses diversity over lack of diversity, a new study finds. The resulting diverse neural networks were particularly effective at solving complex tasks.

“We created a test system with a non-human intelligence, an artificial intelligence (AI), to see if the AI would choose diversity over the lack of diversity and if its choice would improve the performance of the AI,” says William Ditto, professor of physics at North Carolina State University, director of NC State’s Nonlinear Artificial Intelligence Laboratory (NAIL) and co-corresponding author of the work. “The key was giving the AI the ability to look inward and learn how it learns.”

An August 31, 2023 North Carolina State University (NCSU) news release (also on EurekAlert), describes how an AI can become ‘introspective’ and employ neural ‘diversity’, Note: A link has been removed,

Neural networks are an advanced type of AI loosely based on the way that our brains work. Our natural neurons exchange electrical impulses according to the strengths of their connections. Artificial neural networks create similarly strong connections by adjusting numerical weights and biases during training sessions. For example, a neural network can be trained to identify photos of dogs by sifting through a large number of photos, making a guess about whether the photo is of a dog, seeing how far off it is and then adjusting its weights and biases until they are closer to reality.

Conventional AI uses neural networks to solve problems, but these networks are typically composed of large numbers of identical artificial neurons. The number and strength of connections between those identical neurons may change as it learns, but once the network is optimized, those static neurons are the network.

Ditto’s team, on the other hand, gave its AI the ability to choose the number, shape and connection strength between neurons in its neural network, creating sub-networks of different neuron types and connection strengths within the network as it learns.

“Our real brains have more than one type of neuron,” Ditto says. “So we gave our AI the ability to look inward and decide whether it needed to modify the composition of its neural network. Essentially, we gave it the control knob for its own brain. So it can solve the problem, look at the result, and change the type and mixture of artificial neurons until it finds the most advantageous one. It’s meta-learning for AI.

“Our AI could also decide between diverse or homogenous neurons,” Ditto says. “And we found that in every instance the AI chose diversity as a way to strengthen its performance.”

The team tested the AI’s accuracy by asking it to perform a standard numerical classifying exercise, and saw that its accuracy increased as the number of neurons and neuronal diversity increased. A standard, homogenous AI could identify the numbers with 57% accuracy, while the meta-learning, diverse AI was able to reach 70% accuracy.

According to Ditto, the diversity-based AI is up to 10 times more accurate than conventional AI in solving more complicated problems, such as predicting a pendulum’s swing or the motion of galaxies.

“We have shown that if you give an AI the ability to look inward and learn how it learns it will change its internal structure – the structure of its artificial neurons – to embrace diversity and improve its ability to learn and solve problems efficiently and more accurately,” Ditto says. “Indeed, we also observed that as the problems become more complex and chaotic the performance improves even more dramatically over an AI that does not embrace diversity.”

The research appears in Scientific Reports, and was supported by the Office of Naval Research (under grant N00014-16-1-3066) and by United Therapeutics. Former post-doctoral researcher Anshul Choudhary is first author. John Lindner, visiting professor and emeritus professor of physics at the College of Wooster, NC State graduate student Anil Radhakrishnan and Sudeshna Sinha, professor of physics at the Indian Institute of Science Education and Research Mohali, also contributed to the work.

Here’s a link to and a citation for the paper,

Neuronal diversity can improve machine learning for physics and beyond by Anshul Choudhary, Anil Radhakrishnan, John F. Lindner, Sudeshna Sinha & William L. Ditto. Scientific Reports volume 13, Article number: 13962 (2023) DOI: https://doi.org/10.1038/s41598-023-40766-6 Published: 26 August 2023

This paper is open access.

Last call for Science and Innovation in a Time of Transformation—the Canadian Science Policy Conference (November 13 – 15, 2023)

Unless something really exciting happens, this will be my last post about the upcoming 2023 (and 15th annual) Canadian Science Policy Conference. I will be highlighting a few of the sessions but, first, there’s this from an October 26, 2023 Canadian Science Policy Centre announcement (received via email),

Only Two Weeks Left to Register for CSPC [Canadian Science Policy Conference] 2023!

Only two weeks left to register for CSPC 2023! The deadline to register is Friday, November 10th! With the overarching theme of ‘Science and Innovation in a Time of Transformation’ CSPC 2023 expects more than 1000 participants, 300+ speakers in 50+ panel sessions, and will include a spectacular Gala Dinner featuring its award ceremony which has become a signature annual event to celebrate Canadian science and innovation policy achievements. 

CSPC 2023 will feature more than 300 amazing speakers. To view the list of speakers, click here, and here are some of the international speakers: 

Multiple ticket discounts are also available. CSPC offers a 5% discount on groups of 5-9 registrations and a 10% discount for 10 registrations or more. Please note GROUP REGISTRATION DISCOUNTS are available until Friday, November 10th. Please contact conference@sciencepolicy.ca for more information.

Register now by clicking the button below!
Register Now

View the CSPC 2023 Program and Speakers List!

The biggest and most comprehensive annual Science and Innovation Policy Conference, CSPC 2023, is fast approaching! Explore more than 60 concurrent and plenary panel sessions. Navigate the CSPC 2023 Program: the Interactive Agenda is available here, and the Agenda at a Glance can be viewed here.

There are four sessions that seem particularly interesting to me. First, from the session webpage,

804 – Discussion between Dr. Mona Nemer and Dr. Sethuraman Panchanathan, moderated by Dr. Alejandro Adem

Monday, November 13, 20231:00 PM – 2:00 PM

This year’s CSPC opening panel will bring together two of North America’s most recognized science leaders for a discussion about their experience in the Canadian and U.S research landscape. Panelists will discuss the importance of societally-relevant science, broadening participation in science, the increasing need for open science, and science & technology in green economic development, as well as their vision for the role of science in international relations.

