Monthly Archives: April 2019

The wonder of movement in 3D

Shades of Eadweard Muybridge (English photographer who pioneered photographic motion studies)! A September 19, 2018 news item on ScienceDaily describes the latest efforts to ‘capture motion’,

Patriots quarterback Tom Brady has often credited his success to spending countless hours studying his opponent’s movements on film. This understanding of movement is necessary for all living species, whether it’s figuring out what angle to throw a ball at, or perceiving the motion of predators and prey. But simple videos can’t actually give us the full picture.

That’s because traditional videos and photos for studying motion are two-dimensional, and don’t show us the underlying 3-D structure of the person or subject of interest. Without the full geometry, we can’t inspect the small and subtle movements that help us move faster, or make sense of the precision needed to perfect our athletic form.

Recently, though, researchers from MIT’s [Massachusetts Institute of Technology] Computer Science and Artificial Intelligence Laboratory (CSAIL) have come up with a way to get a better handle on this understanding of complex motion.

There isn’t a single reference to Muybridge, still, this September 18, 2018 Massachusetts Institute of Technology news release (also on EurekAlert but published September 19, 2018), which originated the news item, delves further into the research,

The new system uses an algorithm that can take 2-D videos and turn them into 3-D printed “motion sculptures” that show how a human body moves through space. In addition to being an intriguing aesthetic visualization of shape and time, the team envisions that their “MoSculp” system could enable a much more detailed study of motion for professional athletes, dancers, or anyone who wants to improve their physical skills.

“Imagine you have a video of Roger Federer serving a ball in a tennis match, and a video of yourself learning tennis,” says PhD student Xiuming Zhang, lead author of a new paper about the system. “You could then build motion sculptures of both scenarios to compare them and more comprehensively study where you need to improve.”

Because motion sculptures are 3-D, users can use a computer interface to navigate around the structures and see them from different viewpoints, revealing motion-related information inaccessible from the original viewpoint.

Zhang wrote the paper alongside MIT professors William Freeman and Stefanie Mueller, PhD student Jiajun Wu, Google researchers Qiurui He and Tali Dekel, as well as U.C. Berkeley postdoc and former CSAIL PhD Andrew Owens.

How it works

Artists and scientists have long struggled to gain better insight into movement, limited by their own camera lens and what it could provide.

Previous work has mostly used so-called “stroboscopic” photography techniques, which look a lot like the images in a flip book stitched together. But since these photos only show snapshots of movement, you wouldn’t be able to see as much of the trajectory of a person’s arm when they’re hitting a golf ball, for example.

What’s more, these photographs also require laborious pre-shoot setup, such as using a clean background and specialized depth cameras and lighting equipment. All MoSculp needs is a video sequence.

Given an input video, the system first automatically detects 2-D key points on the subject’s body, such as the hip, knee, and ankle of a ballerina while she’s doing a complex dance sequence. Then, it takes the best possible poses from those points to be turned into 3-D “skeletons.”

After stitching these skeletons together, the system generates a motion sculpture that can be 3-D printed, showing the smooth, continuous path of movement traced out by the subject. Users can customize their figures to focus on different body parts, assign different materials to distinguish among parts, and even customize lighting.

In user studies, the researchers found that over 75 percent of subjects felt that MoSculp provided a more detailed visualization for studying motion than the standard photography techniques.

“Dance and highly-skilled athletic motions often seem like ‘moving sculptures’ but they only create fleeting and ephemeral shapes,” says Courtney Brigham, communications lead at Adobe. “This work shows how to take motions and turn them into real sculptures with objective visualizations of movement, providing a way for athletes to analyze their movements for training, requiring no more equipment than a mobile camera and some computing time.”

The system works best for larger movements, like throwing a ball or taking a sweeping leap during a dance sequence. It also works for situations that might obstruct or complicate movement, such as people wearing loose clothing or carrying objects.

Currently, the system only uses single-person scenarios, but the team soon hopes to expand to multiple people. This could open up the potential to study things like social disorders, interpersonal interactions, and team dynamics.

This work will be presented at the User Interface Software and Technology (UIST) symposium in Berlin, Germany in October 2018 and the team’s paper published as part of the proceedings.

As for anyone wondering about the Muybridge comment, here’s an image the MIT researchers have made available,

A new system uses an algorithm that can take 2-D videos and turn them into 3-D-printed “motion sculptures” that show how a human body moves through space. Image courtesy of MIT CSAIL

Contrast that MIT image with some of the images in this video capturing parts of a theatre production, Studies in Motion: The Hauntings of Eadweard Muybridge,

Getting back to MIT, here’s their MoSculp video,

There are some startling similarities, eh? I suppose there are only so many ways one can capture movement be it in studies of Eadweard Muybridge, a theatre production about his work, or an MIT video the latest in motion capture technology.

I am a sound speaker/loudspeaker (well, maybe one day)

Caption: From left are Saewon Kang, Professor Hyunhyub Ko, and Seungse Cho in the School of Energy and Chemical Engineering at UNIST. Credit: UNIST

What are these scientists so happy about? A September 18, 2018 news item on ScienceDaily reveals all,

An international team of researchers, affiliated with UNIST [Ulsan National Institute of Science and Technology] has presented an innovative wearable technology that will turn your skin into a loudspeaker.

An August 6, 2018 UNIST press release (also on EurekAlert but published September 17,2018), which originated the news item, delves further into the research,

This breakthrough has been led by Professor Hyunhyub Ko in the School of Energy and Chemical Engineering at UNIST. Created in part to help the hearing and speech impaired, the new technology can be further explored for various potential applications, such as wearable IoT sensors and conformal health care devices.

In the study, the research team has developed ultrathin, transparent, and conductive hybrid nanomembranes with nanoscale thickness, consisting of an orthogonal silver nanowire array embedded in a polymer matrix. They, then, demonstrated their nanomembrane by making it into a loudspeaker that can be attached to almost anything to produce sounds. The researchers also introduced a similar device, acting as a microphone, which can be connected to smartphones and computers to unlock voice-activated security systems.

Nanomembranes (NMs) are molcularly thin seperation layers with nanoscale thickness. Polymer NMs have attracted considerable attention owing to their outstanding advantages, such as extreme flexibility, ultralight weight, and excellent adhesibility in that they can be attached directly to almost any surface. However, they tear easily and exhibit no electrical conductivity.

The research team has solved such issues by embedding a silver nanowire network within a polymer-based nanomembrane. This has enabled the demonstration of skin-attachable and imperceptible loudspeaker and microphone.

“Our ultrathin, transparent, and conductive hybrid NMs facilitate conformal contact with curvilinear and dynamic surfaces without any cracking or rupture,” says  Saewon Kang in the doctroral program of Energy and Chemical Engineering at UNIST, the first author of the study.

He adds, “These layers are capable of detecting sounds and vocal vibrations produced by the triboelectric voltage signals corresponding to sounds, which could be further explored for various potential applications, such as sound input/output devices.”

Using the hybrid NMs, the research team fabricated skin-attachable NM loudspeakers and microphones, which would be unobtrusive in appearance because of their excellent transparency and conformal contact capability. These wearable speakers and microphones are paper-thin, yet still capable of conducting sound signals.

“The biggest breakthrough of our research is the development of ultrathin, transparent, and conductive hybrid nanomembranes with nanoscale thickness, less than 100 nanometers,” says Professor Ko. “These outstanding optical, electrical, and mechanical properties of nanomembranes enable the demonstration of skin-attachable and imperceptible loudspeaker and microphone.”The skin-attachable NM loudspeakers work by emitting thermoacoustic sound by the temperature-induced oscillation of the surrounding air. The periodic Joule heating that occurs when an electric current passes through a conductor and produces heat leads to these temperature oscillations. It has attracted considerable attention for being a stretchable, transparent, and skin-attachable loudspeaker.

Wearable microphones are sensors, attached to a speaker’s neck to even sense the vibration of the vocal folds. This sensor operates by converting the frictional force generated by the oscillation of the transparent conductive nanofiber into electric energy. For the operation of the microphone, the hybrid nanomembrane is inserted between elastic films with tiny patterns to precisely detect the sound and the vibration of the vocal cords based on a triboelectric voltage that results from the contact with the elastic films.

“For the commercial applications, the mechanical durability of nanomebranes and the performance of loudspeaker and microphone should be improved further,” says Professor Ko.

Thankfully, the researchers have made video that lets us hear this sound speaker,


Paper-thin stick-on speakers, developed by Professor Hyunhyub Ko and his research team at UNIST.

Thank you to the folks at UNIST for including something with the sound. Strangely, it’s not common practice to include audio when publishing research on sound, not in my experience anyway..

Here’s a link to and a citation for the paper,

Transparent and conductive nanomembranes with orthogonal silver nanowire arrays for skin-attachable loudspeakers and microphones by Saewon Kang, Seungse Cho, Ravi Shanker, Hochan Lee, Jonghwa Park, Doo-Seung Um, Youngoh Lee, and Hyunhyub Ko. Science Advances 03 Aug 2018: Vol. 4, no. 8, eaas8772 DOI: 10.1126/sciadv.aas8772

This paper appears to be open access.

Gene editing and personalized medicine: Canada

Back in the fall of 2018 I came across one of those overexcited pieces about personalized medicine and gene editing tha are out there. This one came from an unexpected source, an author who is a “PhD Scientist in Medical Science (Blood and Vasculature” (from Rick Gierczak’s LinkedIn profile).

