Tag Archives: UK

Superstar engineers and fantastic fiction writers podcast series

The ‘Inventive Podcast’ features the superstar engineers and fantastic fiction writers of the headline. The University of Salford (UK) launched the series on Wednesday, June 23, 2021or International Women in Engineering Day. Here’s more about the series from a June 21, 2021 University of Salford press release (Note: I liked the title so much I ‘borrowed’ it),

Superstar engineers and fantastic fiction writers collaborate on the brand-new Inventive Podcast

The University of Salford has announced the launch of the brand-new Inventive Podcast featuring the incredible stories of engineers whose innovative work is transforming the world we live in.

Professor Trevor Cox, Inventive Host and an Acoustical Engineer from the University of Salford said: “Engineering is so central to our lives, and yet as a subject it’s strangely hidden in plain sight. I came up with idea of Inventive to explore new ways of telling the story of engineering by mixing fact and fiction.”  He went on to comment, “Given the vast number of podcasts out there, it’s surprising how few shows focus on engineering (beyond tech).”

The project is funded by the Engineering and Physical Sciences [Research] Council (EPSRC) and brings together two Schools at the University: Science, Engineering and Environment & Arts, Media and Creative Technology.  The series will debut on Wednesday 23 June [2021], International Women in Engineering Day, with a further with 6 new episodes dropping across the summer.

Over the course of the eleven-episode series, Professor Cox meets incredible Inventive engineers. In the first episode he interviews: electronics engineer, Shrouk el Attar, a refugee and campaigner for LGBT rights, recently awarded the Women’s Engineering Society (WES) Prize for her work in femtech, smart tech that improves the lives of cis women and trans men, at the Institution of Engineering and Technology Young Woman Engineer of the Year Awards 2021; structural engineer Roma Agrawal designed the foundation and spire of London’s The Shard; and chemical engineer Askwar Hilonga who didn’t have access to clean water growing up in his village in Tanzania, but has gone on to win the Africa Prize for Engineering Innovation for his water purification nano filter.

This podcast is not just for engineers and techies! Engineering is typically represented in the media by historical narratives or ‘boy’s toys’ approach – biggest, longest, tallest. We know that has limited appeal, so we set ourselves a challenge to reach a wider audience. Engineering needs to tell better stories with people at the centre. So, we’ve interwoven factual interviews with stories commissioned from fantastic writers: C M Taylor’s piece The Night Builder, is inspired by structural engineer Roma Agrawal and includes a Banksy-like figure who works with concrete. Science Fiction writer Emma Newman’s Healing the Fractured is inspired by engineer Greg Bowie who makes trauma plates to treat broke bones and is set in a dystopian future, reminiscent of Handmaid’s Tale, with the engineer as an unexpected hero.

For more information and to sign-up for the latest episodes go to: www.inventivepodcast.com

I listened to Trevor Cox’s interview for the first and, so far, only Inventive episode, with engineer, Shrouk El-Attar, which includes award-winning writer and poet, Tania Hershman, performing her piece ‘Human Being As Circuit Board, Human Being as Dictionary‘ combining fiction, poetry and non-fiction based on El-Attar’s story. (Check out Shrouk El-Attar’s eponymous website here.)

I recognized one of the upcoming interview subjects, Askwar Hilonga, as his work with water filters in Tanzania has been featured here twice, notably in this June 16, 2015 posting.

Finally Tania Hershman (Twitter: @taniahershman) has an eponymous website here. (Note: In September 2021 she will be leading a 4-week online Science-Flavoured Writing course for the London Lit Lab. A science background isn’t necessary and, if you’re short on cash, there are some options.)

“transforming a plant is still an art” even with CRISPR

“Plus ça change, plus c’est la même chose (the more things change, the more things stay the same), is an old French expression that came to mind when I stumbled across two stories about genetic manipulation of food-producing plants.

The first story involves CRISPR (clustered regularly interspersed short palindromic repeats) gene editing and the second involves more ancient ways to manipulate plant genetics.

Getting ‘CRISPR’d’ plant cells to grow into plants

Plants often don’t grow from cells after researchers alter their genomes. Using a new technology, a team coaxed wheat (above) and other crops to more readily produce genome-edited healthy adult plants. Credit: Juan Debernardi

An October 13, 2020 news item on phys.org announces research about getting better results after a plant’s genome has been altered,

Researchers know how to make precise genetic changes within the genomes of crops, but the transformed cells often refuse to grow into plants. One team has devised a new solution.

Scientists who want to improve crops face a dilemma: it can be difficult to grow plants from cells after you’ve tweaked their genomes.

A new tool helps ease this process by coaxing the transformed cells, including those modified with the gene-editing system CRISPR-Cas9, to regenerate new plants. Howard Hughes Medical Institute Research Specialist Juan M. Debernardi and Investigator Jorge Dubcovsky, together with David Tricoli at the University of California, Davis [UC Davis] Plant Transformation Facility, Javier Palatnik from Argentina, and colleagues at the John Innes Center [UK], collaborated on the work. The team reports the technology, developed in wheat and tested in other crops, October 12, 2020, in the journal Nature Biotechnology.

An October 12, 2020 Howard Hughes Medical Institute (HHMI) news release, which originated the news item, provides more detail,

“The problem is that transforming a plant is still an art [emphasis mine],” Dubcovsky says. The success rate is often low – depending on the crop being modified, 100 attempts may yield only a handful of green shoots that can turn into full-grown plants. The rest fail to produce new plants and die. Now, however, “we have reduced this barrier,” says Dubcovsky, a plant geneticist at UC Davis. Using two genes that already control development in many plants, his team dramatically increased the formation of shoots in modified wheat, rice, citrus, and other crops.

Although UC Davis has a pending patent for commercial applications, Dubcovsky says the technique is available to any researcher who wants to use it for research, at no charge. A number of plant breeding companies have also expressed interested in licensing it. “Now people are trying it in multiple crops,” he says.

Humans have worked to improve plants since the dawn of agriculture, selecting wild grasses to produce cultivated maize and wheat, for example. Nowadays, though, CRISPR has given researchers the ability to make changes to the genome with surgical precision. They have used it to create wheat plants with larger grains, generate resistance to fungal infection, design novel tomato plant architectures, and engineer other traits in new plant varieties.

But the process isn’t easy. Scientists start out with plant cells or pieces of tissue, into which they introduce the CRISPR machinery and a small guide to the specific genes they’d like to edit. They must then entice the modified cells into forming a young plant. Most don’t sprout – a problem scientists are still working to understand.