Organized by: Canada Research Coordinating Committee

Speakers

Dr. Alejandro Adem
President of the Natural Sciences and Engineering Research Council of Canada (NSERC)

Dr. Mona Nemer
Canada’s Chief Science Advisor, Government of Canada

Dr. Sethuraman Panchanathan
Computer Scientist and Engineer
15th Director of the U.S. National Science Foundation (NSF)

Second, from the session webpage,

901 – The new challenges of information in parliaments

Monday, November 13, 20232:30 PM – 4:00 PM

In a democratic environment, members of parliament work with information gathered from parliamentary staff, media, lobbies and experts. With the aim of maintaining a strong democracy, parliaments around the world have developed mechanisms to facilitate access to high-quality information for elected representatives, with variations according to continent, language and culture. This panel proposes an overview of these mechanisms including a discussion on emerging issues impacting them, such as the integration of artificial intelligence and the risks of digital interference in democratic processes.

Organized by: Fonds de recherche du Quebec

Speakers

Interestingly, the Canadian Science Policy Centre recently published a research report titled “Survey of Parliamentarians; Impact of the COVID-19 Pandemic on the Use of Science in Policy Making,” you can my comments about it in my October 13, 2023 posting.

Third, from the session webpage,

277 – Science for Social Justice: Advancing the agenda set by the 2022 Cape Town World Science Forum

Tuesday, November 14, 202310:30 AM – 12:00 PM

South Africa had hosted the 10th World Science Forum (WSF), a platform for global science policy dialogue, in Cape Town in December 2022. The WSF is co-organised by a partnership involving global science organisations including UNESCO, the AAAS and the International Science Council, and Hungarian Academy of Science. The theme of the 2022 WSF was “Science for Social Justice.” During a week of intense debate more than 3000 participants from across the world debated the role of science in advancing social justice. This session will review the outcomes of the Forum, including the WSF Declaration on Science for Social Justice.

Organized by: South African Department of Science and Innovation

Speakers

The fourth and final session to be mentioned here, from the session webpage,

910 – Canada’s Quantum potential : critical partnerships and public policy to advance Canada’s leadership in Quantum science and technology.

Tuesday, November 14, 202310:30 AM – 12:00 PM

Canada’s early commitment to invest in Quantum research and technology has made our nation one of the global leaders in that field, and the $360 million earmarked over a seven-year period to foster the National Quantum Strategy (NQS) is a testament to Canada’s leadership ambition in the future. This panel discussion will address the ever-evolving field of quantum science and technology and offer a unique opportunity to explore its policy dimensions including the current state of the field, its advancements and potential applications, and the overall impact of quantum innovations across various sectors. It will explore the transformative impact of quantum science and technologies, and the quantum revolution 2.0 on society, from diverse expert perspectives, using examples such as the impact of quantum computing on drug discovery or financial modelling, as well as discussing the ethical considerations and potential for misuse in surveillance or disinformation campaigns. This panel will examine a variety of policy and social implications of Quantum technologies, including the impact of foundational research and training, approaches to support Quantum industries at their development stages, risks, obstacles to commercialization, and opportunities for better inclusion.

Organized by: University of Ottawa

Speakers

Dr. Khabat Heshami
Research Officer at the National Research Council Canada [NRC]

Jeff Kinder
Project Director
Council of Canadian Academies

Professor Ebrahim Karimi
Co-Director the Nexus for Quantum Technologies Research Institute
University of Ottawa

Professor Ghassan Jabbour
Canada Research Chair in Engineered Advanced Materials and Devices
University of Ottawa – Faculty of Engineering

Rafal Janik
Chief Operating Officer
Xanadu

Tina Dekker
Research Fellow of the University of Ottawa Research Chair in Technology and Society

A few comments

I have highlighted speakers from two of the sessions as I’m going to make a few comments. Dr. Mona Nemer who’s part of the opening panel discussion and Canada’s Chief Science Advisor and Dr. Mehrdad Hariri, the founder and current Chief Executive Officer (CEO) for Canadian Science Policy Centre, which organizes the conference, are both from a region that is experiencing war.

I imagine this is a particularly difficult time for many people in Canada whose family and friends are from the various communities in that region. Along with many others, I hope one day there is peace for everyone. For anyone who might want a little insight into the issues, there’s an October 15, 2023 CBC (Canadian Broadcasting Corporation) radio programme segement on ‘The Sunday Magazine with Piya Chattopadhyay’,

How to maintain solidarity in Canadian Jewish and Palestinian communities

The events in Israel and Gaza in the last week have sparked high levels of grief, pain and outrage, deepening long-simmering divides in the region and closer to home. For years, Raja Khouri and Jeffrey Wilkinson have embarked on a joint project to bring North American Palestinian and Jewish communities together. They join Piya Chattopadhyay to discuss how the events of the last week are challenging that ongoing mission in Canada… and how to strive for solidarity in a time of grief and trauma.

You can find the almost 22 mins. programme here. Khouri’s and Wilkinson’s book, “The Wall Between: What Jews and Palestinians Don’t Want to Know about Each Other” was published on October 3, 2023 just days before the initial Hamas attacks,

The Wall Between is a book about the wall that exists between Jewish and Palestinian communities in the Diaspora. Distrust, enmity, and hate are common currencies. They manifest at university campuses, schools and school boards, at political events, on social media, and in academic circles. For Jews, Israel must exist; for Palestinians, the historic injustice being committed since 1948 must be reversed. Neither wants to know why the Other cannot budge on these issues. The wall is up.

