Tag Archives: Arctic

Shipwrecks being brought back to life with ‘smart nanotech’

The American Chemical Society (ACS) is holding its 256th meeting from August 19 – 22, 2018 in Boston, Massachusetts, US. This August 21, 2018 news item on Nanowerk announces a ‘shipwreck’ presentation at the meeting,

Thousands of shipwrecks litter the seafloor all over the world, preserved in sediments and cold water. But when one of these ships is brought up from the depths, the wood quickly starts deteriorating. Today, scientists report a new way to use “smart” nanocomposites to conserve a 16th-century British warship, the Mary Rose, and its artifacts. The new approach could help preserve other salvaged ships by eliminating harmful acids without damaging the wooden structures themselves.

An August 21, 2018 ACS press release (also on EurekAlert), which originated the news item, delves further into the research and scientists’ after hours (?) activities,

“This project began over a glass of wine with Eleanor Schofield, Ph.D., who is head of conservation at the Mary Rose Trust,” recalls Serena Corr, Ph.D., the project’s principal investigator. “She was working on techniques to preserve the wood hull and assorted artifacts and needed a way to direct the treatment into the wood. We had been working with functional magnetic nanomaterials for applications in imaging, and we thought we might be able to apply this technology to the Mary Rose.”

The Mary Rose sank in 1545 off the south coast of England and remained under the seabed until she was salvaged in 1982, along with over 19,000 artifacts and pieces of timber. About 40 percent of the original structure survived. The ship and its artifacts give unique insights into Tudor seafaring and what it was like to live during that period. A state-of-the-art museum in Portsmouth, England, displays the ship’s hull and artifacts. A video about the ship and its artifacts can be viewed here.

While buried in the seabed, sulfur-reducing marine bacteria migrated into the wood of the Mary Rose and produced hydrogen sulfide. This gas reacted with iron ions from corroded fixtures like cannons to form iron sulfides. Although stable in low-oxygen environments, sulfur rapidly oxidizes in regular air in the presence of iron to form destructive acids. Corr’s goal was to avoid acid production by removing the free iron ions.

Once raised from the seabed, the ship was sprayed with cold water, which stopped it from drying out and prevented further microbial activity. The conservation team then sprayed the hull with different types of polyethylene glycol (PEG), a common polymer with a wide range of applications, to replace the water in the cellular structure of the wood and strengthen its outer layer.

Corr and her postdoctoral fellow Esther Rani Aluri, Ph.D., and Ph.D. candidate Enrique Sanchez at the University of Glasgow are devising a new family of tiny magnetic nanoparticles to aid in this process, in collaboration with Schofield and Rachel O’Reilly, Ph.D., at the University of Warwick. In their initial step, the team, led by Schofield, used synchrotron techniques to probe the nature of the sulfur species before turning the PEG sprays off, and then periodically as the ship dried. This was the first real-time experiment to closely examine  the evolution of oxidized sulfur and iron species. This accomplishment has informed efforts to design new targeted treatments for the removal of these harmful species from the Mary Rose wood.

The next step will be to use a nanocomposite based on core magnetic iron oxide nanoparticles that include agents on their surfaces that can remove the ions. The nanoparticles can be directly applied to the porous wood structure and guided to particular areas of the wood using external magnetic fields, a technique previously demonstrated for drug delivery. The nanocomposite will be encompassed in a heat-responsive polymer that protects the nanoparticles and provides a way to safely deliver them to and from the wood surface. A major advantage of this approach is that it allows for the complete removal of free iron and sulfate ions from the wood, and these nanocomposites can be tuned by tweaking their surfaces.

With this understanding, Corr notes, “Conservators will have, for the first time, a state-of-the-art quantitative and restorative method for the safe and rapid treatment of wooden artifacts. We plan to then transfer this technology to other materials recovered from the Mary Rose, such as textiles and leather.”

The researchers acknowledge funding from the Mary Rose Trust and the Leverhulme Trust.

There is a video about the Mary Rose produced by Agence France Presse (AFP) and published on Youtube in May 2013,

Here’s the text from AFP Mary Rose entry on Youtube,

The relics from the Mary Rose, the flagship of England’s navy when it sank in 1545 as a heartbroken king Henry VIII watched from the shore, have finally been reunited with the famous wreck in a new museum offering a view of life in Tudor times. Duration: 02:35

One more thing: Canadian shipwrecks

We don’t have a ‘Henry VIII’ story or ‘smart nano and shipwrecks’ story but we do have a federal agency devoted to underwater archaeology, Parks Canada Underwater Archaeology webpage,

Underwater archaeology deals with archaeological sites found below the surface of oceans, rivers, and lakes and on the foreshore. In addition to shipwrecks, underwater archaeologists study submerged aboriginal sites such as fish weirs and middens; remains of historic structures such as wharves, canal locks, and marine railways; sunken aircraft; and other submerged cultural heritage resources.

Underwater archaeology shares the same methodology and principles as archaeology carried out on land sites. All archaeology involves the careful study of artefacts, structures and features to reconstruct and explain the lives of people in the past. However, because it is carried out in a more challenging environment, underwater archaeological fieldwork is more complex than land archaeology.

Specialized techniques and equipment are required to work productively underwater. Staying warm during long dives is a constant concern, so underwater archaeologists often use masks that cover their entire faces, dry suits worn over layers of warm clothing, or in cases where the water is extremely cold, such as the excavation in Red Bay (Labrador), wet suits supplied with a flow of hot water. Underwater communication systems are used to talk to people on the surface or to other divers. Removing sediments covering underwater sites requires the controlled use of specially designed equipment such as suction airlifts and small dredges. Recording information underwater presents its own challenges. Special underwater paper is used for notes and drawings, while photo and video cameras are placed in waterproof housings.

Underwater archaeological fieldwork includes remote-sensing surveys using geophysical techniques, diving surveys to locate and map sites, site monitoring, and excavation. The success of an underwater archaeological project rests on accurate documentation of all aspects of the process. Meticulous mapping and recording are particularly essential when excavation is required, as artefacts and other physical evidence are permanently removed from their original contexts. Archaeologists aim to be able to reconstruct the entire site from the records they generate during fieldwork.

Underwater archeology with Marc-André Bernier

Current position:00:00:00

Total time:00:02:27

There’s also a podcast interview with Marc-André Bernier where he discusses an important Canadian shipwreck, from the Library and Archives Canada, Underwater Canada: Investigating Shipwrecks webpage (podcast length 27:25), here’s the transcript for those who prefer reading,

Shipwrecks have stirred up interest in Canada’s maritime heritage for many decades. 2014 marks the 100th anniversary of the sinking of the Empress of Ireland, one of Canada’s worst maritime disasters.

In this episode, Marc-André Bernier, Chief of Parks Canada’s Underwater Archaeology Service, joins us to discuss shipwrecks, their importance in Canadian history, and how LAC plays an important role in researching, discovering and investigating them.

Podcast Transcript

Underwater Canada: Investigating Shipwrecks

Jessica Ouvrard: Welcome to “Discover Library and Archives Canada: Your History, Your Documentary Heritage.” I’m your host, Jessica Ouvrard. Join us as we showcase the treasures from our vaults; guide you through our many services; and introduce you to the people who acquire, safeguard and make known Canada’s documentary heritage.

Canada has a rich maritime history filled with many tragedies, from small boats [lost] in the Great Lakes, to the sinking of the Empress of Ireland in the St. Lawrence River, to Sir John Franklin’s doomed expeditions in the Arctic. The shipwrecks capture our imaginations and evoke images of tragedy, heroism, mystery and discovery. 2014 also marks the 100th anniversary of the sinking of the Empress of Ireland.