It starts our promisingly enough although I’m beginning to dread the use of the word ‘precise’  where medicine is concerned, (from a September 17, 2018 posting on the Science Borealis blog by Rick Gierczak (Note: Links have been removed),

CRISPR-Cas9 technology was accidentally discovered in the 1980s when scientists were researching how bacteria defend themselves against viral infection. While studying bacterial DNA called clustered regularly interspaced short palindromic repeats (CRISPR), they identified additional CRISPR-associated (Cas) protein molecules. Together, CRISPR and one of those protein molecules, termed Cas9, can locate and cut precise regions of bacterial DNA. By 2012, researchers understood that the technology could be modified and used more generally to edit the DNA of any plant or animal. In 2015, the American Association for the Advancement of Science chose CRISPR-Cas9 as science’s “Breakthrough of the Year”.

Today, CRISPR-Cas9 is a powerful and precise gene-editing tool [emphasis mine] made of two molecules: a protein that cuts DNA (Cas9) and a custom-made length of RNA that works like a GPS for locating the exact spot that needs to be edited (CRISPR). Once inside the target cell nucleus, these two molecules begin editing the DNA. After the desired changes are made, they use a repair mechanism to stitch the new DNA into place. Cas9 never changes, but the CRISPR molecule must be tailored for each new target — a relatively easy process in the lab. However, it’s not perfect, and occasionally the wrong DNA is altered [emphasis mine].

Note that Gierczak makes a point of mentioning that CRISPR/Cas9 is “not perfect.” And then, he gets excited (Note: Links have been removed),

CRISPR-Cas9 has the potential to treat serious human diseases, many of which are caused by a single “letter” mutation in the genetic code (A, C, T, or G) that could be corrected by precise editing. [emphasis mine] Some companies are taking notice of the technology. A case in point is CRISPR Therapeutics, which recently developed a treatment for sickle cell disease, a blood disorder that causes a decrease in oxygen transport in the body. The therapy targets a special gene called fetal hemoglobin that’s switched off a few months after birth. Treatment involves removing stem cells from the patient’s bone marrow and editing the gene to turn it back on using CRISPR-Cas9. These new stem cells are returned to the patient ready to produce normal red blood cells. In this case, the risk of error is eliminated because the new cells are screened for the correct edit before use.

The breakthroughs shown by companies like CRISPR Therapeutics are evidence that personalized medicine has arrived. [emphasis mine] However, these discoveries will require government regulatory approval from the countries where the treatment is going to be used. In the US, the Food and Drug Administration (FDA) has developed new regulations allowing somatic (i.e., non-germ) cell editing and clinical trials to proceed. [emphasis mine]

The potential treatment for sickle cell disease is exciting but Gierczak offers no evidence that this treatment or any unnamed others constitute proof that “personalized medicine has arrived.” In fact, Goldman Sachs, a US-based investment bank, makes the case that it never will .

Cost/benefit analysis

Edward Abrahams, president of the Personalized Medicine Coalition (US-based), advocates for personalized medicine while noting in passing, market forces as represented by Goldman Sachs in his May 23, 2018 piece for statnews.com (Note: A link has been removed),

One of every four new drugs approved by the Food and Drug Administration over the last four years was designed to become a personalized (or “targeted”) therapy that zeros in on the subset of patients likely to respond positively to it. That’s a sea change from the way drugs were developed and marketed 10 years ago.

Some of these new treatments have extraordinarily high list prices. But focusing solely on the cost of these therapies rather than on the value they provide threatens the future of personalized medicine.

… most policymakers are not asking the right questions about the benefits of these treatments for patients and society. Influenced by cost concerns, they assume that prices for personalized tests and treatments cannot be justified even if they make the health system more efficient and effective by delivering superior, longer-lasting clinical outcomes and increasing the percentage of patients who benefit from prescribed treatments.

Goldman Sachs, for example, issued a report titled “The Genome Revolution.” It argues that while “genome medicine” offers “tremendous value for patients and society,” curing patients may not be “a sustainable business model.” [emphasis mine] The analysis underlines that the health system is not set up to reap the benefits of new scientific discoveries and technologies. Just as we are on the precipice of an era in which gene therapies, gene-editing, and immunotherapies promise to address the root causes of disease, Goldman Sachs says that these therapies have a “very different outlook with regard to recurring revenue versus chronic therapies.”

Let’s just chew on this one (contemplate)  for a minute”curing patients may not be ‘sustainable business model’!”

Coming down to earth: policy

While I find Gierczak to be over-enthused, he, like Abrahams, emphasizes the importance of new policy, in his case, the focus is Canadian policy. From Gierczak’s September 17, 2018 posting (Note: Links have been removed),

In Canada, companies need approval from Health Canada. But a 2004 law called the Assisted Human Reproduction Act (AHR Act) states that it’s a criminal offence “to alter the genome of a human cell, or in vitroembryo, that is capable of being transmitted to descendants”. The Actis so broadly written that Canadian scientists are prohibited from using the CRISPR-Cas9 technology on even somatic cells. Today, Canada is one of the few countries in the world where treating a disease with CRISPR-Cas9 is a crime.

On the other hand, some countries provide little regulatory oversight for editing either germ or somatic cells. In China, a company often only needs to satisfy the requirements of the local hospital where the treatment is being performed. And, if germ-cell editing goes wrong, there is little recourse for the future generations affected.

The AHR Act was introduced to regulate the use of reproductive technologies like in vitrofertilization and research related to cloning human embryos during the 1980s and 1990s. Today, we live in a time when medical science, and its role in Canadian society, is rapidly changing. CRISPR-Cas9 is a powerful tool, and there are aspects of the technology that aren’t well understood and could potentially put patients at risk if we move ahead too quickly. But the potential benefits are significant. Updated legislation that acknowledges both the risks and current realities of genomic engineering [emphasis mine] would relieve the current obstacles and support a path toward the introduction of safe new therapies.

Criminal ban on human gene-editing of inheritable cells (in Canada)

I had no idea there was a criminal ban on the practice until reading this January 2017 editorial by Bartha Maria Knoppers, Rosario Isasi, Timothy Caulfield, Erika Kleiderman, Patrick Bedford, Judy Illes, Ubaka Ogbogu, Vardit Ravitsky, & Michael Rudnicki for (Nature) npj Regenerative Medicine (Note: Links have been removed),

Driven by the rapid evolution of gene editing technologies, international policy is examining which regulatory models can address the ensuing scientific, socio-ethical and legal challenges for regenerative and personalised medicine.1 Emerging gene editing technologies, including the CRISPR/Cas9 2015 scientific breakthrough,2 are powerful, relatively inexpensive, accurate, and broadly accessible research tools.3 Moreover, they are being utilised throughout the world in a wide range of research initiatives with a clear eye on potential clinical applications. Considering the implications of human gene editing for selection, modification and enhancement, it is time to re-examine policy in Canada relevant to these important advances in the history of medicine and science, and the legislative and regulatory frameworks that govern them. Given the potential human reproductive applications of these technologies, careful consideration of these possibilities, as well as ethical and regulatory scrutiny must be a priority.4

With the advent of human embryonic stem cell research in 1978, the birth of Dolly (the cloned sheep) in 1996 and the Raelian cloning hoax in 2003, the environment surrounding the enactment of Canada’s 2004 Assisted Human Reproduction Act (AHRA) was the result of a decade of polarised debate,5 fuelled by dystopian and utopian visions for future applications. Rightly or not, this led to the AHRA prohibition on a wide range of activities, including the creation of embryos (s. 5(1)(b)) or chimeras (s. 5(1)(i)) for research and in vitro and in vivo germ line alterations (s. 5(1)(f)). Sanctions range from a fine (up to $500,000) to imprisonment (up to 10 years) (s. 60 AHRA).

In Canada, the criminal ban on gene editing appears clear, the Act states that “No person shall knowingly […] alter the genome of a cell of a human being or in vitro embryo such that the alteration is capable of being transmitted to descendants;” [emphases mine] (s. 5(1)(f) AHRA). This approach is not shared worldwide as other countries such as the United Kingdom, take a more regulatory approach to gene editing research.1 Indeed, as noted by the Law Reform Commission of Canada in 1982, criminal law should be ‘an instrument of last resort’ used solely for “conduct which is culpable, seriously harmful, and generally conceived of as deserving of punishment”.6 A criminal ban is a suboptimal policy tool for science as it is inflexible, stifles public debate, and hinders responsiveness to the evolving nature of science and societal attitudes.7 In contrast, a moratorium such as the self-imposed research moratorium on human germ line editing called for by scientists in December 20158 can at least allow for a time limited pause. But like bans, they may offer the illusion of finality and safety while halting research required to move forward and validate innovation.

On October 1st, 2016, Health Canada issued a Notice of Intent to develop regulations under the AHRA but this effort is limited to safety and payment issues (i.e. gamete donation). Today, there is a need for Canada to revisit the laws and policies that address the ethical, legal and social implications of human gene editing. The goal of such a critical move in Canada’s scientific and legal history would be a discussion of the right of Canadians to benefit from the advancement of science and its applications as promulgated in article 27 of the Universal Declaration of Human Rights9 and article 15(b) of the International Covenant on Economic, Social and Cultural Rights,10 which Canada has signed and ratified. Such an approach would further ensure the freedom of scientific endeavour both as a principle of a liberal democracy and as a social good, while allowing Canada to be engaged with the international scientific community.

Even though it’s a bit old, I still recommend reading the open access editorial in full, if you have the time.