They have tried to find work-arounds, including boosting the expression of certain genes that control early stages of plant development. While this approach has had some success, it can lead to twisted, stunted, sterile plants if not managed properly.Dubcovsky and his colleagues looked at two other growth-promoting genes, GRF and GIF, that work together in young tissues or organs of plants ranging from moss to fruit trees. The team put these genes side-by-side, like a couple holding hands, before adding them to plant cells. “If you go to a dance, you need to find your partner,” Dubcovsky says. “Here, you are tied with a rope to your partner.”

Dubcovsky’s team found that genetically altered wheat, rice, hybrid orange, and other crops produced many more shoots if those experiments included the linked GRF and GIF genes. In experiments with one variety of wheat, the appearance of shoots increased nearly eight-fold. The number of shoots in rice and the hybrid orange, meanwhile, more than doubled and quadrupled, respectively. What’s more, these shoots grew into healthy plants capable of reproducing on their own, with none of the defects that can result when scientists boost other development-controlling genes. That’s because one of the genes is naturally degraded in adult tissues, Dubcovsky says.

Caroline Roper, a plant pathologist at University of California, Riverside who was not involved in the work, plans to use the new technology to study citrus greening, a bacterial disease that kills trees and renders oranges hard and bitter.

To understand how citrus trees can protect themselves, she needs to see how removing certain genes alters their susceptibility to the bacterium — information that could lead to ways to fight the disease. With conventional techniques, it could take at least two years to generate the gene-edited plants she needs. She hopes Dubcovsky’s tool will shorten that timeline.  

“Time is of the essence. The growers, they wanted an answer yesterday, because they’re at the brink of having to abandon cultivating citrus,” she says.

For anyone who noticed the reference to citrus greening in the last paragraphs of this news release, I have more information aboutthe disease and efforts to it in an August 6, 2020 posting.

As for the latest in gene editing and regeneration, here’s a link to and a citation for the paper,

A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants by Juan M. Debernardi, David M. Tricoli, Maria F. Ercoli, Sadiye Hayta, Pamela Ronald, Javier F. Palatnik & Jorge Dubcovsky. Nature Biotechnology volume 38, pages 1274–1279(2020) DOI: https://doi.org/10.1038/s41587-020-0703-0 First Published Online: 12 October 2020 Journal Issue Date: November 2020

This paper is behind a paywall.

Ancient farming techniques for engineering crops

I stumbled on this story by Gabriela Serrato Marks for Massive Science almost three years late (it’s a Dec. 5, 2017 article),

There are more than 50 strains of maize, called landraces, grown in Mexico. A landrace is similar to a dog breed: Corgis and Huskies are both dogs, but they were bred to have different traits. Maize domestication worked the same way.

Some landraces of maize can grow in really dry conditions; others grow best in wetter soils. Early maize farmers selectively bred maize landraces that were well-adapted to the conditions on their land, a practice that still continues today in rural areas of Mexico.

If you think this sounds like an early version of genetic engineering, you’d be correct. But nowadays, modern agriculture is moving away from locally adapted strains and traditional farming techniques and toward active gene manipulation. The goal of both traditional landrace development and modern genetic modification has been to create productive, valuable crops, so these two techniques are not necessarily at odds.

But as more farmers converge on similar strains of (potentially genetically modified) seeds instead of developing locally adapted landraces, there are two potential risks: one is losing the cultural legacy of traditional agricultural techniques that have been passed on in families for centuries or even millennia, and another is decreasing crop resilience even as climate variability is increasing.

Mexico is the main importer of US-grown corn, but that imported corn is primarily used to feed livestock. The corn that people eat or use to make tortillas is grown almost entirely in Mexico, which is where landraces come in.

It is a common practice to grow multiple landraces with different traits as an insurance policy against poor growth conditions. The wide range of landraces contains a huge amount of genetic diversity, making it less likely that one adverse event, such as a drought or pest infestation, will wipe out an entire crop. If farmers only grow one type of corn, the whole crop is vulnerable to the same event.

Landraces are also different from most commercially available hybrid strains of corn because they are open pollinating, which means that farmers can save seeds and replant them the next year, saving money and preserving the strain. If a landrace is not grown anymore, its contribution to maize’s genetic diversity is permanently lost.

This diversity was cultivated over generations from maize’s wild cousin, teosinte, by 60 groups of indigenous people in Mexico. Teosinte looks like a skinny, hairier version of maize. It still grows wild in some parts of Central America, but its close relatives have been found, domesticated, at archaeological sites in the region over 9,000 years old. These early maize cobs could easily fit in the palm of your hand – not big enough to be a staple crop that early farmers could depend upon for sustenance. Genetically, they were more similar to wild teosinte than to modern maize.

[] archaeologists also found that the cobs in Honduras, which is outside the natural range of teosinte, were larger than cobs of the same age from the original domestication region in southern Mexico. The scientists think that people in Honduras were able to develop more productive maize landraces because their crops were isolated from wild teosinte.

The size and shape of the ancient cobs from Honduras show that early farmers engineered the maize crop [emphasis mine] to make it more productive. They developed unique landraces that were well adapted to local conditions and successfully cultivated enough maize to support their communities. In many ways, they were early geneticists. [emphasis mine] …

We have a lot to learn from the indigenous farmers who were growing maize 4,000 years ago. Their history provides examples of both environmentally sound genetic modification and effective adaptation to climate variability. [emphases mine] …

Plus ça change …, eh?

How do nanoscale crystals make volcanoes explode?

This research may have the answer as to why a supposedly peaceful volcano will suddenly explode violently. From a September 24, 2020 University of Bayreuth press release (also on EurekAlert),

Tiny crystals, ten thousand times thinner than a human hair, can cause explosive volcanic eruptions. This surprising connection has recently been discovered by a German-British research team led by Dr. Danilo Di Genova from the Bavarian Research Institute of Experimental Geochemistry & Geophysics (BGI) at the University of Bayreuth. The crystals increase the viscosity of the underground magma. As a result, a build-up of rising gases occurs. The continuously rising pressure finally discharges in massive eruptions. The scientists present the results of their nanogeoscientific research in the journal “Science Advances“.

“Exactly what causes the sudden and violent eruption of apparently peaceful volcanoes has always been a mystery in geology research. Nanogeoscience research has now allowed us to find an explanation. Tiny crystal grains containing mostly iron, silicon, and aluminium are the first link in a chain of cause and effect that can end in catastrophe for people living in the vicinity of a volcano. The most powerful volcanic eruption in human history was Mount Tambora in Indonesia in 1815”, says Dr. Danilo Di Genova. For the recently published study, he worked closely with scientists from the University of Bristol, the Clausthal University of Technology, and two European synchrotron radiation facilities.