Marc-André Bernier, Chief of Parks Canada’s Underwater Archaeology Service, is joining us to discuss shipwrecks and their significance in Canada’s history, and LAC’s important role in the research, discovery and investigation of these shipwrecks.

Hello, Marc-André Bernier. Thank you for coming today.

Marc-André Bernier: My pleasure. Hello to you.

JO: For those who don’t know much about underwater archaeology, can you explain what it is and the risks and challenges that it presents?

MAB: I’ll start with the challenges rather than the risks, because there are obviously risks, but we try to minimize them. Diving is inherently risky. But I’ll start with the challenges because they are, to a certain extent, what characterize underwater archaeology.

We face a series of challenges that are more complicated, that make our work much more complicated than terrestrial archaeology. We work on water and underwater, and our working conditions are dictated by what happens outside, by nature. We can’t work every day on the water, especially if our work involves the sea or the ocean, for example. And when we work underwater, we have to deal with constraints in terms of time and sometimes visibility. That means that we have to be extremely well organized. Preparation is crucial. Logistics are crucial.

In terms of preparation, we need to properly prepare our research using archives and so on, but we also have to be prepared in terms of knowing what’s going on in the field. We need to know the environmental conditions and diving conditions, even when we can’t dive. Increasingly, the work involves heading into deeper areas that can only be reached by robots, by remotely operated equipment. So we have to be able to adapt.

We have to be very precise and very organized because sometimes we have only a few minutes to access a site that will tell us many historical secrets. So we have to come very well prepared.

And when we dive, we’re working in a foreign environment. We have to be good divers, yes, but we also have to have access to tools that will give us access to information. We have to take into account currents, darkness, and so on. The work is really very challenging. But with the rapid development of new technologies in recent years, we have access to more and more tools. We do basically the same work as archaeologists on land. However, the work is done in a completely different environment.

JO: A bit hostile in fact.

MAB: A bit hostile, but with sites, objects and information that are not accessible elsewhere. So there’s an opportunity to learn about history in a different way, and in some cases on a much larger scale.

JO: With all the maritime traffic in Canada, there must have been many accidents. Can you talk about them and give us an idea of the number?

MAB: People don’t realize that we’re a maritime country. We are a country that has evolved and developed around water. This was true even before the Europeans arrived. The First Nations often travelled by water. That travel increased or developed differently, if you will, when the Europeans arrived.

The St. Lawrence River, for example, and the Atlantic provinces were the point of entry and the route. We refer to different waterways, such as the Ottawa and Richelieu rivers. They constituted the route. So, there was heavy traffic, which meant many accidents. We’re talking about probably tens of thousands of shipwrecks if we include the Great Lakes and all the coasts of Canada. Since Canada has the longest coastline in the world, there is potential for shipwrecks. Only a small number of those shipwrecks have been found, but some are very significant and extremely impressive as well.

JO: Are there also many military ships, or is it more…?

MAB: That’s another thing that people don’t realize. There have been many military confrontations in Canadian waters, dating back to the New France era, or when Phips (Sir William Phips) arrived at Quebec City in 1690 and laid siege to the city. He arrived by ship and lost ships when he returned. During the Conquest, there were naval confrontations in Louisbourg, Nova Scotia; in Chaleur Bay; and even at Quebec City. Then, in the War of 1812, the Great Lakes were an extremely important maritime theatre of war in terms of naval battles. There are a number of examples in the Richelieu River.

Then we have the Second World War, with ships and German submarines. We all know the stories of the submarines that came inside the Gulf. So there are many military shipwrecks, from the New France era onward.

JO: What were the most significant shipwrecks in Canada? Have all the shipwrecks been found or…?

MAB: No. There are still shipwrecks that remain to be found. These days at Parks Canada, we’ve been looking for two of the shipwrecks that are considered among the most significant in the country: the HMS Erebus and the HMS Terror, Sir John Franklin’s ships lost in the Arctic. Franklin left England in 1845 to find the Northwest Passage, and he was never heard from again. Those are examples of significant shipwrecks that haven’t been found.

However, significance is always relative. A shipwreck may be very significant, especially if there is loss of life. It’s a tragic event that is deeply affecting. There are many shipwrecks that may not be seen as having national historic significance. However, at the local level, they are tragic stories that have very deep significance and that have profoundly affected an area.

That being said, there are ships that bear witness to memorable moments in the history of our country. Among the national historic sites of shipwrecks are, if we go back, the oldest shipwrecks: the Basque wrecks at Red Bay, Labrador, where whales were hunted in the 16th century. It’s even a UNESCO world heritage site. Then, from the New France era, there’s the Corossol from 1693 and the Phips wrecks from 1690. These are very significant shipwrecks.

Also of great significance are the Louisbourg shipwrecks, the battle site, the Battle of the Restigouche historic site, as well as shipwrecks such as the Hamilton and Scourge from the War of 1812. For all practical purposes, those shipwrecks are intact at the bottom of Lake Ontario. And the Franklin shipwrecks-even if they still haven’t been found-have been declared of national historic significance.

So there’s a wide range of shipwrecks that are significant, but there are thousands and thousands of shipwrecks that have significance. A shipwreck may also be of recreational significance. Some shipwrecks may be a little less historically significant, but for divers, they are exceptional sites for appreciating history and for having direct contact with history. That significance matters.

JO: Yes, they have a bit of a magical side.

MAB: They have a very magical side. When we dive shipwrecks, we travel through history. They give us direct access to our past.

JO: Yes. I imagine that finding a shipwreck is a bit like finding a needle in a haystack?

MAB: It can sometimes be a needle in a haystack, but often it’s by chance. Divers will sometimes stumble upon remains, and it leads to the discovery of a shipwreck. But usually, when we’re looking for a shipwreck, we have to start at the beginning and go to the source. We have to begin with the archives. We have to start by doing research, trying to find every small clue because searching in water over a large area is very difficult and complicated. We face logistical and environmental obstacles in our working conditions. It’s also expensive. We need to use ships and small boats.

There are different ways to find shipwrecks. At one extreme is a method that is technologically very simple. We dive and systematically search an area, if it’s not too deep. At the other extreme, we use the most sophisticated equipment. Today we have what we call robotic research vehicles. It is as sophisticated as launching the device, which is a bit like a self-guided torpedo. We launch it and recover it a few hours later. It carries out a sonar sweep of the bottom along a pre-programmed path. Between the two, we have a range of methods.

Basically, we have to properly define the boundaries of the area. It’s detective work. We have to try to recreate the events and define our search area, then use the proper equipment. The side-scan sonar gives us an image, and magnetometers detect metal. We have to decide which of the tools we’ll use. If we don’t do the research beforehand, we’ll lose a great deal of time.

JO: Have you used the LAC collections in your research, and what types of documents have you found?

MAB: Yes, as often as possible. We try to use the off-site archives, but it’s important to have access to the sources. Our research always starts with the archives. As for the types of documents, I mentioned the Basque documents that were collected through Library and Archives Canada. I’ve personally used colonial archives a lot. For the Corossol sinking in 1693, I remember looking at documents and correspondence that talked about the French recovery from the shipwreck the year after 1693, and the entire Phips epic.