One last thing abut the paper, the acknowledgements,

Sponsored by Canada’s Stem Cell Network, the Centre of Genomics and Policy of McGill University convened a ‘think tank’ on the future of human gene editing in Canada with legal and ethics experts as well as representatives and observers from government in Ottawa (August 31, 2016). The experts were Patrick Bedford, Janetta Bijl, Timothy Caulfield, Judy Illes, Rosario Isasi, Jonathan Kimmelman, Erika Kleiderman, Bartha Maria Knoppers, Eric Meslin, Cate Murray, Ubaka Ogbogu, Vardit Ravitsky, Michael Rudnicki, Stephen Strauss, Philip Welford, and Susan Zimmerman. The observers were Geneviève Dubois-Flynn, Danika Goosney, Peter Monette, Kyle Norrie, and Anthony Ridgway.

Competing interests

The authors declare no competing interests.

Both McGill and the Stem Cell Network pop up again. A November 8, 2017 article about the need for new Canadian gene-editing policies by Tom Blackwell for the National Post features some familiar names (Did someone have a budget for public relations and promotion?),

It’s one of the most exciting, and controversial, areas of health science today: new technology that can alter the genetic content of cells, potentially preventing inherited disease — or creating genetically enhanced humans.

But Canada is among the few countries in the world where working with the CRISPR gene-editing system on cells whose DNA can be passed down to future generations is a criminal offence, with penalties of up to 10 years in jail.

This week, one major science group announced it wants that changed, calling on the federal government to lift the prohibition and allow researchers to alter the genome of inheritable “germ” cells and embryos.

The potential of the technology is huge and the theoretical risks like eugenics or cloning are overplayed, argued a panel of the Stem Cell Network.

The step would be a “game-changer,” said Bartha Knoppers, a health-policy expert at McGill University, in a presentation to the annual Till & McCulloch Meetings of stem-cell and regenerative-medicine researchers [These meetings were originally known as the Stem Cell Network’s Annual General Meeting {AGM}]. [emphases mine]

“I’m completely against any modification of the human genome,” said the unidentified meeting attendee. “If you open this door, you won’t ever be able to close it again.”

If the ban is kept in place, however, Canadian scientists will fall further behind colleagues in other countries, say the experts behind the statement say; they argue possible abuses can be prevented with good ethical oversight.

“It’s a human-reproduction law, it was never meant to ban and slow down and restrict research,” said Vardit Ravitsky, a University of Montreal bioethicist who was part of the panel. “It’s a sort of historical accident … and now our hands are tied.”

There are fears, as well, that CRISPR could be used to create improved humans who are genetically programmed to have certain facial or other features, or that the editing could have harmful side effects. Regardless, none of it is happening in Canada, good or bad.

In fact, the Stem Cell Network panel is arguably skirting around the most contentious applications of the technology. It says it is asking the government merely to legalize research for its own sake on embryos and germ cells — those in eggs and sperm — not genetic editing of embryos used to actually get women pregnant.

The highlighted portions in the last two paragraphs of the excerpt were written one year prior to the claims by a Chinese scientist that he had run a clinical trial resulting in gene-edited twins, Lulu and Nana. (See my my November 28, 2018 posting for a comprehensive overview of the original furor). I have yet to publish a followup posting featuring the news that the CRISPR twins may have been ‘improved’ more extensively than originally realized. The initial reports about the twins focused on an illness-related reason (making them HIV ‘immune’) but made no mention of enhanced cognitive skills a side effect of eliminating the gene that would make them HIV ‘immune’. To date, the researcher has not made the bulk of his data available for an in-depth analysis to support his claim that he successfully gene-edited the twins. As well, there were apparently seven other pregnancies coming to term as part of the researcher’s clinical trial and there has been no news about those births.

Risk analysis innovation

Before moving onto the innovation of risk analysis, I want to focus a little more on at least one of the risks that gene-editing might present. Gierczak noted that CRISPR/Cas9 is “not perfect,” which acknowledges the truth but doesn’t convey all that much information.

While the terms ‘precision’ and ‘scissors’ are used frequently when describing the CRISPR technique, scientists actually mean that the technique is significantly ‘more precise’ than other techniques but they are not referencing an engineering level of precision. As for the ‘scissors’, it’s an analogy scientists like to use but in fact CRISPR is not as efficient and precise as a pair of scissors.

Michael Le Page in a July 16, 2018 article for New Scientist lays out some of the issues (Note: A link has been removed),

A study of CRIPSR suggests we shouldn’t rush into trying out CRISPR genome editing inside people’s bodies just yet. The technique can cause big deletions or rearrangements of DNA [emphasis mine], says Allan Bradley of the Wellcome Sanger Institute in the UK, meaning some therapies based on CRISPR may not be quite as safe as we thought.

The CRISPR genome editing technique is revolutionising biology, enabling us to create new varieties of plants and animals and develop treatments for a wide range of diseases.

The CRISPR Cas9 protein works by cutting the DNA of a cell in a specific place. When the cell repairs the damage, a few DNA letters get changed at this spot – an effect that can be exploited to disable genes.

At least, that’s how it is supposed to work. But in studies of mice and human cells, Bradley’s team has found that in around a fifth of cells, CRISPR causes deletions or rearrangements more than 100 DNA letters long. These surprising changes are sometimes thousands of letters long.

“I do believe the findings are robust,” says Gaetan Burgio of the Australian National University, an expert on CRISPR who has debunked previous studies questioning the method’s safety. “This is a well-performed study and fairly significant.”

I covered the Bradley paper and the concerns in a July 17, 2018 posting ‘The CRISPR ((clustered regularly interspaced short palindromic repeats)-CAS9 gene-editing technique may cause new genetic damage kerfuffle‘. (The ‘kerfufle’ was in reference to a report that the CRISPR market was affected by the publication of Bradley’s paper.)

Despite Health Canada not moving swiftly enough for some researchers, they have nonetheless managed to release an ‘outcome’ report about a consultation/analysis started in October 2016. Before getting to the consultation’s outcome, it’s interesting to look at how the consultation’s call for response was described (from Health Canada’s Toward a strengthened Assisted Human Reproduction Act ; A Consultation with Canadians on Key Policy Proposals webpage),

In October 2016, recognizing the need to strengthen the regulatory framework governing assisted human reproduction in Canada, Health Canada announced its intention to bring into force the dormant sections of the Assisted Human Reproduction Act  and to develop the necessary supporting regulations.

This consultation document provides an overview of the key policy proposals that will help inform the development of regulations to support bringing into force Section 10, Section 12 and Sections 45-58 of the Act. Specifically, the policy proposals describe the Department’s position on the following:

Section 10: Safety of Donor Sperm and Ova

  • Scope and application
  • Regulated parties and their regulatory obligations
  • Processing requirements, including donor suitability assessment
  • Record-keeping and traceability

Section 12: Reimbursement

  • Expenditures that may be reimbursed
  • Process for reimbursement
  • Creation and maintenance of records

Sections 45-58: Administration and Enforcement

  • Scope of the administration and enforcement framework
  • Role of inspectors designated under the Act

The purpose of the document is to provide Canadians with an opportunity to review the policy proposals and to provide feedback [emphasis mine] prior to the Department finalizing policy decisions and developing the regulations. In addition to requesting stakeholders’ general feedback on the policy proposals, the Department is also seeking input on specific questions, which are included throughout the document.

It took me a while to find the relevant section (in particular, take note of ‘Federal Regulatory Oversight’),

3.2. AHR in Canada Today

Today, an increasing number of Canadians are turning to AHR technologies to grow or build their families. A 2012 Canadian studyFootnote 1 found that infertility is on the rise in Canada, with roughly 16% of heterosexual couples experiencing infertility. In addition to rising infertility, the trend of delaying marriage and parenthood, scientific advances in cryopreserving ova, and the increasing use of AHR by LGBTQ2 couples and single parents to build a family are all contributing to an increase in the use of AHR technologies.

The growing use of reproductive technologies by Canadians to help build their families underscores the need to strengthen the AHR Act. While the approach to regulating AHR varies from country to country, Health Canada has considered international best practices and the need for regulatory alignment when developing the proposed policies set out in this document. …

3.2.1 Federal Regulatory Oversight

Although the scope of the AHR Act was significantly reduced in 2012 and some of the remaining sections have not yet been brought into force, there are many important sections of the Act that are currently administered and enforced by Health Canada, as summarized generally below:

Section 5: Prohibited Scientific and Research Procedures
Section 5 prohibits certain types of scientific research and clinical procedures that are deemed unacceptable, including: human cloning, the creation of an embryo for non-reproductive purposes, maintaining an embryo outside the human body beyond the fourteenth day, sex selection for non-medical reasons, altering the genome in a way that could be transmitted to descendants, and creating a chimera or a hybrid. [emphasis mine]

….

It almost seems as if the they were hiding the section that broached the human gene-editing question. It doesn’t seem to have worked as it appears, there are some very motivated parties determined to reframe the discussion. Health Canada’s ‘outocme’ report, published March 2019, What we heard: A summary of scanning and consultations on what’s next for health product regulation reflects the success of those efforts,

1.0 Introduction and Context

Scientific and technological advances are accelerating the pace of innovation. These advances are increasingly leading to the development of health products that are better able to predict, define, treat, and even cure human diseases. Globally, many factors are driving regulators to think about how to enable health innovation. To this end, Health Canada has been expanding beyond existing partnerships and engaging both domestically and internationally. This expanding landscape of products and services comes with a range of new challenges and opportunities.

In keeping up to date with emerging technologies and working collaboratively through strategic partnerships, Health Canada seeks to position itself as a regulator at the forefront of health innovation. Following the targeted sectoral review of the Health and Biosciences Sector Regulatory Review consultation by the Treasury Board Secretariat, Health Canada held a number of targeted meetings with a broad range of stakeholders.