Because of their diameter of a few nanometres, the crystals are also known as nanolites. Using spectroscopic and electron microscopy methods, the researchers have detected traces of these particles, invisible to the eye, in the ashes of active volcanoes. In the BGI’s laboratory, they were then able to describe these crystals and finally to demonstrate how they influence the properties of volcanic magma. The investigations focused on magma of low silicon oxide content cooling to form basalt on the earth’s surface after a volcanic eruption. Low silica magma is known for its low viscosity: It forms a thin lava that flows quickly and easily. The situation is different, however, if it contains a large number of nanolites. This makes the magma viscous – and far less permeable to gases rising from the earth’s interior. Instead of continuously escaping from the volcanic cone, the gases in the depths of the volcano become trapped in the hot magma. As a result, the magma is subjected to increasing pressure until it is finally ejected explosively from the volcano.

“Constant light plumes of smoke above a volcanic cone need not necessarily be interpreted as a sign of an imminent dangerous eruption. Conversely, however, the inactivity of apparently peaceful volcanoes can be deceptive. Rock analyses, written and archaeological sources suggest, for example, that people in the vicinity of Vesuvius were surprised by an extremely violent eruption of the volcano in 79 AD. Numerous fatalities and severe damage to buildings were the result”, says Di Genova. In his further research, the Bayreuth scientist hopes to use high-pressure facilites and computer simulation to model the geochemical processes that lead to such unexpected violent eruptions. The aim is to better understand these processes and thus also to reduce the risks for the population in the vicinity of volcanoes.

The researchers have included a nanocrystal image to illustrate their work,

Caption: A transmission electron microscopy image of a nano crystal (ca 25 nm in diameter) in a basaltic magma from Mt. Etna (Italy). The nano crystal is enriched in iron (Fe) and it was produced in a laboratory during at BGI. Credit Image: Nobuyoshi Miyajima.

Here’s a link to and a citation for the paper,

In situ observation of nanolite growth in volcanic melt: A driving force for explosive eruptions by Danilo Di Genova, Richard A. Brooker, Heidy M. Mader, James W. E. Drewitt, Alessandro Longo, Joachim Deubener, Daniel R. Neuville, Sara Fanara, Olga Shebanova, Simone Anzellini, Fabio Arzilli, Emily C. Bamber, Louis Hennet, Giuseppe La Spina and Nobuyoshi Miyajima. Science Advances DOI: 10.1126/sciadv.abb0413 Vol. 6, no. 39, eabb0413 Published: 23 Sep 2020

This paper appears to be open access.

Belated posting for Ada Lovelace Day (it was on Tuesday, Oct. 13, 2020)

For anyone who doesn’t know who Ada Lovelace was (from my Oct. 13, 2015 posting, ‘Ada Lovelace “… manipulative, aggressive, a drug addict …” and a genius but was she likable?‘)

Ada Lovelace was the daughter of the poet Lord Byron and mathematician Annabella Milbanke.

Her [Ada Lovelace’s] foresight was so extraordinary that it would take another hundred years and Alan Turing to recognise the significance of her work. But it was an achievement that was probably as much a product of her artistic heritage as her scientific training.

You can take the title of that October 13, 2015 post as a hint that I was using ‘Ada Lovelace “… manipulative, aggressive, a drug addict …” and a genius but was she likable?‘ to comment on the requirement that women be likable in a way that men never have to consider.

Hard to believe that 2015 was the last time I stumbled across information about the day. ’nuff said. This year I was lucky enough to see this Oct. 13, 2020 article by Zoe Kleinman for British Broadcasting Corporation (BBC) news online,

From caravans [campers] to kitchen tables, and podcast production to pregnancy, I’ve been speaking to many women in and around the technology sector about how they have adapted to the challenges of working during the coronavirus pandemic.

Research suggests women across the world have shouldered more family and household responsibilities than men as the coronavirus pandemic continues, alongside their working lives.

And they share their inspirations, frustrations but also their optimism.

“I have a new business and a new life,” says Clare Muscutt, who lost work, her relationship and her flatmate as lockdown hit.

This Tuesday [Oct. 13, 2020] is Ada Lovelace Day – an annual celebration of women working in the male-dominated science, technology, engineering and maths (Stem) sectors.

And, this year, it has a very different vibe.

Claire Broadley, technical writer, Leeds

Before lockdown, my husband and I ran our own company, producing user guides and written content for websites.

Business income dropped by about two-thirds during lockdown.

We weren’t eligible for any government grants. And because we still had a small amount of work, we couldn’t furlough ourselves.

It felt like we were slowly marching our family towards a cliff edge.

In May [2020], to my astonishment and relief, I was offered my dream job, remote writing about the internet and technology.

Working from home with the children has been the most difficult thing we’ve ever done.

My son is seven. He is very scared.

Sometimes, we can’t spend the time with him that we would like to. And most screen-time rules have gone completely out of the window.

The real issue for us now is testing.

My young daughter caught Covid in July [2020]. And she recently had a temperature again. But it took six days to get a test result, so my son was off school again. And my husband was working until midnight to fit everything in.

There are many other stories in Kleinman’s Oct. 13, 2020 article.

Nancy Doyle’s October 13, 2020 article for Forbes tends to an expected narrative about women in science, technology, engineering, and mathematics (STEM),

“21st century science has a problem. It is short of scientists. Technological innovations mean that the world needs many more specialists in the STEM (Science, Technology, Engineering and Maths) subjects than it is currently training. And this problem is compounded by the fact that women, despite clear evidence of aptitude and ability for science subjects, are not choosing to study STEM subjects, are not being recruited into the STEM workforce, are not staying in the STEM workplace.”

Why Don’t Women Do Science?

Professor Rippon [Gina Rippon, Professor of Neuroscience at Aston University in the UK] walked me through the main “neurotrash” arguments about the female brain and its feebleness.

“There is a long and fairly well-rehearsed ‘blame the brain’ story, with essentialist or biology-is-destiny type arguments historically asserting that women’s brains were basically inferior (thanks, Gustave le Bon and Charles Darwin!) or too vulnerable to withstand the rigours of higher education. A newer spin on this is that female brains do not endow their owners with the appropriate cognitive skills for science. Specifically, they are poor at the kind of spatial thinking that is core to success in science or, more generally, are not ‘hard-wired’ for the necessary understanding of systems fundamental to the theory and practice of science.

The former ‘spatial deficit’ description has been widely touted as one of the most robust of sex differences, quite possibly present from birth. But updated and more nuanced research has not been able to uphold this claim; spatial ability appears to be more a function of spatial experience (think toys, videogames, hobbies, sports, occupations) than sex. And it is very clearly trainable (in both sexes), resulting in clearly measurable brain changes as well as improvements in skill.”

You can find out more about women in STEM, Ada Lovelace, and events (year round) to celebrate her at the Ada Lovelace Day website.