At LAC, there’s a copy of the paintings of Creswell [Samuel Gurney Cresswell], who was an illustrator, painter, and also a lieutenant, in charge of doing illustrations during the HMS Investigator’s journey through the Arctic. So there’s a wide variety of documents, and sometimes we are surprised by the personal correspondence, which gives us details that official documents can’t provide.

JO: How do these documents help you in your research?

MAB: The archival records are always surprising. They help us in every respect. You have to see archaeology as detective work. Every detail is significant. It can be the change in topographical names on old maps that refer to events. There are many “Wreck Points” or “Pointe à la barque,” “Anse à la barque,” and so on. They refer to events. People named places after events. So we can always be surprised by bits of information that seem trivial at first.

It ranges from information on the sites and on the events that led to a shipwreck, to what happened after the sinking and what happened overall. What we want is not only to understand an event, but also to understand the event in the larger context of history, such as the history of navigation. Sometimes, the records provide that broader information.

It ranges from the research information to the analysis afterward: what we have, what we found, what it means and what it says about our history. That’s where the records offer limitless possibilities. We always have surprises. That’s why we enjoy coming to the archives, because we never know what we’ll discover.

JO: Yes, it’s always great to open a box.

MAB: It’s like Christmas. It’s like Christmas when we start delving into archival records, and it’s a sort of prelude to what happens in archaeology. When we reach a site, we’re always excited by what the site has to offer. But we have to be prepared to understand it. That’s why preparation using archives is extremely important to our work.

JO: In terms of LAC sources, do you often look at historical maps? Do you look at the different ones, because we have quite a large collection…

MAB: Quite exceptional, yes.

JO: … from the beginning until now?

MAB: Yes. They provide a lot of information, and we use them, like all sources, as much as possible. We look for different things on the maps. Obviously, we look for places that may show shipwreck locations. These maps may also show the navigation corridors or charts. The old charts show anchorages and routes. They help us recreate navigation habits, which helps us understand the navigation and maritime mindset of the era and gives us clues as to where the ships went and where they were lost.

These maps give us that type of information. They also give us information on the topography and the names of places that have changed over the years. Take the example of the Corossol in the Sept-Îles bay. One of the islands in that bay is called Corossol. For years, people looked for the French ship, the Corossol, near that island. However, Manowin Island was also called Corossol at that time and its name changed. So in the old maps, we traced the origin, and the ship lies much closer to that island. Those are some of the clues.

We also have magnificent maps. One in particular comes to mind. It was created in the 19th century on the Îles-de-la-Madeleine by an insurance company agent who made a wreck map of all the shipwrecks that he knew of. To us, that’s like candy. It’s one of the opportunities that maps provide. Maps are magnificent even if we don’t find clues. Just to admire them-they’re absolutely magnificent.

JO: From a historical point of view, why is it important to study shipwrecks?

MAB: Shipwrecks are in fact a microcosm. They represent a small world. During the time of the voyage, there was a world of its own inside the ship. That in itself is interesting. How did people live on board? What were they carrying? These are clues. The advantage of a shipwreck is that it’s like a Polaroid, a fixed image of a specific point in time. When we study a city such as Quebec City that has been continuously occupied, sometimes it’s difficult to see the separation between eras, or even between events. A shipwreck shows a specific time and specific place.

JO: And it’s frozen in time.

MAB: And it’s frozen in time. So here’s an image, in 1740, what did we have? Of course, we find objects made in other eras that were still in use in that time period. But it really gives us a fixed image, a capsule. We often have an image of a time capsule. It’s very useful, because it’s very rare to have these mini Pompeiis, and we have them underwater. It’s absolutely fascinating and interesting. It’s one of the contributions of underwater archaeology.

The other thing is that we don’t necessarily find the same type of material underwater as on land. The preservation conditions are completely different. On land, we find a great deal of metal. Iron stays fairly well preserved. But there’s not much organic material, unless the environment is extremely humid or extremely dry. Underwater, organic materials are very well preserved, especially if the sedimentation is fairly quick. I remember finding cartouches from 1690 that still had paper around them. So the preservation conditions are absolutely exceptional.

That’s why it’s important. The shipwrecks give us unique information that complements what we find on land, but they also offer something that can’t be found elsewhere.

JO: I imagine that there are preservation problems once it’s…

MAB: And that’s the other challenge.

JO: Yes, certainly.

MAB: If an object is brought up, we have to be ready to take action because it starts to degrade the moment we move it…

JO: It comes into contact with oxygen.

MAB: … Yes, but even when we move it, we expose it to a new corrosion, a new degradation. If we bring it to the surface right away, the process accelerates very quickly. We have to keep the object damp. We always have to be ready to take action. For example, if the water heats up too fast, micro-organisms may develop that accelerate the degradation. We then have to be ready to start preservation treatments, which can take years depending on the object. It’s an enormous responsibility and we have to be ready to handle it, if not, we destroy…

JO: … the heritage.

MAB: … what we are trying to save, and that’s to everyone’s detriment.

JO: Why do you think that people are so fascinated by archaeology, and more specifically by shipwrecks?

MAB: That’s also a paradox. We say that people aren’t interested in history. I am firmly convinced that people enjoy history and are interested in it. It must be well narrated, but people are interested in history. There’s already an interest in our past and in our links with the past. If people feel directly affected by the past, they’ll be fascinated by it. If we add on top of that the element of discovery, and archaeology is discovery, and all the myths surrounding artefact hunters…

JO: … treasure hunters.

MAB: … treasures, and so on. It’s an image that people have. Yes, we hunt treasure, but historical treasure. That image applies even more strongly to shipwrecks. There’s always that myth of the Spanish galleon filled with gold. Everyone thinks that all shipwrecks contain a treasure. That being said, there’s a fascination with discovery and with the past, and add on top of that the notion of the bottom of the sea: it’s the final frontier, where we can be surprised by what we discover. Since these discoveries are often remarkably well preserved, people are absolutely fascinated.

We grow up with stories of pirates, shipwrecks and lost ships. These are powerful images. A shipwreck is an image that captures the imagination. But a shipwreck, when we dive a shipwreck, we have direct contact with the past. People are fascinated by that.

JO: Are shipwreck sites accessible to divers?

MAB: Shipwreck sites are very accessible to divers. For us, it’s a basic principle. We want people to be able to visit these sites. Very rarely do we limit access to a site. We do, for example, in Louisbourg, Nova Scotia. The site is accessible, but with a guide. The site must be visited with a guide because the wrecks are unique and very fragile.

However, the basic principle is that, as I was saying, we should try to allow people to savour and absorb the spirit of the site. The best way is to visit the site. So there are sites that are accessible, and we try to make them accessible. We not only make them accessible, but we also promote them. We’re developing tools to provide information to people.

It’s also important to raise awareness. We have the opportunity and privilege to visit the sites. We have to ensure that our children and grandchildren have the same opportunity. So we have to protect and respect [the sites]. In that spirit, the sites have to be accessible because these experiences are absolutely incredible. With technology, we can now make them accessible not only to divers but also virtually, which is interesting and stimulating. Nowadays there are opportunities to make all these wonders available to as many people as possible, even if they don’t have the chance to dive.

JO: How long has Parks Canada been involved in underwater archaeology?

MAB: 2014 marks the 50th anniversary of the first dives at Fort Lennox in 1964 by Sean Gilmore and Walter Zacharchuk. That’s where it began. We’re going back there in August of this year, to the birthplace of underwater archaeology at Parks Canada.