These responses emanate, primarily, from the two “metanarratives” of Jews and Palestinians: the Holocaust and the Nakba. Virtually every response to the struggle, from a member of either community, can be traced back to issues of identity, trauma, and victimhood as they relate to their respective metanarrative. This book examines the role that propaganda and disinformation play in cementing trauma-induced fears for the purpose of making the task of humanizing and acknowledging the Other not just difficult, but almost inconceivable. The authors utilize recent cognitive research on the psychological and social barriers that keep Jews and Palestinians in their camps, walled off from each other. They present a clear way through, one that is justice-centered, rather than trauma-and propaganda-driven.

The authors have lived these principles and traveled this journey, away from their tribal traumas, through embracing the principles of justice. They insist that commitment to the Other means grappling with seemingly incompatible narratives until shared values are decided and acted upon. This book is a call to justice that challenges the status quo of Zionism while at the same time dealing directly with the complex histories that have created the situation today. The book is both realistic and hopeful—a guide for anyone who is open to new possibilities within the Israel-Palestine discourse in the West.

From the publisher’s author descriptions, “Jeffrey J. Wilkinson, PhD, is an American Jew who lives in Canada.” From his Wikipedia entry, “Raja G. Khouri is a Lebanese born Arab-Canadian..”

Also, thank you to Dr. Nemer and Dr. Hariri for the science policy work they’ve done here in Canada and their efforts to expand our discussions.

On a much lighter note, the ‘quantum session’ panel is dominated by academics from the University of Ottawa, a policy wonk from Ottawa, and a representative from a company based in Toronto (approximately 450 km from Ottawa by road). Couldn’t the panel organizers have made some effort to widen geographical representation? This seems particularly odd since the policy wonk (Jeff Kinder) is currently working with the Canadian Council of Academies’ Expert Panel on the Responsible Adoption of Quantum Technologies, which does have wider geographical representation.

This CSPC 2023 panel also seems to be another example of what appears to be a kind of rivalry between D-Wave Systems (based in the Vancouver area) and Xanadu Quantum Technologies (Toronto-based) or perhaps another east-west Canada rivalry. See my May 4, 2021 posting (scroll down to the ‘National Quantum Strategy’ subhead) for an overview of sorts of the seeming rivalry; there’s my July 26, 2022 posting for speculation about Canada’s quantum scene and what appears to be an east/west divide; and for a very brief comment in my April 17, 2023 posting (scroll down to the ‘The quantum crew’ subhead.)

As for the conference itself, there’s been a significant increase in conference registration fees this year (see my July 28, 203 posting) and, for the insatiable, there’s my March 29, 2023 posting featuring the call for submissions and topic streams.

Using insect corpses to create biodegradable plastics

Caption: Black soldier flies are a good source of chemicals to make bioplastics. Credit: Cassidy Tibbetts

The American Chemical Society (ACS) held its Fall 2023 meeting (Aug. 13 -17, 2023) and amongst roughly 12,000 presentations there was this one on insects and degradable plastics as described in an August 14, 2023 ACS news release (also on EurekAlert),

Imagine using insects as a source of chemicals to make plastics that can biodegrade later — with the help of that very same type of bug. That concept is closer to reality than you might expect. Today, researchers will describe their progress to date, including isolation and purification of insect-derived chemicals and their conversion into functional bioplastics.

The researchers will present their results at the fall meeting of the American Chemical Society (ACS). ACS Fall 2023 is a hybrid meeting being held virtually and in-person Aug. 13–17, and features about 12,000 presentations on a wide range of science topics.

“For 20 years, my group has been developing methods to transform natural products — such as glucose obtained from sugar cane or trees — into degradable, digestible polymers that don’t persist in the environment,” says Karen Wooley, Ph.D., the project’s principal investigator. “But those natural products are harvested from resources that are also used for food, fuel, construction and transportation.”

So Wooley began searching for alternative sources that wouldn’t have these competing applications. Her colleague Jeffery Tomberlin, Ph.D., suggested she could use waste products left over from farming black soldier flies, an expanding industry that he has been helping to develop.

The larvae of these flies contain many proteins and other nutritious compounds, so the immature insects are increasingly being raised for animal feed and to consume wastes. However, the adults have a short life span after their breeding days are over and are then discarded. At Tomberlin’s suggestion, those adult carcasses became the new starting material for Wooley’s team. “We’re taking something that’s quite literally garbage and making something useful out of it,” says Cassidy Tibbetts, a graduate student working on the project in Wooley’s lab at Texas A&M University.

When Tibbetts examined the dead flies, she determined that chitin is a major component. This nontoxic, biodegradable, sugar-based polymer strengthens the shell, or exoskeleton, of insects and crustaceans. Manufacturers already extract chitin from shrimp and crab shells for various applications, and Tibbetts has been applying similar techniques using ethanol rinses, acidic demineralization, basic deproteinization and bleach decolorization to extract and purify it from the insect carcasses. She says her fly-sourced chitin powder is probably purer, since it lacks the yellowish color and clumpy texture of the traditional product. She also notes that obtaining chitin from flies could avoid possible concerns over some seafood allergies. Some other researchers isolate chitin or proteins from fly larvae, but Wooley says her team is the first that she knows of to use chitin from discarded adult flies, which — unlike the larvae — aren’t used for feed.