This report outlines the methodologies used to look ahead at the emerging health technology environment, [emphasis mine] the potential areas of focus that resulted, and the key findings from consultations.

… the Department identified the following key drivers that are expected to shape the future of health innovation:

  1. The use of “big data” to inform decision-making: Health systems are generating more data, and becoming reliant on this data. The increasing accuracy, types, and volume of data available in real time enable automation and machine learning that can forecast activity, behaviour, or trends to support decision-making.
  2. Greater demand for citizen agency: Canadians increasingly want and have access to more information, resources, options, and platforms to manage their own health (e.g., mobile apps, direct-to-consumer services, decentralization of care).
  3. Increased precision and personalization in health care delivery: Diagnostic tools and therapies are increasingly able to target individual patients with customized therapies (e.g., individual gene therapy).
  4. Increased product complexity: Increasingly complex products do not fit well within conventional product classifications and standards (e.g., 3D printing).
  5. Evolving methods for production and distribution: In some cases, manufacturers and supply chains are becoming more distributed, challenging the current framework governing production and distribution of health products.
  6. The ways in which evidence is collected and used are changing: The processes around new drug innovation, research and development, and designing clinical trials are evolving in ways that are more flexible and adaptive.

With these key drivers in mind, the Department selected the following six emerging technologies for further investigation to better understand how the health product space is evolving:

  1. Artificial intelligence, including activities such as machine learning, neural networks, natural language processing, and robotics.
  2. Advanced cell therapies, such as individualized cell therapies tailor-made to address specific patient needs.
  3. Big data, from sources such as sensors, genetic information, and social media that are increasingly used to inform patient and health care practitioner decisions.
  4. 3D printing of health products (e.g., implants, prosthetics, cells, tissues).
  5. New ways of delivering drugs that bring together different product lines and methods (e.g., nano-carriers, implantable devices).
  6. Gene editing, including individualized gene therapies that can assist in preventing and treating certain diseases.

Next, to test the drivers identified and further investigate emerging technologies, the Department consulted key organizations and thought leaders across the country with expertise in health innovation. To this end, Health Canada held seven workshops with over 140 representatives from industry associations, small-to-medium sized enterprises and start-ups, larger multinational companies, investors, researchers, and clinicians in Ottawa, Toronto, Montreal, and Vancouver. [emphases mine]

The ‘outocme’ report, ‘What we heard …’, is well worth reading in its entirety; it’s about 9 pp.

I have one comment, ‘stakeholders’ don’t seem to include anyone who isn’t “from industry associations, small-to-medium sized enterprises and start-ups, larger multinational companies, investors, researchers, and clinician” or from “Ottawa, Toronto, Montreal, and Vancouver.” Aren’t the rest of us stakeholders?

Innovating risk analysis

This line in the report caught my eye (from Health Canada’s Toward a strengthened Assisted Human Reproduction Act ; A Consultation with Canadians on Key Policy Proposals webpage),

There is increasing need to enable innovation in a flexible, risk-based way, with appropriate oversight to ensure safety, quality, and efficacy. [emphases mine]

It reminded me of the 2019 federal budget (from my March 22, 2019 posting). One comment before proceeding, regulation and risk are tightly linked and, so, by innovating regulation they are by exttension alos innovating risk analysis,

… Budget 2019 introduces the first three “Regulatory Roadmaps” to specifically address stakeholder issues and irritants in these sectors, informed by over 140 responses [emphasis mine] from businesses and Canadians across the country, as well as recommendations from the Economic Strategy Tables.

Introducing Regulatory Roadmaps

These Roadmaps lay out the Government’s plans to modernize regulatory frameworks, without compromising our strong health, safety, and environmental protections. They contain proposals for legislative and regulatory amendments as well as novel regulatory approaches to accommodate emerging technologies, including the use of regulatory sandboxes and pilot projects—better aligning our regulatory frameworks with industry realities.

Budget 2019 proposes the necessary funding and legislative revisions so that regulatory departments and agencies can move forward on the Roadmaps, including providing the Canadian Food Inspection Agency, Health Canada and Transport Canada with up to $219.1 million over five years, starting in 2019–20, (with $0.5 million in remaining amortization), and $3.1 million per year on an ongoing basis.

In the coming weeks, the Government will be releasing the full Regulatory Roadmaps for each of the reviews, as well as timelines for enacting specific initiatives, which can be grouped in the following three main areas:

What Is a Regulatory Sandbox? Regulatory sandboxes are controlled “safe spaces” in which innovative products, services, business models and delivery mechanisms can be tested without immediately being subject to all of the regulatory requirements.
– European Banking Authority, 2017

Establishing a regulatory sandbox for new and innovative medical products
The regulatory approval system has not kept up with new medical technologies and processes. Health Canada proposes to modernize regulations to put in place a regulatory sandbox for new and innovative products, such as tissues developed through 3D printing, artificial intelligence, and gene therapies targeted to specific individuals. [emphasis mine]

Modernizing the regulation of clinical trials
Industry and academics have expressed concerns that regulations related to clinical trials are overly prescriptive and inconsistent. Health Canada proposes to implement a risk-based approach [emphasis mine] to clinical trials to reduce costs to industry and academics by removing unnecessary requirements for low-risk drugs and trials. The regulations will also provide the agri-food industry with the ability to carry out clinical trials within Canada on products such as food for special dietary use and novel foods.

Does the government always get 140 responses from a consultation process? Moving on, I agree with finding new approaches to regulatory processes and oversight and, by extension, new approaches to risk analysis.

Earlier in this post, I asked if someone had a budget for public relations/promotion. I wasn’t joking. My March 22, 2019 posting also included these line items in the proposed 2019 budget,

Budget 2019 proposes to make additional investments in support of the following organizations:
Stem Cell Network: Stem cell research—pioneered by two Canadians in the 1960s [James Till and Ernest McCulloch]—holds great promise for new therapies and medical treatments for respiratory and heart diseases, spinal cord injury, cancer, and many other diseases and disorders. The Stem Cell Network is a national not-for-profit organization that helps translate stem cell research into clinical applications and commercial products. To support this important work and foster Canada’s leadership in stem cell research, Budget 2019 proposes to provide the Stem Cell Network with renewed funding of $18 million over three years, starting in 2019–20.

Genome Canada: The insights derived from genomics—the study of the entire genetic information of living things encoded in their DNA and related molecules and proteins—hold the potential for breakthroughs that can improve the lives of Canadians and drive innovation and economic growth. Genome Canada is a not-for-profit organization dedicated to advancing genomics science and technology in order to create economic and social benefits for Canadians. To support Genome Canada’s operations, Budget 2019 proposes to provide Genome Canada with $100.5 million over five years, starting in 2020–21. This investment will also enable Genome Canada to launch new large-scale research competitions and projects, in collaboration with external partners, ensuring that Canada’s research community continues to have access to the resources needed to make transformative scientific breakthroughs and translate these discoveries into real-world applications.

Years ago, I managed to find a webpage with all of the proposals various organizations were submitting to a government budget committee. It was eye-opening. You can tell which organizations were able to hire someone who knew the current government buzzwords and the things that a government bureaucrat would want to hear and the organizations that didn’t.

Of course, if the government of the day is adamantly against or uninterested, no amount of persusasion will work to get your organization more money in the budget.

Finally

Reluctantly, I am inclined to explore the topic of emerging technologies such as gene-editing not only in the field of agriculture (for gene-editing of plants, fish, and animals see my November 28, 2018 posting) but also with humans. At the very least, it needs to be discussed whether we choose to participate or not.

If you are interested in the arguments against changing Canada’s prohibition against gene-editing of humans, there’s an Ocotber 2, 2017 posting on Impact Ethics by Françoise Baylis, Professor and Canada Research Chair in Bioethics and Philosophy at Dalhousie University, and Alana Cattapan, Johnson Shoyama Graduate School of Public Policy at the University of Saskatchewan, which makes some compelling arguments. Of course, it was written before the CRISPR twins (my November 28, 2018 posting).

Recaliing CRISPR Therapeutics (mentioned by Gierczak), the company received permission to run clinical trials in the US in October 2018 after the FDA (US Food and Drug Administration) lifted an earlier ban on their trials according to an Oct. 10, 2018 article by Frank Vinhuan for exome,

The partners also noted that their therapy is making progress outside of the U.S. They announced that they have received regulatory clearance in “multiple countries” to begin tests of the experimental treatment in both sickle cell disease and beta thalassemia, …

It seems to me that the quotes around “multiple countries” are meant to suggest doubt of some kind. Generally speaking, company representatives make those kinds of generalizations when they’re trying to pump up their copy. E.g., 50% increase in attendance  but no whole numbers to tell you what that means. It could mean two people attended the first year and then brought a friend the next year or 100 people attended and the next year there were 150.

Despite attempts to declare personalized medicine as having arrived, I think everything is still in flux with no preordained outcome. The future has yet to be determined but it will be and I , for one, would like to have some say in the matter.

A biotech talk: Re – [Generating, Creating, Interpreting] on Tuesday, April 30, 2019 at 5:30 pm in Toronto, Ontario (Canada)

[downloaded from https://artscisalon.com/re-generating-creating-interpreting-tuesday-april-30-530-pm-ocadu/]

This image is intriguing as it’s being used to illustrate an ArtSci Salon April 30, 2019 event about biotechnology (from the Re – [Generating, Creating, Interpreting] event webpage),

Re – [Generating, Creating, Interpreting]

Conversations about Life

We live in strange times. We mourn for the countless lives we are losing to extinction, famine, severe weather and disease; we celebrate the possibility that science may assist us in preserving what we have and in regenerating what is no more. We aspire to re-create long gone species and proceed to create new one. Biotechnologies both terrify and invigorate us. We are torn between creating risk free futures and taking exciting Promethean risks. We claim that biotech can create a more democratic society; yet, we are increasingly racist, sexist and classist.