Plus, I found this on Twitter about a new series of films about women in science from a Science Friday (a US National Public Radio podcast) tweet,

Science Friday @scifri

Celebrate #WomenInScience with a brand new season of #BreakthroughFilms, dropping today [October 14, 2020]! Discover the innovative research & deeply personal stories of six women working at the forefront of their STEM fields.

Get inspired at BreakthroughFilms.org

Here’s the Breakthrough Films trailer,

Enjoy!

Concerns about Zoom? Call for expressions of interest in “Zoom Obscura,” creative interventions for a data ethics of video conferencing

Have you wondered about Zoom video conferencing and all that data being made available? Perhaps questioned ethical issues in addition to those associated with data security? Is so and you’d like to come up with a creative intervention that delves beyond encryption issues, there’s Zoom Obscura (on the creativeinformatics.org website),

CI [Creative Informatics] researchers Pip Thornton, Chris Elsden and Chris Speed were recently awarded funding from the Human Data Interaction Network (HDI +) Ethics & Data competition. Collaborating with researchers from Durham [Durham University] and KCL [Kings College London], the Zoom Obscura project aims to investigate creative interventions for a data ethics of video conferencing beyond encryption.

The COVID-19 pandemic has gifted video conferencing companies, such as Zoom, with a vast amount of economically valuable and sensitive data such as our facial and voice biometrics, backgrounds and chat scripts. Before the pandemic, this ‘new normal’ would be subject to scrutiny, scepticism and critique. Yet, the urgent need for remote working and socialising left us with little choice but to engage with these potentially exploitative platforms.

While much of the narrative around data security revolves around technological ‘solutions’ such as encryption, we think there are other – more creative – ways to push back against the systems of digital capitalism that continue to encroach on our everyday lives.

As part of this HDI-funded project, we seek artists, hackers and creative technologists who are interested in experimenting with creative methods to join us in a series of online workshops that will explore how to restore some control and agency in how we can be seen and heard in these newly ubiquitous online spaces. Through three half-day workshops held remotely, we will bring artists and technicians together to ideate, prototype, and exhibit various interventions into the rapidly normalising culture of video-calling in ways that do not compromise our privacy and limit the sharing of our data. We invite interventions that begin at any stage of the video-calling process – from analogue obfuscation, to software manipulation or camera trickery.

Selected artists/collectives will receive a £1000 commission to take part and contribute in three workshops, in order to design and produce one or more, individual or collaborative, creative interventions developed from the workshops. These will include both technical support from a creative technologist as well as a curator for dissemination both online and in Edinburgh and London.

If you are an artist / technologist interested in disrupting/subverting the pandemic-inspired digital status quo, please send expressions of interest of no more than 500 words to pip.thornton@ed.ac.uk , andrew.dwyer@bristol.ac.uk, celsden@ed.ac.uk and michael.duggan@kcl.ac.uk by 8th October 2020. We don’t expect fully formed projects (these will come in the workshop sessions), but please indicate any broad ideas and thoughts you have, and highlight how your past and present practice might be a good fit for the project and its aims.

The Zoom Obscura project is in collaboration with Tinderbox Lab in Edinburgh and Hannah Redler-Hawes (independent curator and codirector of the Data as Culture art programme at the Open Data Institute in London). Outputs from the project will be hosted and exhibited via the Data as Culture archive site and at a Creative Informatics event at the University of Edinburgh.

Are folks outside the UK eligible?

I asked Dr. Pip Thornton about eligibility and she kindly noted this in her Sept. 25, 2020 tweet (reply copied from my Twitter feed),

Open to all, but workshop timings may be more amenable to UK working hours. Having said that, we won’t know what the critical mass is until we review all the applications, so please do apply if you’re interested!

Who are the members of the Zoom Obscura project team?

From the Zoom Obscura webpage (on the creativeinformatics.org website),

Dr. Pip Thornton is a post-doctoral research associate in Creative Informatics at the University of Edinburgh, having recently gained her PhD in Geopolitics and Cybersecurity from Royal Holloway, University of London. Her thesis, Language in the Age of Algorithmic Reproduction: A Critique of Linguistic Capitalism, included theoretical, political and artistic critiques of Google’s search and advertising platforms. She has presented in a variety of venues including the Science Museum, the Alan Turing Institute and transmediale. Her work has featured in WIRED UK and New Scientist, and a collection from her {poem}.py intervention has been displayed at Open Data Institute in London. Her Edinburgh Futures Institute (EFI) funded installation Newspeak 2019, shown at the Edinburgh Festival Fringe (2019), was recently awarded an honourable mention in the Surveillance Studies Network biennial art competition (2020) and is shortlisted for the 2020 Lumen Prize for art and technology in the AI category.

Dr. Andrew Dwyer is a research associate  in the University of Bristol’s Cyber Security Group. Andrew gained a DPhil in Cyber Security at the University of Oxford, where he studied and questioned the role of malware – commonly known as computational viruses and worms –  through its analysis, detection, and translation into international politics and its intersection with multiple ecologies. In his doctoral thesis – Malware Ecologies: A Politics of Cybersecurity – he argued for a re-evaluation of the role of computational actors in the production and negotiation of security, and what this means for human-centred notions of weapons and warfare. Previously, Andrew has been a visiting fellow at the German ‘Dynamics of Security’ collaborative research centre based between Philipps-Universität Marburg, Justus-Liebig-Universität Gießen and the Herder Institute, Marburg and is a Research Affiliate at the Centre for Technology and Global Affairs at the University of Oxford. He will soon be starting a 3-year Addison Wheeler research fellowship in the Department of Geography at the Durham University

Dr Chris Elsden is a research associate in Design Informatics at the University of Edinburgh. Chris is primarily working on the AHRC Creative Informatics project., with specific interests in FinTech and livestreaming within the Creative Industries. He is an HCI researcher, with a background in sociology, and expertise in the human experience of a data-driven life. Using and developing innovative design research methods, his work undertakes diverse, qualitative and often speculative engagements with participants to investigate emerging relationships with technology – particularly data-driven tools and financialn technologies. Chris gained his PhD in Computer Science at Open Lab, Newcastle University in 2018, and in 2019 was a recipient of a SIGCHI Outstanding Dissertation Award.

Dr Mike Duggan is a Teaching Fellow in Digital Cultures in the Department of Digital Humanities at Kings College London. He was awarded a PhD in Cultural Geography from Royal Holloway University of London in 2017, which examined everyday digital mapping practices. This project was co-funded by the Ordnance Survey and the EPSRC. He is a member of the Living Maps network, where he is an editor for the ‘navigations’ section and previously curated the seminar series. Mike’s research is broadly interested in the digital and cultural geographies that emerge from the intersections between everyday life and digital technology.