While Tibbetts continues to refine her extraction techniques, Hongming Guo, another graduate student in Wooley’s lab, has been converting the purified fly chitin into a similar polymer known as chitosan. [emphasis mine] He does this by stripping off chitin’s acetyl groups. That exposes chemically reactive amino groups that can be functionalized and then crosslinked. These steps transform chitosan into useful bioplastics such as superabsorbent hydrogels, which are 3D polymer networks that absorb water.

Guo has produced a hydrogel that can absorb 47 times its weight in water in just one minute. This product could potentially be used in cropland soil to capture floodwater and then slowly release moisture during subsequent droughts, Wooley says. “Here in Texas, we’re constantly either in a flood or drought situation,” she explains, “so I’ve been trying to think of how we can make a superabsorbent hydrogel that could address this.” And because the hydrogel is biodegradable, she says it should gradually release its molecular components as nutrients for crops.

This summer, the team is starting a project to break down chitin into its monomeric glucosamines. These small sugar molecules will then be used to make bioplastics, such as polycarbonates or polyurethanes, which are traditionally made from petrochemicals. Black soldier flies also contain many other useful compounds that the group plans to use as starting materials, including proteins, DNA, fatty acids, lipids and vitamins.

The products made from these chemical building blocks are intended to degrade or digest when they’re discarded, so they won’t contribute to the current plastic pollution problem. Wooley’s vision for that process would align it with the sustainable, circular economy concept: “Ultimately, we’d like the insects to eat the waste plastic as their food source, and then we would harvest them again and collect their components to make new plastics,” she says. “So the insects would not only be the source, but they would also then consume the discarded plastics.”

The researchers acknowledge support and funding from the Welch Foundation and a private donation.

As you can see from the news release, there were two related presentations,

Title
Harvesting of building blocks from insect feedstocks for transformation into carbohydrate-derived superabsorbent hydrogels

Abstract
A primary interest in the Wooley laboratory is the production of functional polymers from renewable sources that are capable of reverting to those natural products once their purpose has been served. As scaled-up production of biomass-based biodegradable polymers continues to grow, we’ve recognized a need to avoid competition with resources that are important to food, fuel, construction and other societal demands. Therefore, we’re turning to unique supply chains, including harvesting of naturally-derived building blocks from black soldier flies (BSF), a rapidly growing feed crop industry. This presentation will highlight efforts to isolate carbohydrate feedstocks from BSF and transform them into superabsorbent hydrogel materials, which are designed to address global challenges with flooding and drought associated with climate change.

Title
Harvesting of naturally-derived building blocks from adult black soldier flies

Abstract
The urgent threat to our environment created by plastic pollution has continued to grow and develop as we face the well-established problems arising from traditional plastic production using petrochemicals and their accumulation. Polymeric materials constructed from natural building blocks are promising candidates to displace environmentally-persistent petrochemical counterparts, due to their similar thermal and mechanical properties and greater breadth of compositions, structures and properties, sustainability and degradability, thereby redefining the current plastic economy. A key goal in the exploration of building blocks from natural polymers is to avoid competition with resources critical to food, fuel, construction and other societal demands. This requires turning to unique supply chains, such as black soldier flies (BSF).

BSF provides an immense array of potential utility to society, ranging from being a protein source for animal feed to composting waste. However, the larvae are almost exclusively of use for these processes and the adults serve the sole purpose of reproducing. Once the adults die, they are currently considered as waste and disposed of. Intrigued with the opportunity to create a value chain using the adult BSF, studies focusing on optimization and scalability for the digestion of adult black soldier flies to produce high quality chitin and utilize it as a feedstock for the production of super-absorbent hydrogel networks will be discussed.

If you’d like to know more about this work, there’s an ACS Fall 2023 Media Briefings webpage, which includes the briefing for “Transforming flies into degradable plastics.” It runs approximately 10 mins. 29 secs.

6th annual Girls and STEAM (science, technology, engineering, arts, and mathematics) Summit at Science World in Vancouver (Canada)

Thanks to Rebecca Bollwitt and the October 24, 2023 posting on her Miss 604 blog for the news about the 2023 (or 6th annual) Girls and STEAM (science, technology, engineering, arts, and math) Summit. From Alexis Miles’s October 24, 2023 post,

The 6th annual Girls and STEAM (science, technology, engineering, arts and design, and math), presented by STEMCELL Technologies, is taking place at Science World November 4th [2023].

Girls and STEAM at Science World
Date: Saturday, November 4, 2023
Time: 7:45am to 4:00pm
Location: Science World (1455 Quebec Street, Vancouver)
Admission: Registration is open online for girls aged 12 to 14.

300 young girls, aged 12-14, will take over the Science World dome in a day of hands-on activities, enriching workshops, inspiring mentorship sessions and a keynote presentation.

This year’s keynote presentation features Andini Makosinski, Filipina-Polish Canadian inventor best known for her invention of the Hollow Flashlight that runs off the heat of the human hand, and theeDrink, a coffee mug that harvests the excess heat of a hot drink and converts it into electricity to charge a phone. The inspiration for Andini’s flashlight came from her friend in the Philippines, who had failed a grade in school because she had no light or electricity to study with at night.

A September 25, 2023 STEMCELL Technologies news release announces the company’s participation and support for the event,

STEMCELL Technologies, Canada’s largest biotechnology company, is pleased to announce it will be the presenting partner of the Girls and STEAM Summit at Science World in Vancouver.

The Summit, which takes place on November 4, 2023, is a full-day event with workshops, hands-on activities, a keynote presentation, and sessions with experienced mentors who work in STEAM (science, technology, engineering, art and design, and math).