What’s at stake? How can life unfold from here? How do we reinterpret and re-imagine it? Join us for a series of brief presentations and a following juicy discussion. There will be refreshments. …And juice

With:

Joana Magalhães
Institute of Biomedical Research, A Coruña (INIBIC)

Polona Tratnik
Research Institute for Humanities, Alma Mater Europaea, Ljubljana

Roberta Buiani
Centre for Feminist Research, York University, Toronto

Moderated by:

Dolores Steinman
Biomedical Simulation Lab (BSL)

Tuesday, April 30
5.30 pm

OCADU (Ontario College of Art and Design University)
DF Salon, Room 701K  (7th floor)
205 Richmond St W

RSVP  https://www.facebook.com/events/811144362603498/

For the curious, here are the bios (also from the Re – [Generating, Creating, Interpreting] event webpage),

Roberta Buiani (PhD Communication and Culture, YorkU) is an interdisciplinary artist, media scholar and curator based in Toronto. She is the co-founder of the ArtSci Salon at the Fields Institute for Research in Mathematical Sciences (Toronto) and co-organizer of LASER Toronto. Her recent SSHRC-funded research creation project draws on feminist technoscience and on collaborative encounters across the sciences and the arts to investigate emerging life forms exceeding the categories defined by traditional methods of classification. Her artistic work has travelled to art festivals (Transmediale; Hemispheric Institute Encuentro; Brazil), community centres and galleries (the Free Gallery Toronto; Immigrant Movement International, Queens, Myseum of Toronto), and science institutions (RPI; the Fields Institute). Her writing has appeared on Space and Culture, Cultural Studies and The Canadian Journal of Communication among others. With the ArtSci Salon she has launched a series of experiments in “squatting academia”, by re-populating abandoned spaces and cabinets across university campuses with SciArt installations. Currently, she is a research associate at the Centre for Feminist Research at York University. ArtSci Salon website: https://artscisalon.com Personal http://atomarborea.net

Joana Magalhães holds a B.Sc. in Biology and a Ph.D. in Biochemistry and Molecular Biology. She is a Postdoctoral Researcher at the Institute of Biomedical Research of A Coruña, Spain, working in the field of regenerative medicine strategies for osteoarthritis. Previous positions include a Postdoctoral Fellowship at the Spanish Networking Biomedical Center and a Marie Curie PhD Fellowship at the Spanish Council for Scientific Research. In parallel with her scientific career, she develops STEAM-for-health media strategies from a gender perspective that received several national and international awards (Science on Stage 2017 for Radio, Press and TV or SCI-DOC Festival Mention of honour Women in Science Category 2018). Currently, she is Correspondent for “Women in Science” at Efervesciencia Radio Program. Moreover, she was a scientist-in-residence at Fundación Luis Seoane and Artesacía Theatrical Company for “TRANSCÉNICA” – I Transmedia Creators Meeting (2015). She is the Spanish Representative at the Young Scientist Forum – European Society of Biomaterials and Board Member of the Association of Women in Science and Technology (AMIT) – Galician Node. http://jomagellan.tumblr.com

Dolores Steinman Biomedical Simulation Lab, University of Toronto.

Dr. Steinman’s involvement with the Biomedical Simulation Laboratory (BSL), at the University of Toronto, is based on her experience as an MD (Romania) and PhD in Cell Biology (Canada) that led her to contribute in situating the BSL’s “patient-specific” computer-based simulations in the socio-historical, ethical and aesthetic context of medical imaging and imagery.

Polona Tratnik, Ph.D., is Dean of Alma Mater Europaea – Institutum Studiorum Humanitatis, Faculty and Research Institute for Humanities, Ljubljana [Slovenia], where she is a Professor and Head of Research as well. She also teaches courses at the Faculty for Media and Communication at Singidunum University in Serbia, at the Academy of Fine Arts and Design of the University of Ljubljana, at the Faculty of Education of the University of Maribor and at the Faculty for Design of the University of Primorska. She used to be the Head of the Department for Cultural Studies at the Faculty for Humanities of the University of Primorska. In 2012 she was a Fulbright Visiting Scholar, as well as a Guest Professor at the University of California Santa Cruz. She was a Guest Professor also at the Capital Normal University Bejing (China), at the Faculty for Art and Design Helsinki TAIK (Finland), and at the Universidad Nacional Autónoma de México(Mexico City). She is president of the Slovenian Society of Aesthetics (since 2011) and an Executive Committee Member of the International Association of Aesthetics. She has authored seven monographs and one proceeding as single author, including the Hacer-vivir más allá del cuerpo y del medio (Mexico City: Herder, 2013), Art as Intervention(Sophia, 2017) and Conquest of Body. Biopower with Biotechnology (Springer, 2017). Polona Tratnik is a pioneer bio artist exhibiting worldwide at shows such as Ars Electronica festival and BEAP festival in Perth .http://www.polona-tratnik.si

It should be a stimulating discussion although I am curious as to about omission from this list: “… biotech can create a more democratic society; yet, we are increasingly racist, sexist and classist. ” What about age or, more specifically, ageism? Maybe next time, eh?

S.NET (Society for the Study of New and Emerging Technologies) 2019 conference in Quito, Ecuador: call for abstracts

Why isn’t the S.NET abbreviation SSNET? That’s what it should be, given the organization’s full name: Society for the Study of New and Emerging Technologies. S.NET smacks of a compromise or consensus decision of some kind. Also, the ‘New’ in its name was ‘Nanoscience’ at one time (see my Oct. 22, 2013 posting).

Now onto 2019 and the conference, which, for the first time ever, is being held in Latin America. Here’s more from a February 4, 2019 S.Net email about the call for abstracts,

2019 Annual S.NET Meeting
Contrasting Visions of Technological Change

The 11th Annual S.NET meeting will take place November 18-20, 2019, at the Latin American Faculty of Social Sciences in Quito, Ecuador.

This year’s meeting will provide rich opportunities to reflect on technological change by establishing a dialogue between contrasting visions on how technology becomes closely intertwined with social orders.  We aim to open the black box of technological change by exploring the sociotechnical agreements that help to explain why societies follow certain technological trajectories. Contributors are invited to explore the ramifications of technological change, reflect on the policy process of technology, and debate whether or why technological innovation is a matter for democracy.

Following the transnational nature of S.NET, the meeting will highlight the diverse geographical and cultural approaches to technological innovation, the forces driving sociotechnical change, and social innovation.  It is of paramount importance to question the role of technology in the shaping of society and the outcomes of these configurations.  What happens when these arrangements come into being, are transformed or fall apart?  Does technology create contestation?  Why and how should we engage with contested visions of technology change?

This is the first time that the S.NET Meeting will take place in Latin America and we encourage panels and presentations with contrasting voices from both the Global North and the Global South. 

Topics of interest include, but are not limited to:

Sociotechnical imaginaries of innovation
The role of technology on shaping nationhood and nation identities
Decision-making processes on science and technology public policies
Co-creation approaches to promote public innovation
Grassroots innovation, sustainability and democracy
Visions and cultural imaginaries
Role of social sciences and humanities in processes technological change
In addition, we welcome contributions on:
Research dynamics and organization Innovation and use
Governance and regulation
Politics and ethics
Roles of publics and stakeholders

Keynote Speakers
TBA (check the conference website for updates!)

Deadlines & Submission Instructions
The program committee invites contributions from scholars, technology developers and practitioners, and welcome presentations from a range of disciplines spanning the humanities, social and natural sciences.  We invite individual paper submissions, open panel and closed session proposals, student posters, and special format sessions, including events that are innovative in form and content. 

The deadline for abstract submissions is *April 18, 2019* [extended to May 12, 2019].  Abstracts should be approximately 250 words in length, emailed in PDF format to 2019snet@gmail.com.  Notifications of acceptance can be expected by May 30, 2019.

Junior scholars and those with limited resources are strongly encouraged to apply, as the organizing committee is actively investigating potential sources of financial support.

Details on the conference can be found here: https://www.flacso.edu.ec/snet2019/

Local Organizing Committee
María Belén Albornoz, Isarelis Pérez, Javier Jiménez, Mónica Bustamante, Jorge Núñez, Maka Suárez.

Venue
FLACSO Ecuador is located in the heart of Quito.  Most hotels, museums, shopping centers and other cultural hotspots in the city are located near the campus and are easily accessible by public or private transportation.  Due to its proximity and easy access, Meeting participants would be able to enjoy Quito’s rich cultural life during their stay.  

About S.NET
S.NET is an international association that promotes intellectual exchange and critical inquiry about the advancement of new and emerging technologies in society.  The aim of the association is to advance critical reflection from various perspectives on developments in a broad range of new and emerging fields, including, but not limited to, nanoscale science and engineering, biotechnology, synthetic biology, cognitive science, ICT and Big Data, and geo-engineering.  Current S.NET board members are: Michael Bennett (President), Maria Belen Albornoz, Claire Shelley-Egan, Ana Delgado, Ana Viseu, Nora Vaage, Chris Toumey, Poonam Pandey, Sylvester Johnson, Lotte Krabbenborg, and Maria Joao Ferreira Maia.

Don’t forget, the deadline for your abstract is *April 18, 2019* [extended to May 12, 2019].