Professor Chris Speed is Chair of Design Informatics at the University of Edinburgh where his research focuses upon the Network Society, Digital Art and Technology, and The Internet of Things. Chris has sustained a critical enquiry into how network technology can engage with the fields of art, design and social experience through a variety of international digital art exhibitions, funded research projects, books journals and conferences. At present Chris is working on funded projects that engage with the social opportunities of crypto-currencies, an internet of toilet roll holders, and a persistent argument that chickens are actually robots.  Chris is co-editor of the journal Ubiquity and co-directs the Design Informatics Research Centre that is home to a combination of researchers working across the fields of interaction design, temporal design, anthropology, software engineering and digital architecture, as well as the PhD, MA/MFA and MSc and Advanced MSc programmes.

David Chatting is a designer and technologist who works in software and hardware to explore the impact of emerging technologies in everyday lives. He is currently a PhD student in the Department of Design at Goldsmiths – University of London, a Visiting Researcher at Newcastle University’s Open Lab and has his own design practice. Previously he was a Senior Researcher at BTs Broadband Applications Research Centre. David has a Masters degree in Design Interactions from the Royal College of Art (2012) and a Bachelors degree in Computer Science from the University of Birmingham (2000). He has published papers and filed patents in the fields of HCI, psychology, tangible interfaces, computer vision and computer graphics.

Hannah Redler Hawes (Data as Culture) is an independent curator and codirector of the Data as Culture art programme at the Open Data Institute in London. Hannah specialises in emerging artistic practice within the fields of art and science and technology, with an interest in participatory process. She has previously developed projects for museums, galleries, corporate contexts, digital space and the public realm including the  Institute of Physics, Tate Modern, The Lowry, Natural History Museum, FACT Liverpool, the Digital Catapult and Science Gallery London, and has provided specialist consultancy services to the Wellcome Collection, Discover South Kensington and the Horniman Museum. Hannah enjoys projects that redraw boundaries between different disciplines. Current research is around addiction, open data, networked culture and new forms of programming beyond the gallery.

Tinderbox Collective : From grass-roots youth work to award-winning music productions, Tinderbox is building a vibrant and eclectic community of young musicians and artists in Scotland. We have a number of programmes that cross over with each other and come together wherever possible.  They are open to children and young people aged 10 – 25, from complete beginners to young professionals and all levels in between. Tinderbox Lab is our digital arts programme and shared studio maker-space in Edinburgh that brings together artists across disciplines with an interest in digital media and interactive technologies. It is a new programme that started development in 2019, leading to projects and events such as Room to Play, a 10-week course for emerging artists led by Yann Seznec; various guest artist talks & workshops; digital arts exhibitions at the V&A Dundee & Edinburgh Festival of Sound; digital/electronics workshops design/development for children & young people; and research included as part of Electronic Visualisation and the Arts (EVA) London 2019 conference.

Jack Nissan (Tinderbox) is the founder and director of the Tinderbox Collective. In 2012/13, Jack took part in a fellowship programmed called International Creative Entrepreneurs and spent several months working with community activists and social enterprises in China, primarily with families and communities on the outskirts of Beijing with an organisation called Hua Dan. Following this, he set up a number of international exchanges and cross-cultural productions that formed the basis for Tinderbox’s Journey of a Thousand Wings programme, a project bringing together artists and community projects from different countries. He is also a co-director and founding member of Hidden Door, a volunteer-run multi-arts festival, and has won a number of awards for his work across creative and social enterprise sectors. He has been invited to take part in several steering committees and advisory roles, including for Creative Scotland’s new cross-cutting theme on Creative Learning and Artworks Scotland’s peer-networks for artists working in participatory settings. Previously, Jack worked as a researcher in psychology and ageing for the multidisciplinary MRC Centre for Cognitive Ageing and Cognitive Epidemiology, specialising in areas of neuropsychology and memory.

Luci Holland (Tinderbox) is a Scottish (Edinburgh-based) composer, sound artist and radio presenter who composes and produces music and audiovisual art for film, games and concert. As a games music composer Luci wrote the original dynamic/responsive music for Blazing Griffin‘s 2018 release Murderous Pursuits, and has composed and arranged for numerous video game music collaborations, such as orchestrating and producing an arrangement of Jessica Curry‘s Disappearing with label Materia Collective’s bespoke cover album Pattern: An Homage to Everybody’s Gone to the Rapture. Currently she has also been composing custom game music tracks for Skyrim mod Lordbound and a variety of other film and game music projects. Luci also builds and designs interactive sonic art installations for festivals and venues (Refraction (Cryptic), CITADEL (Hidden Door)); and in 2019 Luci joined new classical music station Scala Radio to present The Console, a weekly one-hour show dedicated to celebrating great music in games. Luci also works as a musical director and composer with the youth music charity Tinderbox Project on their Orchestra & Digital Arts programmes; classical music organisation Absolute Classics; and occasionally coordinates musical experiments and productions with her music-for-media band Mantra Sound.

Good luck to all who submit an expression of interest and good luck to Dr. Thornton (I see from her bio that she’s been shortlisted for the 2020 Lumen Prize).

Nanoparticles and the gut health of major living species of animals

A July 27, 2020 news item on Nanowerk announces research into gut health described as seminal (Note: A link has been removed),

An international team of scientists has completed the first ever study into the potential impact of naturally occurring and man-made nanoparticles on the health of all types of the major living species of animals.

Conceived by researchers at the University of Plymouth, as part of the EU [European Union] Nanofase project, the study assessed how the guts of species from honey bees to humans could protect against the bioaccumulation and toxicological effects of engineered nanomaterials (ENMs) found within the environment.

A July 27, 2020 University of Plymouth press release, which originated the news item, provides more detail,

It showed that the digestive systems of many species have evolved to act as a barrier guarding against the absorption of potentially damaging particles.

However, invertebrates such as earthworms also have roving cells within their guts, which can take up ENMs and transfer them to the gut wall.

This represents an additional risk for many invertebrate species where the particles can be absorbed via these roving cells, with consequent effects on internal organs having the potential to cause lasting damage.

Fortunately, this process is not replicated in humans and other vertebrate animals, however there is still the potential for nanomaterials to have a negative impact through the food chain.

The study, published in the July [2020] edition of Environmental Science: Nano, involved scientists from the UK, the Netherlands, Slovenia and Portugal and focused on particles measuring up to 100 nanometres (around 1/10 millionth of a metre).

It combined existing and new research into species including insects and other invertebrates, fish, birds, and mammals, as well as identifying knowledge gaps on reptiles and amphibians. The study provides the first comprehensive overview of how differences in gut structure can affect the impact of ENMs across the animal kingdom.

Richard Handy, Professor of Environmental Toxicology at the University of Plymouth and the study’s senior author, said:

“This is a seminal piece work that combines nearly 100 years of zoology research with our current understanding of nanotechnology.