“Science is about so much more than what happens in the laboratory. It provides a lens that can instill a deep-seated curiosity in young minds and enrich every aspect of our lives,” said Sharon Louis, Senior Vice President of Research and Development, STEMCELL. “Scientific education – in the classroom and out in the world – can lead to life-changing experiences and limitless opportunities for young women and girls. STEMCELL is proud to support the Girls and STEAM program to make science more accessible, and help ignite the passion of the next generation of scientists and leaders.”

About STEMCELL Technologies

STEMCELL Technologies supports life sciences research with more than 2,500 specialized reagents, tools, and services. STEMCELL offers high-quality cell culture media, cell separation technologies, instruments, accessory products, educational resources, and contract assay services that are used by scientists performing stem cell, immunology, cancer, regenerative medicine, and cellular therapy research globally.

[downloaded from https://miss604.com/2023/10/girls-and-steam-at-science-world.html]

You can register here.

October 31, 2023 data analysis and visualization workshop for science writers

Thanks to the Science Media Centre of Canada for the notice about this upcoming workshop for science writers, (from the Data Analysis and Visualization Tools for Science Writers page on eventbrite.com), Note: There is a fee of $125 (I assume this is US currency) and a limited number of discounts are available (keep reading either here or on the event page for details about the discounts),

[downloaded from https://www.eventbrite.com/e/data-analysis-and-visualization-tools-for-science-writers-tickets-692049688247]

Also from the event page,

This workshop will focus on reporting & producing data stories about science topics, highlighting free tools for analysis & visualization.

Date and time

Tuesday, October 31 · 12:30 – 2pm PDT

Location

Online

Refund Policy

Contact the organizer to request a refund.Eventbrite’s fee is nonrefundable.

About this event

1 hour 30 minutes Mobile eTicket

Science writers are used to encountering data, whether we’re reading through dense scientific papers or trying to figure out what a statistic means for our readers. But sometimes, datasets themselves can be sources for stories—and they have led to some of the most widely read science stories of the last few years, from El Pais’ visualization of coronavirus spread to ProPublica’s investigation of burning sugar cane. Datasets can help us make complex topics accessible, visualize patterns from research, or even investigate instances of wrongdoing.

A science writer interested in pursuing stories like these could find a wide variety of resources to help them get started on a data project. But the growing data journalism field can be overwhelming: you might not be sure how to pick an initial project, which online course to try, which tools to use, or whether you need to learn how to code first. (Spoiler alert: you don’t!)

This 90-minute hands-on workshop from The Open Notebook, building on the instructor’s TON article about this topic [TON = The Open Notebook], will provide a crash course in data reporting basics. It’s designed for science writers who are interested in pursuing data stories but aren’t quite sure how to get started, and for editors who are interested in working with writers on these stories.

You’ll get an introduction to all of the steps of reporting and producing a data story, from finding story ideas to editing and fact-checking. The workshop will include an interactive tutorial showcasing two common tools that you can start using immediately.

You will learn how to:

Recognize potential data stories on your beat
Search for public datasets that you can use
Use free tools for data analysis and visualization
Work with a data team or independently as a freelancer
Make your data stories accessible

The workshop will be recorded and made available to registered participants for three months following the workshop.

Instructor

Betsy Ladyzhets is an independent science, health, and data journalist focused on COVID-19 and the future of public health. She runs the COVID-19 Data Dispatch, a publication that provides news, resources, and original reporting on COVID-19 data. Recently, she was a journalism fellow at MuckRock, where she contributed to award-winning COVID-19 investigations. She also previously managed the Science & Health vertical at Stacker and volunteered at the COVID Tracking Project. Her freelance work has appeared in Science News, The Atlantic, STAT, FiveThirtyEight, MIT Technology Review, and other national publications.

Registration Fee

The registration fee is $125.

About our discounted rates: Our goal at The Open Notebook is to support the advancement of science journalists around the world. In particular, we want to ensure that the resources we provide are accessible to those who have experienced higher-than-average barriers to entry in our field. A limited number of discounted slots are available on a first-come, first-served basis to individuals who are members of communities that have historically been underrepresented in science journalism or whose economic circumstances would make the full cost of the workshops a financial strain. To use this discount, add the promo code TON_70DISCOUNT for a 70 percent discount. (The promo code box is above the workshops listing on the sign-up page.)

I found out a little more about The Open Notebook, from their About tab Mission page,

Our Mission

The Open Notebook is a 501(c)(3) non-profit organization that is widely regarded as the leading online source of training and educational materials for journalists who cover science. We are dedicated to fostering a supportive, diverse, and inclusive global community that enables reporters and editors who cover science to learn and thrive. Through our comprehensive library of articles on the craft of science journalism and our extensive training and mentoring programs, we empower journalists at all experience levels, around the world, to tell impactful, engaging stories about science.

Why We’re Here

At no other time in human history has the meaning of what constitutes a fact—a valid piece of knowledge—been more at risk than it is today. Journalists’ ability to report stories about science clearly, accurately, and engagingly has never been more critical for public understanding of science and for a well-functioning democracy. Journalists who cover science play a crucial and demanding role in society—they must not only explain the newest advances in scientific research, but also provide critical context and analysis on issues ranging from climate change to infectious disease to artificial intelligence; shed light on the human beings behind the research; and serve as watchdogs to help ensure the continued freedom and integrity of the scientific enterprise.