We’re one of the oldest teams in the world, if we can say that. The first time an archaeologist dived a site was in 1960, so we were there basically at the beginning. Parks Canada joined the adventure very early on and it continues to be a part of it to this day. I believe that we’ve studied 225 sites across Canada, in the three oceans, the Great Lakes, rivers, truly across the entire country. We have a wealth of experience, and we’ll celebrate that this year by returning to Fort Lennox where it all began.

JO: Congratulations!

MAB: Thank you very much.

JO: 2014 marks the 100th anniversary of the sinking of the Empress of Ireland. What can you tell us about this maritime accident?

MAB: The story of the Empress begins on May 28, 1914. The Empress of Ireland left Quebec City for England with first, second and third class passengers on board. The Empress left Quebec in the late afternoon, with more than 1,400 passengers and crew on board. The ship headed down the St. Lawrence to Pointe au Père, a pilot station, because pilots were needed to navigate the St. Lawrence, given the reefs and hazards.

The pilot left the Empress at the Pointe au Père pilot station, and the ship resumed her journey. At the same time, the Storstad, a cargo ship, was heading in the opposite direction. In the fog, the two ships collided. The Storstad rammed the Empress of Ireland, creating a hole that immediately filled with water.

At that moment, it was after 1:30 a.m., so almost 2:00 a.m. It was night and foggy. The ship sank within 14 minutes, with a loss of 1,012 lives. Over 400 people survived, but over 1,000 people [died]. Many survivors were pulled from the water either by the ship that collided with the Empress or by other ships that were immediately dispatched.

JO: 14 minutes…

MAB: … In 14 minutes, the ship sank. The water rushed in and the ship sank extremely fast, leaving very little opportunity for people, especially those deeper inside the ship, to save themselves.

JO: So a disaster.

MAB: The greatest maritime tragedy in the history of the country.

JO: What’s your most unforgettable experience at an underwater archaeology site?

MAB :I’ve been doing this job for 24 years now, and I can tell you that I have had extraordinary experiences! There are two that stand out.

One was a Second World War plane in Longue-Pointe-de-Mingan that sank after takeoff. Five of the nine crew members drowned in the plane. In 2009, the plane was found intact at a depth of 40 metres. We knew that five of the crew members were still inside. What was absolutely fascinating, apart from the sense of contact and the very touching story, was that we had the opportunity, chance and privilege to have people who were on the beach when the event occurred, who saw the accident and who saw the soldiers board right beforehand. They told us how it happened and they are a direct link. They are part of the history and they experienced that history.

That was an absolutely incredible human experience. We worked with the American forces to recover the remains of the soldiers. Seeing people who had witnessed the event and who could participate 70 years later was a very powerful moment. Diving the wreck of that plane was truly a journey through time.

The other experience was with the HMS Investigator in the Arctic. That’s the ship that was credited with discovering the Northwest Passage. Actually, the crew found it, since the ship remained trapped in the ice and the crew continued on foot and were saved by another ship. The ship is practically intact up to the upper deck in ten metres of water. When you go down there, the area is completely isolated. The crew spent two winters there. On land we can see the remains of the equipment that they left on the ground. Three graves are also visible. So we can absorb the fact that they were in this environment, which was completely hostile, for two years, with the hope of being rescued.

And the ship: we then dive this amazing exploration machine that’s still upright, with its iron-clad prow to break the ice. It’s an icebreaker from the 1850s. We dive on the deck, with the debris left by the ice, the pieces of the ship completely sheared off by the ice. But underneath that is a complete ship, and on the inside, everything that the people left on board.

I often say that it’s like a time travel machine. We are transported and we can absorb the spirit of the site. That’s what I believe is important, and what we at Parks [Canada] try to impart, the spirit of the site. There was a historic moment, but it occurred at a site. That site must be seen and experienced for maximum appreciation. That’s part of the essence of the historic event and the site. On that site, we truly felt it.

JO: Thank you very much for coming to speak with us today. We greatly appreciate your knowledge of underwater Canada. Thank you.

MAB: Thank you very much.

JO: To learn more about shipwrecks, visit our website Shipwreck Investigations at lac-bac.gc.ca/sos/shipwrecks or read our articles on shipwrecks on thediscoverblog.com [I found other subjects but not shipwrecks in my admittedly brief search of the blog].

Thank you for joining us. I’m your host, Jessica Ouvrard, and you’ve been listening to “Discover Library and Archives Canada-where Canadian history, literature and culture await you.” A special thanks to our guest today, Marc-André Bernier.

A couple of comments. (1) It seems that neither Mr. Bernier nor his team have ever dived on the West Coast or west of Ottawa for that matter. (2) Given Bernier’s comments about oxygen and the degradation of artefacts once exposed to the air, I imagine there’s a fair of amount of excitement and interest in Corr’s work on ‘smart nanotech’ for shipwrecks.

After the April 22, 2017 US March for Science

Since last Saturday’s (April 22, 2017) US March for Science, I’ve stumbled across three interesting perspectives on the ‘movement’. As I noted in my April 14, 2017 posting, the ‘march’ has reached out beyond US borders to become international in scope. (On the day, at least 18 marches were held in Canada alone.)

Canada

John Dupuis wrote about his experience as a featured speaker at the Toronto (Ontario) march in an April 24, 2017 posting on his Confessions of a Science Librarian blog (Note: Links have been removed),

My fellow presenters were Master of Ceremonies Rupinder Brar and speakers Dawn Martin-Hill, Josh Matlow, Tanya Harrison, Chelsea Rochman, Aadita Chaudhury, Eden Hennessey and Cody Looking Horse.

Here’s what I had to say:

Hi, my name is John and I’m a librarian. My librarian superpower is making lists, checking them twice and seeing who’s been naughty and who’s been nice. The nice ones are all of you out here marching for science. And the naughty ones are the ones out there that are attacking science and the environment.

Now I’ve been in the list-making business for quite a few years, making an awful lot of lists of how governments have attacked or ignored science. I did a lot of work making lists about the Harper government and their war on science. The nicest thing I’ve ever seen written about my strange little obsession was in The Guardian.

Here’s what they said, in an article titled, How science helped to swing the Canadian election.

“Things got so bad that scientists and their supporters took to the streets. They demonstrated in Ottawa. They formed an organization, Evidence for Democracy, to bring push back on political interference in science. Awareness-raising forums were held at campuses throughout Canada. And the onslaught on science was painstakingly documented, which tends to happen when you go after librarians.”

Yeah, watch out. Don’t go after libraries and librarians. The Harper govt learned its lesson. And we learned a lesson too. And that lesson was that keeping track of things, that painstakingly documenting all the apparently disconnected little bits and pieces of policies here, regulations changed there and a budget snipped somewhere else, it all adds up.

What before had seemed random and disconnected is suddenly a coherent story. All the dots are connected and everybody can see what’s happened. By telling the whole story, by laying it all out there for everyone to see, it’s suddenly easier for all of us to point to the list and to hold the government of the day accountable. That’s the lesson learned from making lists.

But back in 2013 what I saw the government doing wasn’t the run of the mill anti-science that we’d seen before. Prime Minister Harper’s long standing stated desire to make Canada a global energy superpower revealed the underlying motivation but it was the endless litany of program cuts, census cancellation, science library closures, regulatory changes and muzzling of government scientists that made up the action plan. But was it really a concerted action plan or was it a disconnected series of small changes that were really no big deal or just a little different from normal?

That’s where making lists comes in handy. If you’re keeping track, then, yeah, you see the plan. You see the mission, you see the goals, you see the strategy, you see the tactics. You see that the government was trying to be sneaky and stealthy and incremental and “normal” but that there was a revolution in the making. An anti-science revolution.