“The threats posed by engineered nanomaterials are becoming better known, but this study provides the first comprehensive and species-level assessment of how they might pose current and future threats. It should set the foundations for understanding the dietary hazard in the animal kingdom.”

Nanomaterials come in three forms – naturally occurring, incidentally occurring from human activities, and deliberately manufactured – and their use has increased exponentially in the last decade.

They have consistently found new applications in a wide variety of industrial sectors, including electrical appliances, medicines, cleaning products and textiles.

Professor Handy, who has advised organisations including the Organisation for Economic Co-operation and Development and the United States National Nanotechnology Initiative, added:

“Nanoparticles are far too small for the human eye to see but that doesn’t mean they cannot cause harm to living species. The review element of this study has shown they have actually been written about for many decades, but it is only recently that we have begun to understand the various ways they occur and now the extent to which they can be taken up. Our new EU project, NanoHarmony, looks to build on that knowledge and we are currently working with Public Health England and others to expand our method for detecting nanomaterials in tissues for food safety and other public health matters.”

Here’s a link to and a citation for the paper,

The gut barrier and the fate of engineered nanomaterials: a view from comparative physiology by Meike van der Zande, Anita Jemec Kokalj, David J. Spurgeon, Susana Loureiro, Patrícia V. Silva, Zahra Khodaparast, Damjana Drobne, Nathaniel J. Clark, Nico W. van den Brink, Marta Baccaro, Cornelis A. M. van Gestel, Hans Bouwmeester and Richard D. Handy. Environmental Science: Nano, Issue 7 (July 2020) DOI: 10.1039/D0EN00174K First published 27 Apr 2020

This article is open access.

If you’re curious about Nanofase (Nanomaterial FAte and Speciation in the Environment), there’s more here and there’s more about NanoHarmony here.

Improving neuromorphic devices with ion conducting polymer

A July 1, 2020 news item on ScienceDaily announces work which researchers are hopeful will allow them exert more control over neuromorphic devices’ speed of response,

“Neuromorphic” refers to mimicking the behavior of brain neural cells. When one speaks of neuromorphic computers, they are talking about making computers think and process more like human brains-operating at high-speed with low energy consumption.

Despite a growing interest in polymer-based neuromorphic devices, researchers have yet to establish an effective method for controlling the response speed of devices. Researchers from Tohoku University and the University of Cambridge, however, have overcome this obstacle through mixing the polymers PSS-Na and PEDOT:PSS, discovering that adding an ion conducting polymer enhances neuromorphic device response time.

A June 24, 2020 Tohoku University press release (also on EurekAlert), which originated the news item, provides a few more technical details,

Polymers are materials composed of long molecular chains and play a fundamental aspect in modern life from the rubber in tires, to water bottles, to polystyrene. Mixing polymers together results in the creation of new materials with their own distinct physical properties.

Most studies on neuromorphic devices based on polymer focus exclusively on the application of PEDOT: PSS, a mixed conductor that transports both electrons and ions. PSS-Na, on the other hand, transports ions only. By blending these two polymers, the researchers could enhance the ion diffusivity in the active layer of the device. Their measurements confirmed an increase in device response time, achieving a 5-time shorting at maximum. The results also proved how closely related response time is to the diffusivity of ions in the active layer.

“Our study paves the way for a deeper understanding behind the science of conducting polymers.” explains co-author Shunsuke Yamamoto from the Department of Biomolecular Engineering at Tohoku University’s Graduate School of Engineering. “Moving forward, it may be possible to create artificial neural networks composed of multiple neuromorphic devices,” he adds.

Here’s a link to and a citation for the paper,

Controlling the Neuromorphic Behavior of Organic Electrochemical Transistors by Blending Mixed and Ion Conductors by Shunsuke Yamamoto and George G. Malliaras. ACS [American Chemical Society] Appl. Electron. Mater. 2020, XXXX, XXX, XXX-XXX DOI: https://doi.org/10.1021/acsaelm.0c00203 Publication Date:June 15, 2020 Copyright © 2020 American Chemical Society

This paper is behind a paywall.

Preventing warmed-up vaccines from becoming useless

One of the major problems with vaccines is that they need to be refrigerated. (The Nanopatch, which additionally wouldn’t require needles or syringes, is my favourite proposed solution and it comes from Australia.) This latest research into making vaccines more long-lasting is from the UK and takes a different approach to the problem.

From a June 8, 2020 news item on phys.org,

Vaccines are notoriously difficult to transport to remote or dangerous places, as they spoil when not refrigerated. Formulations are safe between 2°C and 8°C, but at other temperatures the proteins start to unravel, making the vaccines ineffective. As a result, millions of children around the world miss out on life-saving inoculations.

However, scientists have now found a way to prevent warmed-up vaccines from degrading. By encasing protein molecules in a silica shell, the structure remains intact even when heated to 100°C, or stored at room temperature for up to three years.

The technique for tailor-fitting a vaccine with a silica coat—known as ensilication—was developed by a Bath [University] team in collaboration with the University of Newcastle. This pioneering technology was seen to work in the lab two years ago, and now it has demonstrated its effectiveness in the real world too.

Here’s the lead researcher describing her team’s work

Ensilication: success in animal trials from University of Bath on Vimeo.

A June 8, 2020 University of Bath press release (also on EurekAlert) fills in more details about the research,

In their latest study, published in the journal Scientific Reports, the researchers sent both ensilicated and regular samples of the tetanus vaccine from Bath to Newcastle by ordinary post (a journey time of over 300 miles, which by post takes a day or two). When doses of the ensilicated vaccine were subsequently injected into mice, an immune response was triggered, showing the vaccine to be active. No immune response was detected in mice injected with unprotected doses of the vaccine, indicating the medicine had been damaged in transit.

Dr Asel Sartbaeva, who led the project from the University of Bath’s Department of Chemistry, said: “This is really exciting data because it shows us that ensilication preserves not just the structure of the vaccine proteins but also the function – the immunogenicity.”

“This project has focused on tetanus, which is part of the DTP (diphtheria, tetanus and pertussis) vaccine given to young children in three doses. Next, we will be working on developing a thermally-stable vaccine for diphtheria, and then pertussis. Eventually we want to create a silica cage for the whole DTP trivalent vaccine, so that every child in the world can be given DTP without having to rely on cold chain distribution.”

Cold chain distribution requires a vaccine to be refrigerated from the moment of manufacturing to the endpoint destination.

Silica is an inorganic, non-toxic material, and Dr Sartbaeva estimates that ensilicated vaccines could be used for humans within five to 15 years. She hopes the technology to silica-wrap proteins will eventually be adopted to store and transport all childhood vaccines, as well as other protein-based products, such as antibodies and enzymes.