To fulfill such a role takes skill. And the skills that science journalists need are endangered. Only a fraction of working science journalists are trained in formal journalism programs. And with the shrinking number of traditional staff jobs available, science journalism is fast moving toward a “gig economy” that relies on freelancers to produce work once done by staffers. One effect of that shift is that fewer journalists have the opportunity to master skills through the natural mentoring that takes place in newsrooms. In addition, science journalists who are from historically underrepresented communities face formidable barriers to entry and participation in the field. The Open Notebook is dedicated to helping journalists cultivate fundamental skills necessary for covering science and to helping foster a more inclusive community of voices covering science.

What We Do

Since The Open Notebook was founded in 2010, more than a million people from around the world have visited the site. Thousands of journalists have taken part in our courses, workshops, and mentoring programs. Below is a summary of our major programs.

There you have it.

Transforming lithium-ion battery electrodes into wearable, fabric-based, flexible, and stretchable electrodes

There’s a long road before this technology can be commercialized but the news seems promising. From a July 26, 2023 University of Houston news release (also on EurekAlert) by Rashda Khan, Note: Links have been removed,

Most people already know and appreciate the capabilities of smart phones, now imagine the possibilities offered by smart spacesuits, uniforms and exercise clothes. The future of wearable technology just got a big boost thanks to a team of University of Houston researchers who designed, developed and delivered a successful prototype of a fully stretchable fabric-based lithium-ion battery.

The idea for this cutting-edge evolution of the lithium-ion battery came from the mind of Haleh Ardebili, Bill D. Cook Professor of Mechanical Engineering at UH. “As a big science fiction fan, I could envision a ‘science-fiction-esque future’ where our clothes are smart, interactive and powered,” she said. “It seemed a natural next step to create and integrate stretchable batteries with stretchable devices and clothing. Imagine folding or bending or stretching your laptop or phone in your pocket. Or using interactive sensors embedded in our clothes that monitor our health.”

Some of these ideas are already becoming a reality. However, like all electronics, they need power, which is where the stretchable and flexible batteries come in. A major bottleneck in the development of the next generation of electronics or wearable technology embedded in fabrics is that conventional batteries are generally rigid, which limits functionality of the items, and they use a liquid electrolyte, which raises safety concerns. The traditional organic liquid electrolytes are flammable and can lead to the possibility of the batteries catching fire or even exploding under certain conditions.

The key to the UH research team’s breakthrough lies in the researchers using conductive silver fabric as a platform and current collector.

“The weaved silver fabric was ideal for this since it mechanically deforms or stretches and still provides electrical conduction pathways necessary for the battery electrode to function well. The battery electrode must allow movement of both electrons and ions,” said Ardebili, who is the corresponding author of a paper detailing this research in the Extreme Mechanics Letters. The first author of the paper is Bahar Moradi Ghadi, a former doctoral student who based her dissertation on this research.

By transforming rigid lithium-ion battery electrodes into wearable, fabric-based, flexible, and stretchable electrodes, this technology opens up exciting possibilities by offering stable performance and safer properties for wearable devices and implantable biosensors.

How It All Started

The idea for stretchable batteries occurred to Ardebili several years ago.

“I was interested in understanding the fundamental science and mechanisms related to stretching an electrochemical cell and its components,” she said. “This was an unexplored field in science and engineering and a great area to investigate.”

The science of coupling effects of mechanical deformation and electrochemical performance is an important field and stretchable batteries provide a great vehicle for exploring the fundamental mechanisms.

Ardebili developed her ideas into grant proposals and won several key awards to support her work, including a five-year National Science Foundation CAREER Award in 2013, a New Investigator Award from the NASA Texas Space Center Grant Consortium in 2014 and an award from the US Army Research Lab (ARL) in 2017.

“Although we have created a prototype, we are still working on optimizing the battery design, materials and fabrication,” said Ardebili.

What Is Next

Ardebili is optimistic that the prototype for a stretchable fabric-based battery will pave the way for many types of applications such as smart space suits, consumer electronics embedded in garments that monitor people’s health and devices that interact with humans at various levels. There are many possible designs and applications for safe, light, flexible and stretchable batteries, but there is still some work to be done before they are available on the market.

“Commercial viability depends on many factors such as scaling up the manufacturability of the product, cost and other factors,” she said. “We are working toward those considerations and goals as we optimize and enhance our stretchable battery.”

Whether the stretchy batteries end up powering spacesuits or workout clothes or some other innovative application, Ardebili wants them to be reliable and safe. “My goal is to make sure the batteries are as safe as possible [emphasis mine],” she said.

I’m glad to see safety is mentioned since there have been issues with lithium-ion batteries bursting into flame. (My last piece on research into making lithium-ion batteries safer is a January 13, 2016 post. There’s a more recent piece in the IEEE’s Spectrum magazine, an August 23, 2018 article by Weiyang Li and Yi Cui)

Getting back to the latest, here’s a link to and a citation for the paper,

Stretchable fabric-based lithium-ion battery by Bahar Moradi Ghadi, Banafsheh Hekmatnia, Qiang Fu, and Haleh Ardebili. Extreme Mechanics Letters
Volume 61, June 2023, 102026 DOI: https://doi.org/10.1016/j.eml.2023.102026

This paper is behind a paywall.

AI ‘author’ steals another author’s identity

It seems I have not been sufficiently imaginative about how AI can be utilized as an author, from an August 10, 2023 article by Abby Hughes for Canadian Broadcasting Corporation’s (CBC) As It Happens radio programme, Note: A link has been removed,

Author says ‘AI-generated’ books were published under her name. Amazon wouldn’t take them down

Jane Friedman writes and reports on the publishing industry. Recently, five new titles including How to Write and Publish an eBook Quickly and Make Money, were listed under the U.S.-based author’s name on Amazon.