Fast forward to now, April 2017, and what do we see? The same game plan repeated, the same anti-science revolution under way [in the US]. Only this time not so stealthy. Instead of a steady drip, it’s a fire hose. Message control at the National Parks Service, climate change denial, slashing budgets and shutting down programs at the EPA and other vital agencies. Incompetent agency directors that don’t understand the mission of their agencies or who even want to destroy them completely.

Once again, we are called to document, document, document. Tell the stories, mobilize science supporters and hold the governments accountable at the ballot box. Hey, like the Guardian said, if we did it in Canada, maybe that game plan can be repeated too.

I invited my three government reps here to the march today, Rob Oliphant, Josh Matlow and Eric Hoskins and I invited them to march with me so we could talk about how evidence should inform public policy. Josh, of course, is up here on the podium with me. As for Rob Oliphant from the Federal Liberals and Eric Hoskins from the Ontario Liberals, well, let’s just say they never answered my tweets.

Keep track, tell the story, hold all of them from every party accountable. The lesson we learned here in Canada was that science can be a decisive issue. Real facts can mobilise people to vote against alternative facts.

Thank you.

I’m not as sure as Dupuis that science was a decisive issue in our 2015 federal election; I’d say it was a factor. More importantly, I think the 2015 election showed Canadian scientists and those who feel science is important that it is possible to give it a voice and more prominence in the political discourse.

Rwanda

Eric Leeuwerck in an April 24, 2017 posting on one of the Agence Science-Press blogs describes his participation from Rwanda (I have provided a very rough translation after),

Un peu partout dans le monde, samedi 22 avril 2017, des milliers de personnes se sont mobilisées pour la « march for science », #sciencemarch, « une marche citoyenne pour les sciences, contre l’obscurantisme ». Et chez moi, au Rwanda ?

J’aurais bien voulu y aller moi à une « march for science », j’aurais bien voulu me joindre aux autres voix, me réconforter dans un esprit de franche camaraderie, à marcher comme un seul homme dans les rues, à dire que oui, nous sommes là ! La science vaincra, « No science, no futur ! » En Arctique, en Antarctique, en Amérique latine, en Asie, en Europe, sur la terre, sous l’eau…. Partout, des centaines de milliers de personnes ont marché ensemble. L’Afrique s’est mobilisée aussi, il y a eu des “march for science” au Kenya, Nigeria, Ouganda…

Et au Rwanda ? Eh bien, rien… Pourquoi suivre la masse, hein ? Pourquoi est-ce que je ne me suis pas bougé le cul pour faire une « march for science » au Rwanda ? Euh… et bien… Je vous avoue que je me vois mal organiser une manif au Rwanda en fait… Une collègue m’a même suggéré l’idée mais voilà, j’ai laissé tomber au moment même où l’idée m’a traversé l’esprit… Cependant, j’avais quand même cette envie d’exprimer ma sympathie et mon appartenance à ce mouvement mondial, à titre personnel, sans vouloir parler pour les autres, avec un GIF tout simple.

March for science RWanda

” March for science ” Rwanda

Je dois dire que je me sens bien souvent seul ici… Les cours de biologie de beaucoup d’écoles sont créationnistes, même au KICS (pour Kigali International Community School), une école internationale américaine (je tiens ça d’amis qui ont eu leurs enfants dans cette école). Sur son site, cette école de grande renommée ici ne cache pas ses penchants chrétiens : “KICS is a fully accredited member of the Association of Christian Schools International (ACSI) (…)” et, de plus, est reconnue par le ministère de l’éducation rwandais : “(KICS) is endorsed by the Rwandan Ministry of Education as a sound educational institution“. Et puis, il y a cette phrase sur leur page d’accueil : « Join the KICS family and impact the world for christ ».

Je réalise régulièrement des formations en pédagogie des sciences pour des profs locaux du primaire et du secondaire. Lors de ma formation sur la théorie de l’Evolution, qui a eu pas mal de succès, les enseignants de biologie m’ont confié que c’était la première fois, avec moi, qu’ils avaient eu de vrais cours sur la théorie de l’Evolution… (Je passe les débats sur l’athéisme, sur la « création » qui n’est pas un fait, sur ce qu’est un fait, qu’il ne faut pas faire « acte de foi » pour faire de la science et que donc on ne peut pas « croire » en la science, mais la comprendre…). Un thème délicat à aborder a été celui de la « construction des identités meurtrières » pour reprendre le titre du livre d’Amin Maalouf, au Rwanda comment est-ce qu’une pseudoscience, subjective, orientée politiquement et religieusement a pu mener au racisme et au génocide. On m’avait aussi formellement interdit d’en parler à l’époque, ma directrice de l’époque disait « ne te mêle pas de ça, ce n’est pas notre histoire », mais voilà, maintenant, ce thème est devenu un thème incontournable, même à l’Ecole Belge de Kigali !

Une autre formation sur l’éducation sexuelle a été très bien reçue aussi ! J’ai mis en place cette formation, aussi contre l’avis de ma directrice de l’époque (une autre) : des thèmes comme le planning familial, la contraception, l’homosexualité, gérer un débat houleux, les hormones… ont été abordées ! Première fois aussi, m’ont confié les enseignants, qu’ils ont reçu une formation objective sur ces sujets tabous.

Chaque année, je réunis un peu d’argent avec l’aide de l’École Belge de Kigali pour faire ces formations (même si mes directions ne sont pas toujours d’accord avec les thèmes ), je suis totalement indépendant et à part l’École Belge de Kigali, aucune autre institution dont j’ai sollicité le soutien n’a voulu me répondre. Mais je continue, ça relève parfois du militantisme, je l’avoue.

C’est comme mon blog, un des seuls blogs francophones de sciences en Afrique (en fait, je n’en ai jamais trouvé aucun en cherchant sur le net) dans un pays à la connexion Internet catastrophique, je me demande parfois pourquoi je continue… Je perds tellement de temps à attendre que mes pages chargent, à me reconnecter je ne sais pas combien de fois toutes les 5 minutes … En particulier lors de la saison des pluies ! Heureusement que je peux compter sur le soutien inconditionnel de mes communautés de blogueurs : le café des sciences , les Mondoblogueurs de RFI , l’Agence Science-Presse. Sans eux, j’aurais arrêté depuis longtemps ! Six ans de blogging scientifique quand même…

Alors, ce n’est pas que virtuel, vous savez ! Chaque jour, quand je vais au boulot pour donner mes cours de bio et chimie, quand j’organise mes formations, quand j’arrive à me connecter à mon blog, je « marche pour la science ».

Yeah. (De la route, de la science et du rock’n’roll : Rock’n’Science !)

(Un commentaire de soutien ça fait toujours plaisir !)

As I noted, this will be a very rough translation and anything in square brackets [] means that I’m even less sure about the translation in that bit,

Pretty much around the world, thousands will march for science against anti-knowledge/anti-science.

I would have liked to join in and to march with other kindred spirits as one in the streets. We are here! Science will triumph! No science .No future. In the Arctic, in the Antarctic, in Latin America, in Asia, in Europe,  on land, on water … Everywhere hundreds of thousands of people are marching together. Africa, too, has mobilized with marches in Kenya, Nigeria, Uganda ..