“Ultimately, we want to make important medicines stable so they can be more widely available,” she said. “The aim is to eradicate vaccine-preventable diseases in low income countries by using thermally stable vaccines and cutting out dependence on cold chain.”

Currently, up to 50% of vaccine doses are discarded before use due to exposure to suboptimal temperatures. According to the World Health Organisation (WHO), 19.4 million infants did not receive routine life-saving vaccinations in 2018.

Here’s a link to and a citation for the paper,

Ensilicated tetanus antigen retains immunogenicity: in vivo study and time-resolved SAXS characterization by A. Doekhie, R. Dattani, Y-C. Chen, Y. Yang, A. Smith, A. P. Silve, F. Koumanov, S. A. Wells, K. J. Edler, K. J. Marchbank, J. M. H. van den Elsen & A. Sartbaeva. Scientific Reports volume 10, Article number: 9243 (2020) DOI: https://doi.org/10.1038/s41598-020-65876-3 Published 08 June 2020

This paper is open access

Nanopatch update

I tend to lose track as a science gets closer to commercialization since the science news becomes business news and I almost never scan that sector. It’s been about two-and-half years since I featured research that suggested Nanopatch provided more effective polio vaccination than the standard needle and syringe method in a December 20, 2017 post. The latest bits of news have an interesting timeline.

March 2020

Mark Kendal (Wikipedia entry) is the researcher behind the Nanopatch. He’s interviewed in a March 5, 2020 episode (about 20 mins.) in the Pioneers Series (bankrolled by Rolex [yes, the watch company]) on Monocle.com. Coincidentally or not, a new piece of research funded by Vaxxas (the nanopatch company founded by Mark Kendall; on the website you will find a ‘front’ page and a ‘Contact us’ page only) was announced in a March 17, 2020 news item on medical.net,

Vaxxas, a clinical-stage biotechnology company commercializing a novel vaccination platform, today announced the publication in the journal PLoS Medicine of groundbreaking clinical research indicating the broad immunological and commercial potential of Vaxxas’ novel high-density microarray patch (HD-MAP). Using influenza vaccine, the clinical study of Vaxxas’ HD-MAP demonstrated significantly enhanced immune response compared to vaccination by needle/syringe. This is the largest microarray patch clinical vaccine study ever performed.

“With vaccine coated onto Vaxxas HD-MAPs shown to be stable for up to a year at 40°C [emphasis mine], we can offer a truly differentiated platform with a global reach, particularly into low and middle income countries or in emergency use and pandemic situations,” said Angus Forster, Chief Development and Operations Officer of Vaxxas and lead author of the PLoS Medicine publication. “Vaxxas’ HD-MAP is readily fabricated by injection molding to produce a 10 x 10 mm square with more than 3,000 microprojections that are gamma-irradiated before aseptic dry application of vaccine to the HD-MAP’s tips. All elements of device design, as well as coating and QC, have been engineered to enable small, modular, aseptic lines to make millions of vaccine products per week.”

The PLoS publication reported results and analyses from a clinical study involving 210 clinical subjects [emphasis mine]. The clinical study was a two-part, randomized, partially double-blind, placebo-controlled trial conducted at a single Australian clinical site. The clinical study’s primary objective was to measure the safety and tolerability of A/Singapore/GP1908/2015 H1N1 (A/Sing) monovalent vaccine delivered by Vaxxas HD-MAP in comparison to an uncoated Vaxxas HD-MAP and IM [intramuscular] injection of a quadrivalent seasonal influenza vaccine (QIV) delivering approximately the same dose of A/Sing HA protein. Exploratory outcomes were: to evaluate the immune responses to HD-MAP application to the forearm with A/Sing at 4 dose levels in comparison to IM administration of A/Sing at the standard 15 μg HA per dose per strain, and to assess further measures of immune response through additional assays and assessment of the local skin response via punch biopsy of the HD-MAP application sites. Local skin response, serological, mucosal and cellular immune responses were assessed pre- and post-vaccination.

Here’s a link to and a citation for the latest ‘nanopatch’ paper,

Safety, tolerability, and immunogenicity of influenza vaccination with a high-density microarray patch: Results from a randomized, controlled phase I clinical trial by Angus H. Forster, Katey Witham, Alexandra C. I. Depelsenaire, Margaret Veitch, James W. Wells, Adam Wheatley, Melinda Pryor, Jason D. Lickliter, Barbara Francis, Steve Rockman, Jesse Bodle, Peter Treasure, Julian Hickling, Germain J. P. Fernando. DOI: https://doi.org/10.1371/journal.pmed.1003024 PLOS (Public Library of Science) Published: March 17, 2020

This is an open access paper.

May 2020

Two months later, Merck, an American multinational pharmaceutical company, showed some serious interest in the ‘nanopatch’. A May 28, 2020 article by Chris Newmarker for drugdelvierybusiness.com announces the news (Note: Links have been removed),

Merck has exercised its option to use Vaxxas‘ High Density Microarray Patch (HD-MAP) platform as a delivery platform for a vaccine candidate, the companies announced today [Thursday, May 28, 2020].

Also today, Vaxxas announced that German manufacturing equipment maker Harro Höfliger will help Vaxxas develop a high-throughput, aseptic manufacturing line to make vaccine products based on Vaxxas’ HD-MAP technology. Initial efforts will focus on having a pilot line operating in 2021 to support late-stage clinical studies — with a goal of single, aseptic-based lines being able to churn out 5 million vaccine products a week.

“A major challenge in commercializing microarray patches — like Vaxxas’ HD-MAP — for vaccination is the ability to manufacture at industrially-relevant scale, while meeting stringent sterility and quality standards. Our novel device design along with our innovative vaccine coating and quality verification technologies are an excellent fit for integration with Harro Höfliger’s aseptic process automation platforms. Adopting a modular approach, it will be possible to achieve output of tens-of-millions of vaccine-HD-MAP products per week,” Hoey [David L. Hoey, President and CEO of Vaxxas] said.

Vaxxas also claims that the patches can deliver vaccine more efficiently — a positive when people around the world are clamoring for a vaccine against COVID-19. The company points to a recent [March 17, 2020] clinical study in which their micropatch delivering a sixth of an influenza vaccine dose produced an immune response comparable to a full dose by intramuscular injection. A two-thirds dose by HD-MAP generated significantly faster and higher overall antibody responses.

As I noted earlier, this is an interesting timeline.

Final comment

In the end, what all of this means is that there may be more than one way to deal with vaccines and medicines that deteriorate all too quickly unless refrigerated. I wish all of these researchers the best.

Nanodevices show (from the inside) how cells change

Embryo cells + nanodevices from University of Bath on Vimeo.