The problem? She didn’t write them.

Friedman believes the books were generated using artificial intelligence (AI) and published under her name by someone else. 

They were removed from the online marketplace earlier this week according to The Guardian, but only after a fight with the publisher

“I was expecting something like this to happen eventually. I just didn’t think I would find myself leading the charge on fraudulent work in my name,” Friedman told As it Happens guest host Peter Armstrong.

A reader, who had been looking for Friedman’s books on Amazon, stumbled upon the suspicious texts and alerted the author.

Friedman says she felt violated and angry after investigating the “substandard” work for herself.

“The books are just bloviating garbage. It was repetitive, like a really bad student essay [and] didn’t have anything really meaningful in it,” says Friedman.

There’s more,

The books were also listed on Goodreads, an online book rating and recommendation site itself owned by Amazon. But Friedman says getting them removed from that site was far easier.

Friedman was able to “reach human beings with critical thinking skills” when she reached out to Goodreads. With Amazon, however, she could only report the issue by filling out a form.

It’s also impossible to reach the person who uploaded the books, she says — only Amazon has that information.

Friedman says if it weren’t for social media pressure and help from members of the Authors Guild advocacy group — which Friedman is a member of — the works fraudulently published under her name might still exist on Amazon.

Shawn Bayern, a law professor at Florida State University, says cases like Friedman’s might become more common, as generative AI grows in popularity.

An Amazon spokesperson told the CBC in an email that they “have clear content guidelines governing which books can be listed for sale and promptly investigate any book when a concern is raised. We welcome author feedback and work directly with authors to address any issues they raise and where we have made an error, we correct it.”

If you have time, the radio segment embedded in the article is 6 mins. 32 secs. and/or there’s the rest of the article with all the bits I’ve left out.

AI safety talks at Bletchley Park in November 2023

There’s a very good article about the upcoming AI (artificial intelligence) safety talks on the British Broadcasting Corporation (BBC) news website (plus some juicy perhaps even gossipy news about who may not be attending the event) but first, here’s the August 24, 2023 UK government press release making the announcement,

Iconic Bletchley Park to host UK AI Safety Summit in early November [2023]

Major global event to take place on the 1st and 2nd of November.[2023]

– UK to host world first summit on artificial intelligence safety in November

– Talks will explore and build consensus on rapid, international action to advance safety at the frontier of AI technology

– Bletchley Park, one of the birthplaces of computer science, to host the summit

International governments, leading AI companies and experts in research will unite for crucial talks in November on the safe development and use of frontier AI technology, as the UK Government announces Bletchley Park as the location for the UK summit.

The major global event will take place on the 1st and 2nd November to consider the risks of AI, especially at the frontier of development, and discuss how they can be mitigated through internationally coordinated action. Frontier AI models hold enormous potential to power economic growth, drive scientific progress and wider public benefits, while also posing potential safety risks if not developed responsibly.

To be hosted at Bletchley Park in Buckinghamshire, a significant location in the history of computer science development and once the home of British Enigma codebreaking – it will see coordinated action to agree a set of rapid, targeted measures for furthering safety in global AI use.

Preparations for the summit are already in full flow, with Matt Clifford and Jonathan Black recently appointed as the Prime Minister’s Representatives. Together they’ll spearhead talks and negotiations, as they rally leading AI nations and experts over the next three months to ensure the summit provides a platform for countries to work together on further developing a shared approach to agree the safety measures needed to mitigate the risks of AI.

Prime Minister Rishi Sunak said:

“The UK has long been home to the transformative technologies of the future, so there is no better place to host the first ever global AI safety summit than at Bletchley Park this November.

To fully embrace the extraordinary opportunities of artificial intelligence, we must grip and tackle the risks to ensure it develops safely in the years ahead.

With the combined strength of our international partners, thriving AI industry and expert academic community, we can secure the rapid international action we need for the safe and responsible development of AI around the world.”

Technology Secretary Michelle Donelan said:

“International collaboration is the cornerstone of our approach to AI regulation, and we want the summit to result in leading nations and experts agreeing on a shared approach to its safe use.

The UK is consistently recognised as a world leader in AI and we are well placed to lead these discussions. The location of Bletchley Park as the backdrop will reaffirm our historic leadership in overseeing the development of new technologies.

AI is already improving lives from new innovations in healthcare to supporting efforts to tackle climate change, and November’s summit will make sure we can all realise the technology’s huge benefits safely and securely for decades to come.”

The summit will also build on ongoing work at international forums including the OECD, Global Partnership on AI, Council of Europe, and the UN and standards-development organisations, as well as the recently agreed G7 Hiroshima AI Process.

The UK boasts strong credentials as a world leader in AI. The technology employs over 50,000 people, directly supports one of the Prime Minister’s five priorities by contributing £3.7 billion to the economy, and is the birthplace of leading AI companies such as Google DeepMind. It has also invested more on AI safety research than any other nation, backing the creation of the Foundation Model Taskforce with an initial £100 million.

Foreign Secretary James Cleverly said:

“No country will be untouched by AI, and no country alone will solve the challenges posed by this technology. In our interconnected world, we must have an international approach.

The origins of modern AI can be traced back to Bletchley Park. Now, it will also be home to the global effort to shape the responsible use of AI.”

Bletchley Park’s role in hosting the summit reflects the UK’s proud tradition of being at the frontier of new technology advancements. Since Alan Turing’s celebrated work some eight decades ago, computing and computer science have become fundamental pillars of life both in the UK and across the globe.