And in Rwanda? Well, no, nothing. Why follow everyone else? Why didn’t I get my butt in gear and organize a march? [I’m not good at organizing these kinds of things] A colleague even suggested I arrange something . I had an impulse to do it and then it left. Still, I want to express my solidarity with the March for Science without attempting to talk for or represent anyone other than myself. So, here’s a simple gif,

I have to say I often feel myself to be alone here. The biology courses taught in many of the schools here are creationist biology even at the KICS (Kigali International Community School), an international American school (I have friends whose children attend the school). On the school’s site there’s a sign that does nothing to hide its mission: “KICS is a fully accredited member of the Association of Christian Schools International (ACSI) (…)” and, further, it is recognized as such by the Rwandan Ministry of Education : “(KICS) is endorsed by the Rwandan Ministry of Education as a sound educational institution”. Finally, there’s this on their welcome page : « Join the KICS family and impact the world for christ ».

I regularly give science education prgorammes for local primary and secondary teachers. With regard to my teaching on the theory of evolution some have confided that this is the first time they’ve truly been exposed to a theory of evolution.  (I avoid the debates about atheism and the creation story. Science is not about faith it’s about understanding …). One theme that must be skirted with some delicacy in Rwanda is the notion of constructing a murderous/violent identity to borrow from Amin Maalouf’s book title, ‘Les Identités meurtrières’; in English: In the Name of Identity: Violence and the Need to Belong) as it has elements of a pseudoscience, subjectivity, political and religious connotations and has been used to justify racism and genocide. [Not sure here if he’s saying that the theory of evolution has been appropriated and juxtaposed with notions of violence and identify leading to racism and genocide. For anyone not familiar with the Rwandan genocide of 1994, see this Wikipedia entry.] Ihave been formally forbidden to discuss this period and my director said “Don’t meddle in this. It’s not our history.” But this theme/history has become essential/unavoidable even at the l’Ecole Belge de Kigali (Belgian School of Kigali).

A programme on sex education was well received and that subject too was forbidden to me (by a different director). I included topics such as  family planning, contraception, homosexuality, hormones and inspired a spirited debate. Many times my students have confided that they received good factual information on these taboo topics.

Each year with help from the Belgian School at Kigali, I raise money for these programmes (even if my directors don’t approve of the topics). I’m totally independent and other than the Belgian School at Kigali no other institution that I’ve appraoched has responded. But I continue as I hope that it can help lower milittancy.

My blog is one of the few French language science blogs in Africa (I rarely find any other such blogs when I search). In a country where the internet connection is catastrophically poor, I ask myself why I go on. I lose a lot of time waiting for pages to load or to re-establish a connection, especially in the rainy season. Happily I can depend on the communities of bloggers such as: café des sciences , les Mondoblogueurs de RFI , l’Agence Science-Presse. Without them I would have stopped long ago. It has been six years of blogging science …

It is virtual, you know. Each day when I deliver my courses in biology and chemistry, when I organize my programmes, when I post on my blog, ‘I march for science’.

Comments are gladly accepted. [http://www.sciencepresse.qc.ca/blogue/2017/04/24/march-science-rwanda]

All mistakes are mine.

US

My last bit is from an April 24, 2017 article by Jeremy Samuel Faust for Slate.com, (Note: Links have been removed),

Hundreds of thousands of self-professed science supporters turned out to over 600 iterations of the March for Science around the world this weekend. Thanks to the app Periscope, I attended half a dozen of them from the comfort of my apartment, thereby assiduously minimizing my carbon footprint.

Mainly, these marches appeared to be a pleasant excuse for liberals to write some really bad (and, OK, some truly superb) puns, and put them on cardboard signs. There were also some nicely stated slogans that roused support for important concepts such as reason and data and many that decried the defunding of scientific research and ignorance-driven policy.

But here’s the problem: Little of what I observed dissuades me from my baseline belief that, even among the sanctimonious elite who want to own science (and pwn [sic] anyone who questions it), most people have no idea how science actually works. The scientific method itself is already under constant attack from within the scientific community itself and is ceaselessly undermined by its so-called supporters, including during marches like those on Saturday. [April 22, 2017] In the long run, such demonstrations will do little to resolve the myriad problems science faces and instead could continue to undermine our efforts to use science accurately and productively.

Indeed much of the sentiment of the March for Science seemed to fall firmly in the camp of people espousing a gee-whiz attitude in which science is just great and beyond reproach. They feel that way because, so often, the science they’re exposed to feels that way—it’s cherry-picked. Cherry-picking scientific findings that support an already cherished and firmly held belief (while often ignoring equally if not more compelling data that contradicts it) is epidemic—in scientific journals and in the media.

Let’s face it: People like science when it supports their views. I see this every day. When patients ask me for antibiotics to treat their common colds, I tell them that decades of science and research, let alone a basic understanding of microbiology, shows that antibiotics don’t work for cold viruses. Trust me, people don’t care. They have gotten antibiotics for their colds in the past, and, lo, they got better. (The human immune system, while a bit slower and clunkier than we’d like it to be, never seems to get the credit it deserves in these little anecdotal stories.) Who needs science when you have something mightier—personal experience?

Another example is the vocal wing of environmentalists who got up one day and decided that genetically modified organisms were bad for you. They had not one shred of evidence for this, but it just kind of felt true. As a result, responsible scientists will be fighting against these zealots for years to come. While the leaders of March for Science events are on the right side of this issue, many of its supporters are not. I’m looking at you, Bernie Sanders; the intellectual rigor behind your stance requiring GMO labelling reflects a level of scientific understanding that would likely lead for calls for self-defenestration from your own supporters if it were applied to, say, something like climate change.

But it does not stop there. Perhaps as irritating as people who know nothing about science are those who know just a little bit—just enough to think they have any idea as to what is going on. Take for example the clever cheer (and unparalleled public declaration of nerdiness):

What do we want?

Science!

When do we want it?

After peer review!

Of course, the quality of most peer-review research is somewhere between bad and unfair to the pixels that gave their lives to display it. Just this past week, a study published by the world’s most prestigious stroke research journal (Stroke), made headlines and achieved media virality by claiming a correlation between increased diet soda consumption and strokes and dementia. Oh, by the way, the authors didn’t control for body mass index [*], even though, unsurprisingly, people who have the highest BMIs had the most strokes. An earlier study that no one seems to remember showed a correlation of around the same magnitude between obesity and strokes alone. But, who cares, right? Ban diet sodas now! Science says they’re linked to strokes and dementia! By the way, Science used to say that diet sodas cause cancer. But Science was, perish the thought, wrong.

If you can get past the writer’s great disdain for just about everyone, he makes very good points.

To add some clarity with regard to “controlling for body mass index,” there’s a concept in research known as a confounding variable. In this case, people who have a higher body mass index (or are more obese) will tend to have more strokes according to previous research which qualifies as a confounding variable when studying the effect of diet soda on strokes. To control for obesity means you set up the research project in such a way you can compare (oranges to oranges) the stroke rates of obese people who drink x amount of diet soda with obese people who do not drink x amount of diet soda and compare stroke rates of standard weight people who drink x amount of diet soda with other standard weight people who do not drink x amount of diet soda. There are other aspects of the research that would also have be considered but to control for body mass index that’s the way I’d set it up.

One point that Faust makes that isn’t made often enough and certainly not within the context of the ‘evidence-based policy movement’ and ‘marches for science’ is the great upheaval taking place within the scientific endeavour (Note: Links have been removed),

… . There are a dozen other statistical games that researchers can play to get statistical significance. Such ruses do not rise to anything approaching clinical relevance. Nevertheless, fun truthy ones like the diet soda study grab headlines and often end up changing human behaviors.