Caption: Five mouse embryos, each containing a nanodevice that is 22-millionths of a metre long. The film begins when the embryos are 2-hours old and continues for 5 hours. Each embryo is about 100-millionths of a metre in diameter. Credit: Professor Tony Perry

Fascinating, yes? As I often watch before reading the caption, these were mysterious grey blobs moving around was my first impression. Given the headline for the May 26, 2020 news item on ScienceDaily, I was expecting the squarish-shaped devices inside,

For the first time, scientists have introduced minuscule tracking devices directly into the interior of mammalian cells, giving an unprecedented peek into the processes that govern the beginning of development.

This work on one-cell embryos is set to shift our understanding of the mechanisms that underpin cellular behaviour in general, and may ultimately provide insights into what goes wrong in ageing and disease.

The research, led by Professor Tony Perry from the Department of Biology and Biochemistry at the University of Bath [UK], involved injecting a silicon-based nanodevice together with sperm into the egg cell of a mouse. The result was a healthy, fertilised egg containing a tracking device.

This image looks to have been enhanced with colour,

Fluorescence of an embryo containing a nanodevice. Courtesy: University of Bath

A May 25, 2020 University of Bath press release (also on EurekAlert but published May 26, 2020)

The tiny devices are a little like spiders, complete with eight highly flexible ‘legs’. The legs measure the ‘pulling and pushing’ forces exerted in the cell interior to a very high level of precision, thereby revealing the cellular forces at play and showing how intracellular matter rearranged itself over time.

The nanodevices are incredibly thin – similar to some of the cell’s structural components, and measuring 22 nanometres, making them approximately 100,000 times thinner than a pound coin. This means they have the flexibility to register the movement of the cell’s cytoplasm as the one-cell embryo embarks on its voyage towards becoming a two-cell embryo.

“This is the first glimpse of the physics of any cell on this scale from within,” said Professor Perry. “It’s the first time anyone has seen from the inside how cell material moves around and organises itself.”

WHY PROBE A CELL’S MECHANICAL BEHAVIOUR?

The activity within a cell determines how that cell functions, explains Professor Perry. “The behaviour of intracellular matter is probably as influential to cell behaviour as gene expression,” he said. Until now, however, this complex dance of cellular material has remained largely unstudied. As a result, scientists have been able to identify the elements that make up a cell, but not how the cell interior behaves as a whole.

“From studies in biology and embryology, we know about certain molecules and cellular phenomena, and we have woven this information into a reductionist narrative of how things work, but now this narrative is changing,” said Professor Perry. The narrative was written largely by biologists, who brought with them the questions and tools of biology. What was missing was physics. Physics asks about the forces driving a cell’s behaviour, and provides a top-down approach to finding the answer.

“We can now look at the cell as a whole, not just the nuts and bolts that make it.”

Mouse embryos were chosen for the study because of their relatively large size (they measure 100 microns, or 100-millionths of a metre, in diameter, compared to a regular cell which is only 10 microns [10-millionths of a metre] in diameter). This meant that inside each embryo, there was space for a tracking device.

The researchers made their measurements by examining video recordings taken through a microscope as the embryo developed. “Sometimes the devices were pitched and twisted by forces that were even greater than those inside muscle cells,” said Professor Perry. “At other times, the devices moved very little, showing the cell interior had become calm. There was nothing random about these processes – from the moment you have a one-cell embryo, everything is done in a predictable way. The physics is programmed.”

The results add to an emerging picture of biology that suggests material inside a living cell is not static, but instead changes its properties in a pre-ordained way as the cell performs its function or responds to the environment. The work may one day have implications for our understanding of how cells age or stop working as they should, which is what happens in disease.

The study is published this week in Nature Materials and involved a trans-disciplinary partnership between biologists, materials scientists and physicists based in the UK, Spain and the USA.

Here’s a link to and a citation for the paper,

Tracking intracellular forces and mechanical property changes in mouse one-cell embryo development by Marta Duch, Núria Torras, Maki Asami, Toru Suzuki, María Isabel Arjona, Rodrigo Gómez-Martínez, Matthew D. VerMilyea, Robert Castilla, José Antonio Plaza & Anthony C. F. Perry. Nature Materials (2020) DOI: https://doi.org/10.1038/s41563-020-0685-9 Published 25 May 2020

This paper is behind a paywall.

Implanted biosensors could help sports professionals spy on themselves

A May 21, 2020 news item on Nanowerk describes the latest in sports self-monitoring research (or as I like to think of it, spying on yourself),

Researchers from the University of Surrey have revealed their new biodegradable motion sensor – paving the way for implanted nanotechnology that could help future sports professionals better monitor their movements to aid rapid improvements, or help caregivers remotely monitor people living with dementia.

A May 21, 12020 University of Surrey press release (also on EurekAlert), which originated the news item, mentioned the collaboration with a South Korean University and provides a few details about this work,

In a paper published by Nano Energy, a team from Surrey’s Advanced Technology Institute (ATI), in partnership with Kyung Hee University in South Korea, detail how they developed a nano-biomedical motion sensor which can be paired with AI systems to recognise movements of distinct body parts.

The ATI’s technology builds on its previous work around triboelectric nanogenerators (TENG), where researchers used the technology to harness human movements and generate small amounts of electrical energy. Combining the two means self-powered sensors are possible without the need for chemical or wired power sources.

In their new research, the team from the ATI developed a flexible, biodegradable and long-lasting TENG from silk cocoon waste. They used a new alcohol treatment technique, which leads to greater durability for the device, even under harsh or humid environments.

Dr. Bhaskar Dudem, project lead and Research Fellow at the ATI, said: “We are excited to show the world the immense potential of our durable, silk film based nanogenerator. It’s ability to work in severe environments while being able to generate electricity and monitor human movements positions our TENG in a class of its own when it comes to the technology.”

Professor Ravi Silva, Director of the ATI, said: “We are proud of Dr Dudem’s work which is helping the ATI lead the way in developing wearable, flexible, and biocompatible TENGs that efficiently harvest environmental energies. If we are to live in a future where autonomous sensing and detecting of pathogens is important, the ability to create both self-powered and wireless biosensors linked to AI is a significant boost.”

Here’s a link to and a citation for the paper,

Exploring theoretical and experimental optimization towards high-performance triboelectric nanogenerators using microarchitecture silk cocoon films by Bhaskar Dudem, R.D. Ishara G. Dharmasena, Sontyana Adonijah Graham, Jung Woo Leem, Harishkumarreddy Patnam, Anki Reddy Mule, S. Ravi P. Silva, Jae Su Yu. Nano Energy DOI: https://doi.org/10.1016/j.nanoen.2020.104882 Available online 11 May 2020, 104882

This paper is behind a paywall.