For anyone curious about what Quito might look like, there’s this from Quito’s Wikipedia entry,

Clockwise from top: Calle La Ronda, Iglesia de la Compañía de Jesús, El Panecillo as seen from Northern Quito, Carondelet Palace, Central-Northern Quito, Parque La Carolina and Iglesia y Monasterio de San Francisco. Credit: various authors – montage of various important landmarks of the City of Quito, Ecuador taken from files found in Wikimedia Commons. CC BY-SA 3.0 File:Montaje Quito.png Created: 24 December 2012

Good luck to all everyone submitting an abstract.

*Date for abstract submissions changed from April 18, 2019 to May 12, 2019 on April 24, 2019

The poetry of physics from Canada’s Perimeter Institute

Dedicated to foundational theoretical physics, the Perimeter Institute (PI) has an active outreach programme. In their latest ‘newsletter’ (received via email on September 19, 2018) highlights poetry written by scientists, (from the ’12 poignant poems’ webpage),

It can be said that science and poetry share the common purpose of revealing profound truths about the universe and our place in it.

Physicist Paul Dirac, a known curmudgeon, would have dismissed that idea as hogwash.

“The aim of science is to make difficult things understandable in a simpler way; the aim of poetry is to state simple things in an incomprehensible way,” Dirac grouched to a colleague.  “The two are incompatible.”

The colleague to whom Dirac was grumbling, J. Robert Oppenheimer, was a lover of poetry who dabbled in it himself — as did, it turns out, quite a few great physicists, past and present. Physicists have often turned to poetry to express ideas for which there are no equations.

Here’s a look at some of the loveliest stanzas from physicists past and present, plus a few selections of rhyming silliness that get an A+ for effort.

Considering his reported distaste for poetry, it seems Dirac may have committed a few lines to verse. A four-line poem credited to Dirac laments the belief that, once past the age of 30, physicists have already passed their peak intellectual years.

dirac poetry

Perhaps the most prolific of all the poetic physicists was the Scottish genius [James Clerk Maxwell] whose equations for electromagnetism have been called “the second great unification in physics” (second to Isaac Newton’s marriage of physics and astronomy).

Maxwell’s best-known poetic composition is “Rigid Body Sings,” a ditty he used to sing while playing guitar, which is based on the classic Robbie Burns poem “Comin’ Through the Rye” (the inspiration for the title of J.D. Salinger’s The Catcher in the Rye). In terms of melding poetry and physics, however, Maxwell’s geekiest composition might be “A Problem in Dynamics,” which shows both his brilliance and sense of humour.

james clerk maxwell poem

Read the full poem

If Maxwell’s “A Problem in Dynamics,” is a little too technical for your mathematical comfort level, his fellow Scottish physicist William J.M. Rankine penned poetry requiring only a rudimentary understanding of algebra (and a peculiar understanding of love).

rankine physics poem

Richard Feynman was known for both his brilliance and his eclectic lifestyle, which included playing the bongos, safe-cracking, and, occasionally, writing poetry.

Read the full poem

Although theoretical physics is her specialty, Shohini Ghose is a true polymath. Born in India, educated in the US, and now a multi-award-winning professor at Wilfrid Laurier University, Ghose has delivered popular talks on subjects ranging from climate change to sexism in science. She recently joined Perimeter Institute as an affiliate researcher and an Equity, Inclusion & Diversity Specialist. On top of all that, she is a poet too.

Shohini poem

English mathematician James Joseph Sylvester was a prolific scholar whose collected works on matrix theory, number theory, and combinatorics fill four (large) volumes. In his honour, the Royal Society of London bestows the Sylvester Medal every two years to an early-career mathematician who shows potential to make major breakthroughs, just as the medal’s namesake did. It is only fitting that Sylvester’s best known work of poetry is an ode to a missing part of an algebraic formula.

sylvester poem physics

Read the full poem

Sonali Mohapatra is a Chancellor’s PhD Student at the University of Sussex and an alumna of the Perimeter Scholars International master’s program (during which she sang on the nationally broadcast CBC Radio program Ideas). She’s also the author of the poetry compilation Leaking Ink and runs an international magazine on creative resistance called Carved Voices. In her spare time — which, remarkably, she occasionally has — she delivers motivational talks on physics, feminism, and the juxtaposition of the personal and the professional.

sonali poem

Read the full poem

William Rowan Hamilton was an extraordinary mathematician whose research had long-lasting implications for modern physics. As a poet, he was a bit of a hack, at least in the eyes of his friend and renowned poet William Wordsworth. Hamilton often sent his poems to Wordsworth for feedback, and Wordsworth went to great pains to provide constructive criticism without hurting his friend’s feelings. Upon reading one of Hamilton’s poems, Wordsworth replied: “I do venture to submit to your consideration, whether the poetical parts of your nature would not find a field more favourable to their exercise in the regions of prose.” Translation: don’t quit your day job, Bill. Here’s one of Hamilton’s better works — a tribute to another giant of mathematics and physics, Joseph Fourier.

hamilton poetry

Read the full poem

For some lyrical physicists, poetry is not always a hobby separate from scientific research. For some (at least one), poetry is a way to present scientific findings. In 1984, Australian physicist J.W.V. Storey published a research paper — The Detection of Shocked Co/ Emission from G333.6-0.2 — as a 38-stanza poem. To any present-day researchers reading this: we dare you to try it.

storey poem

Caltech physicist John Preskill is one of the world’s leading researchers exploring quantum information and the application of quantum computing to big questions about spacetime. Those are extremely complex topics, but Preskill also has a knack for explaining complicated subjects in accessible (and, occasionally, rhyming) terms. Here’s a snippet from a poem he wrote called “Quantum Cryptography.”

john preskill poems

Read the full poem

Nitica Sakharwade is a PhD student who, when not tackling foundational puzzles in quantum mechanics and quantum information, writes poetry and performs spoken word. In fact, she’s performing at the Canadian Festival of Spoken Word in October 2018. Though her poems don’t always relate to physics, when they do, they examine profound ideas like the Chandrasekhar limit (the mass threshold that determines whether a white dwarf star will explode in a cataclysmic supernova).

chandrasekhar limit

David Morin is a physics professor at Harvard who has become somewhat legendary for sprucing up his lessons with physics-based limericks. Some are quite catchy and impressively whittle a complex subject down to a set of simple rhyming verses, like the one below about Emmy Noether’s landmark theorem.

noether symmetries

Other poems by Morin — such as this one, explaining how a medium other than a vacuum would affect a classic experiment — border on the absurd.

morin poems harvard

Lastly, we can’t resist sharing a poem by the brilliant Katharine Burr Blodgett, a physicist and chemist who, among other achievements, invented non-reflective “invisible” glass. That glass became very useful in filmmaking and was first put to use by Hollywood in a little movie called Gone With the Wind. After she retired from a long and successful career at General Electric (where she also pioneered materials to de-ice airplane wings, among many other innovations), she amused herself by writing quirky poetry.

katharine burr blodget

I’d usually edit a bit in an effort to drive readers over to the Perimeter website but I just can’t bear to cut this up. Thank you to Colin Hunter for compiling the poems and the write ups. For anyone who wants to investigate the Perimeter Institute further and doesn’t have a PhD in physics, there’s the Slices of PI webpage featuring “fun, monthly dispatches about science designed for social sharing.”

Cosmetics breakthrough for Ulsan National Institute of Science and Technology (UNIST)?

Cosmetics would not have been my first thought on reading the title for the paper (“Rates of cavity filling by liquids”) produced  by scientists from Ulsan National Institute of Science and Technology (UNIST).

A September 17, 2018 news item on Nanowerk announces the research,

A research team, affiliated with Ulsan National Institute of Science and Technology (UNIST) has examined the rates of liquid penetration on rough or patterned surfaces, especially those with pores or cavities. Their findings provide important insights into the development of everyday products, including cosmetics, paints, as well as industrial applications, like enhanced oil recovery.

This study has been jointly led by Professor Dong Woog Lee and his research team in the School of Energy and Chemical Engineering at UNIST and a research team in the University of California, Santa Barbara. Published online in the July 19th issue of the Proceedings of the National Academy of Sciences (“Rates of cavity filling by liquids”), the study identifies five variables that control the cavity-filling (wetting transition) rates, required for liquids to penetrate into the cavities.

A July 26, 2018 UNIST press release (also on EurekAlert but published on September 17, 2018), which originated the news item, delves further into the work,

In the study, Professor Lee fabricated silicon wafers with cylindrical cavities of different geometries. After immersing them in bulk water, they observed the details of, and the rates associated with, water penetration into the cavities from the bulk, using bright-field and confocal fluorescence microscopy. Cylindrical cavities are like skin pores with narrow entrance and specious interior. The cavity filling generally progresses when bulk water is spread above a hydrophilic, reentrant cavity. As described in “Wetting Transition from the Cassie–Baxter State to Wenzel State”, the liquid droplet that sits on top of the textured surface with trapped air underneath will be completely absorbed by the rough surface cavities.

Their findings revealed that the cavity-filling rates are affected by the following variables: (i) the intrinsic contact angle, (ii) the concentration of dissolved air in the bulk water phase, (iii) the liquid volatility that determines the rate of capillary condensation inside the cavities, (iv) the types of surfactants, and (v) the cavity geometry.

“Our results can used in the manufacture of special-purpose cosmetic products,” says Professor Lee. “For instance, pore minimizing face primers and facial cleansers that remove sebum need to reduce the amount of dissolved air, so that they can penetrate into the pores quickly.”

On the other hand, beauty products, like sunscreens should be designed to protect the skin from harmful sun, while preventing pores clogging. Because, clogged pores hinder the skin’s function of breathing or exchange of carbon dioxide and then cause further irritation, pimples, and blemished areas on your skin. In this case, it is better to reduce volatility and increase the amount of dissolved air in the cosmetic products, as opposed to facial cleansers.