The reason this problem, what one of my friends delightfully calls statistical chicanery, is so rampant is twofold. First, academics need to “publish or perish.” If researchers don’t publish in peer-reviewed journals, their careers will be short and undistinguished. Second, large pharmaceutical companies have learned how to game the science system so that their patented designer molecules can earn them billions of dollars, often treating made-up diseases (I won’t risk public opprobrium naming those) as well as other that we, the medical establishment, literally helped create (opioid-induced constipation being a recent flagrancy).

Of course, the journals themselves have suffered because their contributors know the game. There are now dozens of stories of phony research passing muster in peer-review journals, despite being intentionally badly written. These somewhat cynical, though hilarious, exposés have largely focused on outing predatory journals that charge authors money in exchange for publication (assuming the article is “accepted” by the rigorous peer-review process; the word rigorous, by the way, now means “the credit card payment went through and your email address didn’t bounce”). But even prestigious journals have been bamboozled. The Lancet famously published fabrications linking vaccines and autism in 1998. and it took it 12 years to retract the studies. Meanwhile, the United States Congress took only three years for its own inquiry to debunk any link. You know it’s bad when the U.S. Congress is running circles around the editorial board of one of the world’s most illustrious medical journals. Over the last couple of decades, multiple attempts to improve the quality of peer-review adjudication have disappointingly and largely failed to improve the situation.

While the scientific research community is in desperate need of an overhaul, the mainstream media (and social media influencers) could in the meantime play a tremendously helpful role in alleviating the situation. Rather than indiscriminately repeating the results of the latest headline-grabbing scientific journal article and quoting the authors who wrote the paper, journalists should also reach out to skeptics and use their comments not just to provide (false) balance in their articles but to assess whether the finding really warrants an entire article of coverage in the first place. Headlines should be vetted not for impact and virality but for honesty. As a reader, be wary of any headline that includes the phrase “Science says,” as well as anything that states that a particular study “proves” that a particular exposure “causes” a particular disease. Smoking causes cancer, heart disease, and emphysema, and that’s about as close to a causal statement as actual scientists will make, when it comes to health. Most of what you read and hear about turns out to be mere associations, and mostly fairly weak ones, at that.

Faust refers mostly to medical research but many of his comments are applicable to other science research as well. By the way, Faust has written an excellent description of p-values for which, if for no other reason, you should read his piece in its entirety.

One last comment about Faust’s piece, he exhorts journalists to take more care in their writing but fails to recognize the pressures on journalists and those who participate in social media. Briefly, journalists are under pressure to produce. Many of the journalists who write about science don’t know much about it and even the ones who have a science background may be quite ignorant about the particular piece of science they are covering, i.e., a physicist might have some problems covering medical research and vice versa. Also, mainstream media are in trouble as they struggle to find revenue models.

As for those of us who blog and others in the social media environment; we are a mixed bag in much the same way that mainstream media is. If you get your science from gossip rags such as the National Enquirer, it’s not likely to be as reliable as what you’d expect from The Guardian or the The New York Times. Still, those prestigious publications have gotten quite wrong on occasion.

In the end, readers (scientists, journalists, bloggers, etc.) need to be skeptical. It’s also helpful to be humble or at least willing to admit you’ve made a mistake (confession: I have my share on this blog, which are noted when I’ve found or when they’ve been pointed out to me).

Final comments

Hopefully, this has given you a taste for the wide ranges of experiences and perspectives on the April 22, 2017 March for Science.

Oil company sponsorships: Science Museum (London, UK) and Canada’s Museum of Science and Technology

Wonderlab: The Statoil Gallery opened in London’s (UK) Science Museum on Oct. 12, 2016 and it seems there are a couple of controversies. An Oct. 17, 2016 article by Chris Garrard outlines the issues (Note: Links have been removed),

What do you wonder?” That is the question the Science Museum has been asking for many months now, in posters, celebrity videos and in online images. It’s been part of the museum’s strategy to ramp up excitement around its new “Wonderlab” gallery, a space full of interactive science exhibits designed to inspire children. But what many have been wondering is how Statoil, a major oil and gas company with plans to drill up to seven new wells in the Arctic [emphasis mine], was allowed to become the gallery’s title sponsor? Welcome to Wonderlab – the Science Museum’s latest ethical contradiction.

In Australia, Statoil is still considering plans to drill a series of ultra deepwater wells in the Great Australian Bight – an internationally recognised whale sanctuary – despite the decision this week of its strategic partner, BP, to pull out. …

The company’s sponsorship of Wonderlab may look like a generous gesture from outside but in reality, Statoil is buying a social legitimacy it does not deserve – and it is particularly sinister to purchase that legitimacy at the expense of young people who will inherit a world with an unstable climate. This is an attempt to associate the future of science and technology with fossil fuels at a time when society and policy makers have finally accepted that that it is not compatible with a sustainable future and a stable climate. As the impacts of climate change intensify and the world shifts away from fossil fuels, the Science Museum will look ever more out of touch with the words “the Statoil gallery” emblazoned upon its walls.

The Science Museum has previously had sponsorship deals with a range of unethical sponsors, from arms companies such as Airbus, to other fossil fuel companies such as BP and Shell. When Shell’s influence over the Science Museum’s climate science gallery was unearthed last year following Freedom of Information requests, the museum’s director, Ian Blatchford, sought to defend the museum’s engagement with fossil fuel funders. He wrote “When it comes to the major challenges facing our society, from climate change to inspiring the next generation of engineers, we need to be engaging with all the key players including governments, industry and the public, not hiding away in a comfortable ivory tower.”

In reality, Blatchford is the one in the ivory tower – and not just because of the museum’s ties to Statoil. Wonderlab replaces the museum’s Launchpad gallery, a hub of interactive science exhibits designed to engage and inspire children. But unlike its predecessor, Wonderlab comes with an entry charge. Earlier this year, the science communication academic Dr Emily Dawson noted that “charging for the museum’s most popular children’s gallery sends a clear message that science is for some families, but not for all”. Thus Wonderlab represents a science communication mess as well as an ethical one.

While the museum’s decision to offer free school visits will allow some children from disadvantaged backgrounds the opportunity to experience Wonderlab, Dawson argues that “it is not enough to use school visits as a panacea for exclusive practice”. Research recently undertaken by the Wellcome Trust showed that likelihood of visiting a science museum or centre is related to social class. Entry charges are not the only obstacle in the way of public access to science, but perhaps the most symbolic for a major cultural institution – particularly where the primary audience is children.

Garrard does note that museums have challenges, especially when they are dealing with funding cuts as they are at the Science Museum.

The sponsorship issue may sound familiar to Canadians as we had our own controversy in 2012 with Imperial Oil and its sponsorship of the Canada Science and Technology Museum’s show currently named, ‘Let’s Talk Energy‘ still sponsored by Imperial Oil. Here’s more from my June 13, 2012 posting,

They’ve been going hot and heavy at Canada’s national museums in Ottawa this last few months. First, there was a brouhaha over corporate patronage and energy in January 2012 and, again, in April 2012 and now, it’s all about sex. While I’m dying to get started on the sex, this piece is going to follow the chronology.

The CBC (Canadian Broadcasting Corporation) website has a Jan. 23, 2012 posting which notes the active role Imperial Oil played in a November 2011  energy exhibit (part of a multi-year, interactive national initiative, Let’s Talk Energy)  at the Canada Science and Technology Museum (from the CBC Jan. 23, 2012 posting),

Imperial Oil, a sponsor of the Museum of Science and Technology’s exhibition “Energy: Power to Choose,” was actively involved in the message presented to the public, according to emails obtained by CBC News.