Iain Standen, CEO of the Bletchley Park Trust, said:

“Bletchley Park Trust is immensely privileged to have been chosen as the venue for the first major international summit on AI safety this November, and we look forward to welcoming the world to our historic site.

It is fitting that the very spot where leading minds harnessed emerging technologies to influence the successful outcome of World War 2 will, once again, be the crucible for international co-ordinated action.

We are incredibly excited to be providing the stage for discussions on global safety standards, which will help everyone manage and monitor the risks of artificial intelligence.”

The roots of AI can be traced back to the leading minds who worked at Bletchley during World War 2, with codebreakers Jack Good and Donald Michie among those who went on to write extensive works on the technology. In November [2023], it will once again take centre stage as the international community comes together to agree on important guardrails which ensure the opportunities of AI can be realised, and its risks safely managed.

The announcement follows the UK government allocating £13 million to revolutionise healthcare research through AI, unveiled last week. The funding supports a raft of new projects including transformations to brain tumour surgeries, new approaches to treating chronic nerve pain, and a system to predict a patient’s risk of developing future health problems based on existing conditions.

Tom Gerken’s August 24, 2023 BBC news article (an analysis by Zoe Kleinman follows as part of the article) fills in a few blanks, Note: Links have been removed,

World leaders will meet with AI companies and experts on 1 and 2 November for the discussions.

The global talks aim to build an international consensus on the future of AI.

The summit will take place at Bletchley Park, where Alan Turing, one of the pioneers of modern computing, worked during World War Two.

It is unknown which world leaders will be invited to the event, with a particular question mark over whether the Chinese government or tech giant Baidu will be in attendance.

The BBC has approached the government for comment.

The summit will address how the technology can be safely developed through “internationally co-ordinated action” but there has been no confirmation of more detailed topics.

It comes after US tech firm Palantir rejected calls to pause the development of AI in June, with its boss Alex Karp saying it was only those with “no products” who wanted a pause.

And in July [2023], children’s charity the Internet Watch Foundation called on Mr Sunak to tackle AI-generated child sexual abuse imagery, which it says is on the rise.

Kleinman’s analysis includes this, Note: A link has been removed,

Will China be represented? Currently there is a distinct east/west divide in the AI world but several experts argue this is a tech that transcends geopolitics. Some say a UN-style regulator would be a better alternative to individual territories coming up with their own rules.

If the government can get enough of the right people around the table in early November [2023], this is perhaps a good subject for debate.

Three US AI giants – OpenAI, Anthropic and Palantir – have all committed to opening London headquarters.

But there are others going in the opposite direction – British DeepMind co-founder Mustafa Suleyman chose to locate his new AI company InflectionAI in California. He told the BBC the UK needed to cultivate a more risk-taking culture in order to truly become an AI superpower.

Many of those who worked at Bletchley Park decoding messages during WW2 went on to write and speak about AI in later years, including codebreakers Irving John “Jack” Good and Donald Michie.

Soon after the War, [Alan] Turing proposed the imitation game – later dubbed the “Turing test” – which seeks to identify whether a machine can behave in a way indistinguishable from a human.

There is a Bletchley Park website, which sells tickets for tours.

Insight into political jockeying (i.e., some juicy news bits)

This has recently been reported by BBC, from an October 17 (?). 2023 news article by Jessica Parker & Zoe Kleinman on BBC news online,

German Chancellor Olaf Scholz may turn down his invitation to a major UK summit on artificial intelligence, the BBC understands.

While no guest list has been published of an expected 100 participants, some within the sector say it’s unclear if the event will attract top leaders.

A government source insisted the summit is garnering “a lot of attention” at home and overseas.

The two-day meeting is due to bring together leading politicians as well as independent experts and senior execs from the tech giants, who are mainly US based.

The first day will bring together tech companies and academics for a discussion chaired by the Secretary of State for Science, Innovation and Technology, Michelle Donelan.

The second day is set to see a “small group” of people, including international government figures, in meetings run by PM Rishi Sunak.

Though no final decision has been made, it is now seen as unlikely that the German Chancellor will attend.

That could spark concerns of a “domino effect” with other world leaders, such as the French President Emmanuel Macron, also unconfirmed.

Government sources say there are heads of state who have signalled a clear intention to turn up, and the BBC understands that high-level representatives from many US-based tech giants are going.

The foreign secretary confirmed in September [2023] that a Chinese representative has been invited, despite controversy.

Some MPs within the UK’s ruling Conservative Party believe China should be cut out of the conference after a series of security rows.

It is not known whether there has been a response to the invitation.

China is home to a huge AI sector and has already created its own set of rules to govern responsible use of the tech within the country.

The US, a major player in the sector and the world’s largest economy, will be represented by Vice-President Kamala Harris.

Britain is hoping to position itself as a key broker as the world wrestles with the potential pitfalls and risks of AI.

However, Berlin is thought to want to avoid any messy overlap with G7 efforts, after the group of leading democratic countries agreed to create an international code of conduct.

Germany is also the biggest economy in the EU – which is itself aiming to finalise its own landmark AI Act by the end of this year.

It includes grading AI tools depending on how significant they are, so for example an email filter would be less tightly regulated than a medical diagnosis system.

The European Commission President Ursula von der Leyen is expected at next month’s summit, while it is possible Berlin could send a senior government figure such as its vice chancellor, Robert Habeck.

A source from the Department for Science, Innovation and Technology said: “This is the first time an international summit has focused on frontier AI risks and it is garnering a lot of attention at home and overseas.

“It is usual not to confirm senior attendance at major international events until nearer the time, for security reasons.”

Fascinating, eh?