“This knowledge of how cavities under bulk water are filled and what variables control the rate of filling can provide insights into the engineering of temporarily or permanently superhydrophobic surfaces, and the designing and manufacturing of various products that are applied to rough, textured, or patterned surfaces,” says Professor Lee. “Many of the fundamental insights gained can also be applied to other liquids (e.g., oils), contact angles, and cavities or pores of different dimensions or geometries.”

This study has been supported by the National Research Foundation of Korea (NRF) grant, funded by the Ministry of Science and ICT.

Here’s a link to and a citation for the paper,

Rates of cavity filling by liquids by Dongjin Seo, Alex M. Schrader, Szu-Ying Chen, Yair Kaufman, Thomas R. Cristiani, Steven H. Page, Peter H. Koenig, Yonas Gizaw, Dong Woog Lee, and Jacob N. Israelachvili. PNAS August 7, 2018 115 (32) 8070-8075 https://doi.org/10.1073/pnas.1804437115 Published ahead of print July 19, 2018

This paper is behind a paywall.

Storytelling, space, science, and a mini authors’ tour of Vancouver and Victoria (Canada)

I wasn’t expecting to go down a rabbit hole when I received an April 18, 2019 email announcement from Vancouver’s Curiosity Collider about an upcoming April 26, 2019 event but why not join me on the trip?

From the April 18, 2019 Curiosity Collider email,

Join astrophysicist / writer Elizabeth Tasker & young adult (YA) novelist Ria Voros as they share how discoveries of new worlds help tell stories of family

Curiosity Collider is co-hosting [emphasis mine] a special evening event with authors Ria Voros and Elizabeth Tasker. Ria and Elizabeth seem to be authors of a very different type: Ria is a YA novelist, while Elizabeth is an astrophysicist who writes popular science. The two authors will discuss how they came to work together unexpectedly through Ria’s novel. Ria will explain the process and research for her novel, The Centre of the Universe, and how the use of space metaphors help explain relationships between the characters. Elizabeth will then cast a scientific eye over these same metaphors, before moving on to talk in more depth about her own research and book, The Planet Factory

When: 7:00pm on Friday, April 26, 2019.
Where: Room 202, Hennings Building on UBC [University of British Columiba, Vancouver Endowment Lands] Campus (6224 Agricultural Road)
Cost: Free

Book signing to follow immediately after the event. UBC Bookstore will be on site with both Ria and Elizabeth’s books. 

Ria Voros is a YA author whose latest novel, The Centre of the Universe, explores the relationship between mothers and daughters and also explores a teen’s passion for astronomy. Ria has an MFA in creative writing from UBC and her books have been nominated for several awards across the country. She writes, teaches and lives in Victoria.

Elizabeth Tasker is an astrophysicist at Japan’s national space agency, JAXA. Her research uses computer models to explore how stars and planets form. She is a keen science communicator, writing principally about planets and space missions for publications that have included Scientific American, Astronomy Magazine and Room, and she is a regular feature writer for the NASA NExSS ‘Many Worlds’ online column. Her popular science book, The Planet Factory, comes out in paperback in Canada this April.

Curious as to what Tasker, an astrophysicist working in Japan, is doing here in BC, I noted the event is being cohosted by UBC’s Department of Physics and Astronomy (presumably Tasker is visiting colleagues and/or engaged on a sabbatical leave) along with Curiosity Collider. Not so coincidentally, Theresa Liao is the communications coordinator for the UBC department and is a member of the Curiosity Collider ‘team‘.

This April 26, 2019 Curiosity Collider event is the first of three of these authors’ events (according to my searches) within three days. The next is on April 27, 2019,. From the Royal BC Museum Astronomy Day (2019) event day webpage, (sometimes it’s ‘Astronomy Day’ and sometimes it’s ‘International Astronomy Day’)

The Royal Astronomical Society of Canada (Victoria Centre) will host the celebrations for International Astronomy Day [emphasis mine]. Join us and explore the mysteries of the universe!

2:30 PM – Science & Storytelling: How discoveries of new worlds help tell stories of family
By Ria Voros and Dr. Elizabeth Tasker

Ria and Elizabeth seem to be authors of a very different type: Ria is a “Young Adult” novelist, while Elizabeth writes popular science. The first part of this talk will tackle a crucial question: why are they presenting together? The two authors will discuss how they came to work together unexpectedly through Ria’s novel. Ria will then explain the process and research for her novel, The Centre of the Universe and how the use of space metaphors help explain relationships between the characters. Elizabeth will then cast a scientific eye over these same metaphors, before moving on to talk in more depth about her own research and book, The Planet Factory.

Event Details
April 27, 2019
10:00 am to 4:00 pm
Royal BC Museum
Free

Segue: I found more than one International Astronomy Day for 2019., the April 27, 2019 date in Victoria, BC, an April 28, 2019 date, and a May 11, 2019 date. As well, there is an International Astronomy Week being celebrated May 6 – 12, 2019 (as noted on the Royal Astronomical Society of Canada’s (RASC) Astronomy Events webpage). Lots of options for folks.

On the last date of this mini tour, the authors return to Vancouver for an April 28, 2019 event at the H. R. MacMillan Space Centre,

Passion for Astronomy: A Tale of Two Authors

Have you ever wondered how writers develop their stories? Have you ever wanted to write your own novel?

Join us Sunday, April 28th [2019] to find out how popular science author Dr. Elizabeth Tasker and Young Adult novelist Ria Voros develop their work. There is no charge to attend and all ages are welcome.

Learn how a shared passion for science and astronomy, and Ria’s latest novel ’The Centre of the Universe’, lead to a collaboration between these two authors.

Ria will be sharing the backstory and process she used to develop ’The Centre of the Universe’, and how she used space metaphors to help explore relationships between her characters. Elizabeth will shed a scientific light on the metaphors in Ria’s work before talking about her own research and book ’The Planet Factory’.

We will close the talk with a Q&A and book signing.

Located in the lower level auditorium.

Event Details
April 28, 2019 – 3:00pm to 4:00pm
Tickets

FREE ADMISSION. Reserve your seat on Evenbrite

Enjoy!

ETA April 21, 2019: I missed one stop on the tour. according to an April 19, 2019 article by Dana Gee for the Vancouver Sun, there will be two events on April 28, In addition to the one at the H. R. MacMillan Space Centre, Tasker and Voros will be hosted by the B.C. Humanist Association, from the BC Humanist Association’s Events webpage,

Sunday, April 28, 2019 at 10:00 AM
Oakridge Seniors Centre in Vancouver, BC, Canada
Vancouver Sunday Meeting: Elizabeth Tasker and Ria Voros – The Planet Factory

Dr Elizabeth Tasker is an associate professor at the Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Sciences (ISAS). Her research uses computer models to explore the formation of planets and galaxies. Her new book, The Planet Factory, tells the story of exoplanets, planets orbiting stars outside of our solar system.

She’ll be joined by Ria Voros, a Canadian author who’s new young adult book, The Centre of the Universe, follows 17 year old Grace, whose mother is missing. Grace is fascinated by exoplanets and meets Dr Tasker as a character in the story.

Both will discuss how they met and a bit about each of their books.

All are welcome to attend. Join us at 10 am for BYO coffee, tea, and socializing. At 10:30 am we start our presentation and discuss topics of interest to our members.

The BC Humanist Association was formed in 1984 and we have a regular attendance of over 30 people at our Sunday meetings.

Click here for more details on how to find the Centre. Our events are independent of the Seniors’ Centre and are open to people of all ages and backgrounds.

Now you have one more option.

Probing the physical limits of plasmons in organic molecules with fewer than 50 atoms

A Sept. 5, 2018  news item on ScienceDaily introduces the work,

Rice University [Texas, US] researchers are probing the physical limits of excited electronic states called plasmons by studying them in organic molecules with fewer than 50 atoms.

A Sept. 4, 2018 Rice University news release (also on EurekAlert published on Sept. 5, 2018), which originated the news item, explains what plasmons are and why this research is being undertaken,

Plasmons are oscillations in the plasma of free electrons that constantly swirl across the surface of conductive materials like metals. In some nanomaterials, a specific color of light can resonate with the plasma and cause the electrons inside it to lose their individual identities and move as one, in rhythmic waves. Rice’s Laboratory for Nanophotonics (LANP) has pioneered a growing list of plasmonic technologies for applications as diverse as color-changing glass, molecular sensing, cancer diagnosis and treatment, optoelectronics, solar energy collection and photocatalysis.

Reporting online in the Proceedings of the National Academy of Sciences, LANP scientists detailed the results of a two-year experimental and theoretical study of plasmons in three different polycyclic aromatic hydrocarbons (PAHs). Unlike the plasmons in relatively large metal nanoparticles, which can typically be described with classical electromagnetic theory like Maxwell’s [James Clerk Maxwell] equations, the paucity of atoms in the PAHs produces plasmons that can only be understood in terms of quantum mechanics, said study co-author and co-designer Naomi Halas, the director of LANP and the lead researcher on the project.

“These PAHs are essentially scraps of graphene that contain five or six fused benzene rings surrounded by a perimeter of hydrogen atoms,” Halas said. “There are so few atoms in each that adding or removing even a single electron dramatically changes their electronic behavior.”

Halas’ team had experimentally verified the existence of molecular plasmons in several previous studies. But an investigation that combined side by side theoretical and experimental perspectives was needed, said study co-author Luca Bursi, a postdoctoral research associate and theoretical physicist in the research group of study co-designer and co-author Peter Nordlander.