The Ottawa museum unveiled the exhibition last year despite criticism from environmental groups like the Sierra Club, which questioned why it was partly funded by the Imperial Oil Foundation, which contributed $600,000 over six years.

Apparently, CBC reporters got their hands on some emails where the Imperial Oil Foundation president, Susan Swan, made a number of suggestions,

In an Oct. 3 [2011] interview on CBC Ottawa’s All in a Day, host Alan Neal asked exhibit curator Anna Adamek whose idea it was to include in the exhibit a reference that says oilsands account for one-tenth of one percent of global emissions.

“This fact comes from research reports that are available at the museum, that were commissioned by the museum,” Adamek told Neal.

But earlier emails from Imperial Oil Foundation president Susan Swan obtained by Radio-Canada through an Access to Information request show she had recommended that information be included back in May [2011?].

Swan, who also served as chair of the advisory committee to the project, also asked that information be included that the oilsands are expected to add $1.7 trillion to the Canadian economy over the next 25 years.

Not all of Swan’s requests made it into the final exhibit: in one point, she asked that an illustration for Polar Oil and Gas Reserves be changed from red to blue, arguing red “has a negative connotation” bringing to mind “blood oil.” The change was not made.

Personally, I love Swan’s semiotic analysis of the colour ‘red’. I wonder how many graphic designers have been driven mad by someone who sat through a lecture or part of a television programme on colour and/or semiotics and is now an expert.

If you’re curious, you can see the emails from the Imperial Oil Foundation in the CBC Jan. 23, 2012 posting.

A few months later, Barrick Gold (a mining corporation) donated $1M to have a room at the Canadian Museum of Nature renamed, from the April 24, 2012 posting on the CBC website,

Environmental groups are upset over a decision to rename a room at the Canadian Museum of Nature after corporate mining giant Barrick Gold.

Barrick Gold Corp., based out of Toronto, purchased the room’s naming rights for about $1 million. The new “Barrick Salon” is the museum’s premier rental space featuring a circular room with glass windows from floor to ceiling.

The decision had activists protest at the museum Tuesday, a few hours before the official naming reception that includes Barrick Gold executives.

“It’s definitely not a partnership, it’s a sponsorship,” said Elizabeth McCrea, the museum’s director of communications. “We’re always looking at increasing self-generated revenue and this is one way that we’re doing it.” [emphasis mine]

Monarchs and wealthy people have been funding and attempting to influence cultural institutions for millenia. These days, we get to include corporations on that list but it’s nothing new. People or institutions with power and money always want history or facts * presented in ways that further or flatter their interests (“history is written by the victors”). They aren’t always successful but they will keep trying.

It’s hard to be high-minded when you need money but it doesn’t mean you should give up on the effort.

WHALE of a concert on the edge of Hudson Bay (northern Canada) and sounds of icebergs from Oregon State University

Both charming and confusing (to me), the WHALE project features two artists (or is it musicians?) singing to and with beluga whales using a homemade underwater sound system while they all float on or in Hudson Bay. There’s a July 10, 2013 news item about the project on the CBC (Canadian Broadcasting Corporation) news website,

What began as an interest in aquatic culture for Laura Magnusson and Kaoru Ryan Klatt has turned into a multi-year experimental project that brings art to the marine mammals.

Since 2011, Magnusson and Klatt have been taking a boat onto the Churchill River, which flows into Hudson Bay, with a home-made underwater sound system.

….

Last week, the pair began a 75-day expedition that involves travelling aboard a special “sculptural sea vessel” to “build a sustained but non-invasive presence to foster bonds between humans and whales,” according to the project’s website.

Ten other musicians and interdisciplinary artists are joining Klatt and Magnusson to perform new works they’ve created specifically for the whales.

The latest expedition will be the focus of Becoming Beluga, a feature film that Klatt is directing.

Magnusson and Klatt are also testing a high-tech “bionic whale suit” that would enable the wearer to swim and communicate like a beluga whale.

Klatt has produced a number of WHALE videos including this one (Note: This not a slick production nor were any of the others I viewed on YouTube),

In addition to not being slick, there’s a quirky quality to this project video that I find charming and interesting.

My curiosity aroused, I also visited Magnusson’s and Klatt’s WHALE website and found this project description,

WHALE is an interdisciplinary art group comprised of Winnipeg-based artists Kaoru Ryan Klatt and Laura Magnusson. Their vision is to expand art and culture beyond human boundaries to non-human beings. Since 2011, they have been traveling to the northern edge of Manitoba, Canada to forge connections with thousands of beluga whales. From a canoe on the Churchill River, they have collaborated with these whales through sound, movement, and performative action. Now, aboard the SSV Cetus – a specially crafted sculptural sea vessel – they will embark on a 75-day art expedition throughout the Churchill River estuary, working to build a sustained but non-invasive presence to foster bonds between humans and whales. This undertaking – Becoming Beluga – is the culmination of a three-year integrated arts project with the belugas of this region, taking place between July 2 and September 14, 2013.

While the word ‘artist’ suggests visual arts rather than musical arts what I find a little more confounding is that this is not being described an art/science or art/technology project as these artists are clearly developing technology with their underwater sound system, sculptural sea vessel, and bionic whale suit. In any event, I wish them good luck with WHALE and their Becoming Beluga film.

In a somewhat related matter and for those interested in soundscapes and the ocean (in Antarctica), there is some research from Oregon State University which claims that melting icebergs make a huge din. From a July 11, 2013 news item on phys.org,

There is growing concern about how much noise humans generate in marine environments through shipping, oil exploration and other developments, but a new study has found that naturally occurring phenomena could potentially affect some ocean dwellers.

Nowhere is this concern greater than in the polar regions, where the effects of global warming often first manifest themselves. The breakup of ice sheets and the calving and grounding of icebergs can create enormous sound energy, scientists say. Now a new study has found that the mere drifting of an iceberg from near Antarctica to warmer ocean waters produces startling levels of noise.

The Oregon State University July 10, 2013 news release, which originated the news item, provides more detail (Note: A link has been removed),

A team led by Oregon State University (OSU) researchers used an array of hydrophones to track the sound produced by an iceberg through its life cycle, from its origin in the Weddell Sea to its eventual demise in the open ocean. The goal of the project was to measure baseline levels of this kind of naturally occurring sound in the ocean, so it can be compared to anthropogenic noises.

“During one hour-long period, we documented that the sound energy released by the iceberg disintegrating was equivalent to the sound that would be created by a few hundred supertankers over the same period,” said Robert Dziak, a marine geologist at OSU’s Hatfield Marine Science Center in Newport, Ore., and lead author on the study. [emphasis mine]

“This wasn’t from the iceberg scraping the bottom,” he added. “It was from its rapid disintegration as the berg melted and broke apart. We call the sounds ‘icequakes’ because the process and ensuing sounds are much like those produced by earthquakes.”

I encourage anyone who’s interested to read the entire news release (apparently the researchers were getting images of their iceberg from the International Space Station) and/or the team’s published research paper,

Robert P. Dziak, Matthew J. Fowler, Haruyoshi Matsumoto, DelWayne R. Bohnenstiehl, Minkyu Park, Kyle Warren, and Won Sang Lee. 2013. Life and death sounds of Iceberg A53a. Oceanography 26(2), http://dx.doi.org/10.5670/oceanog.2013.20.