“Molecular excitations are a ubiquity in nature and very well studied, especially for neutral PAHs, which have been considered as the standard of non-plasmonic excitations in the past,” Bursi said. “Given how much is already known about PAHs, they were an ideal choice for further investigation of the properties of plasmonic excitations in systems as small as actual molecules, which represent a frontier of plasmonics.”

Lead co-author Kyle Chapkin, a Ph.D. student in applied physics in the Halas research group, said, “Molecular plasmonics is a new area at the interface between plasmonics and molecular chemistry, which is rapidly evolving. When plasmonics reach the molecular scale, we lose any sharp distinction of what constitutes a plasmon and what doesn’t. We need to find a new rationale to explain this regime, which was one of the main motivations for this study.”

In their native state, the PAHs that were studied — anthanthrene, benzo[ghi]perylene and perylene — are charge-neutral and cannot be excited into a plasmonic state by the visible wavelengths of light used in Chapkin’s experiments. In their anionic form, the molecules contain an additional electron, which alters their “ground state” and makes them plasmonically active in the visible spectrum. By exciting both the native and anionic forms of the molecules and comparing precisely how they behaved as they relaxed back to their ground states, Chapkin and Bursi built a solid case that the anionic forms do support molecular plasmons in the visible spectrum.

The key, Chapkin said, was identifying a number of similarities between the behavior of known plasmonic particles and the anionic PAHs. By matching both the timescales and modes for relaxation behaviors, the LANP team built up a picture of a characteristic dynamics of low-energy plasmonic excitations in the anionic PAHs.

“In molecules, all excitations are molecular excitations, but select excited states show some characteristics that allow us to draw a parallel with the well-established plasmonic excitations in metal nanostructures,” Bursi said.

“This study offers a window on the sometimes surprising behavior of collective excitations in few-atom quantum systems,” Halas said. “What we’ve learned here will aid our lab and others in developing quantum-plasmonic approaches for ultrafast color-changing glass, molecular-scale optoelectronics and nonlinear plasmon-mediated optics.”

Here’s a link to and a citation for the paper,

Lifetime dynamics of plasmons in the few-atom limit by Kyle D. Chapkin, Luca Bursi, Grant J. Stec, Adam Lauchner, Nathaniel J. Hogan, Yao Cui, Peter Nordlander, and Naomi J. Halas. PNAS September 11, 2018 115 (37) 9134-9139; published ahead of print August 27, 2018 DOI: https://doi.org/10.1073/pnas.1805357115

This paper is behind a paywall.

Two new Canada Excellence Research Chairs (CERC) at the University of British Columbia (Canada) bring bioproducts and precision medicine skills

This is very fresh news. One of these chairs has not yet been listed (at the time of this writing) as a member of the institute that he will be leading. Here’s the big picture news from an
April 17, 2019 University of British Columbia (UBC) news release, Note: Links have been removed,

Two internationally recognized researchers join the University of British Columbia as Canada Excellence Research Chairs, bringing international talent in the fields of forest bioproducts and precision cancer drug design.

Orlando Rojas has accepted the Canada Excellence Research Chair in Forest Bioproducts, while Sriram Subramaniam will hold the Gobind Khorana Canada Excellence Research Chair in Precision Cancer Drug Design—named after late Nobel Prize-winning UBC biochemistry professor Har Gobind Khorana.

“We are delighted to welcome Dr. Rojas and Dr. Subramaniam to UBC,” said UBC President and Vice-Chancellor, Professor Santa J. Ono. “Thanks to the CERC program and the generous support of our partners, including VGH & UBC Hospital Foundation, we have an opportunity to continue to build on UBC’s reputation as a global leader in these vitally important research fields.”

The Canada Excellence Research Chairs (CERC) program was established by the federal government in 2008 to attract top research talent from abroad to Canada. UBC will receive up to $10 million over seven years to support each chair and their research teams. In addition, a philanthropic gift of $18 million made to VGH & UBC Hospital Foundation will support cancer drug design that will be carried out by Subramaniam in close partnership with UBC and the Vancouver Prostate Centre at VGH.

“VGH & UBC Hospital Foundation is honoured to announce an $18 million gift from Aqueduct Foundation on behalf of an anonymous donor that will increase capacity for discovering and testing new life-saving cancer treatments right here in B.C. This funding will specifically support the design of precise, targeted and cost-effective drugs for cancer in work led by Dr. Sriram Subramaniam in close partnership with UBC and the Vancouver Prostate Centre at VGH and other research centres,” says Barbara Grantham, president and CEO of VGH & UBC Hospital Foundation.

Bioproducts

The April 17, 2019 UBC news release, goes on to describe the two new chairs,

Breaking new ground in forest bioproducts

Orlando Rojas comes to UBC from Aalto University [Finland], where he directs with VTT, the Technical Research Centre of Finland, a scientific cluster to advance the Finnish materials bio-economy. A recipient of the Anselme Payen Award—one of the highest international recognitions in the area of cellulose and renewable materials—and an elected member of the American Chemical Society and the Finnish Academy of Science and Letters, Rojas is recognized as a worldwide leader in the area of nanocelluloses.

“I’m thrilled to join an already stellar team of researchers at UBC’s BioProducts Institute,” said Rojas. “My research is aimed at uncovering solutions that can be found in nature to fulfill our material needs by using sustainably, readily available bio-resources. I hope to break new grounds to create positive societal impacts and to better our quality of life.”

As the CERC in Forest Bioproducts, Rojas will establish a world-class research program in genomics, synthetic biology, materials science and engineering. Together with his team and by applying cutting-edge nano- and biotechnologies, he will discover new strategies to isolate and transform biomass components—non-fossil organic materials derived from plants (including wood)—as well as side-streams and residuals from forestry and agriculture, oils and biomolecules. The work will lead to the generation of new bio-based precursors and advanced materials critical to the future bioeconomy. Rojas will be the scientific director of the UBC BioProducts Institute, synergizing a distinguished group of professors and researchers across campus who will conduct multi- and cross-disciplinary research that will position UBC at the forefront in the area.

As climate change continues to be the greatest threat to our world, the need to transition toward a more sustainable bio-based circular economy is critical. Rojas’ research is vital in understanding the role of forest and other plant-based resources in facilitating the transition to renewable materials and bioproducts.

As I noted earlier, Rojas has yet to be added to the UBC BioProducts Institute roster but I did find a listing of his published papers on Google Scholar and noted a number of them are focused on nanocellulose with at least one study on cellulose nanocrystals (CNC),

  • Cellulose nanocrystals: chemistry, self-assembly, and applications [by] Y Habibi, LA Lucia, OJ Rojas Chemical reviews 110 (6), 3479-3500

The University of British Columbia was the site for much of the early work in Canada and internationally on cellulose nanocrystals. After the provincial government lost interest in supporting it, the researchers at FPInnovations (I think it was a university spin-off organization) moved their main headquarters (leaving a smaller group in British Columbia) to the province of Québec where they receive significant support . In turn, FPInnovations spun-off a company, CelluForce which produces CNC from forest products.This news about Roja’s appointment would seem to make for an interesting development in Canada’s nanocellulose story.

Precision medicine with cryo-electron microscopy

Now for the second CERC appointment, from the April 17, 2019 UBC news release,

Putting Canada at the forefront of precision medicine

Sriram Subramaniam is recognized as a global leader in the emerging field of cryo-electron microscopy, or cryo-EM, a technology that has sparked a revolution in imaging of protein complexes. Subramaniam and his team demonstrated that proteins and protein-bound drugs could be visualized at atomic resolution with cryo-EM, paving the way for this technology to be used in accelerating drug discovery.

Subramaniam comes to UBC’s faculty of medicine from the US National Cancer Institute (NCI) at the National Institutes of Health (NIH) where he led a research team that made seminal advances in molecular and cellular imaging using electron microscopy, including work on advancing vaccine design for viruses such as HIV. Subramaniam is also founding director of the National Cryo-EM Program at NCI, NIH.

As the Gobind Khorana Canada Excellence Research Chair in Precision Cancer Drug Design, Subramaniam will establish and direct a laboratory located at UBC, aimed at bringing about transformative discoveries in cancer, neuroscience and infectious disease. Subramaniam is appointed both in the department of urologic sciences and in biochemistry and molecular biology at UBC, and is linked to the precision cancer drug design program at the Vancouver Prostate Centre at VGH.

His research is supported by a philanthropic gift of $18 million made to VGH & UBC Hospital Foundation. He will work in close partnership with the Vancouver Prostate Centre at VGH.

“We would not be able to undertake this path aimed at leveraging advances in imaging technology to improve patient outcomes if it weren’t for the generous support of the donor, the Canadian government, and VGH & UBC Hospital Foundation,” said Subramaniam. “I am proud to be part of a team of outstanding researchers here in Vancouver, and working together to harness the true potential of cryo-EM to accelerate drug design. Our work has the potential to establish VGH, UBC and Canada at the forefront of the emerging era of precision medicine.”

I was not able to find much in the way of additional information about Subramaniam—other than this (from the High Resolution Electron Microscopy Lab Members webpage),

Sriram Subramaniam received his Ph.D. in Physical Chemistry from Stanford University and completed postdoctoral training in the Departments of Chemistry and Biology at M.I.T. [Massachusetts Institute of Technology] He is chief of the Biophysics Section in the Laboratory of Cell Biology at the Center for Cancer Research, National Cancer Institute. He holds a visiting faculty appointment at the Johns Hopkins University School of Medicine.

Welcome to both Orlando J. Rohas and Sriram Subramaniam!