Category Archives: Visual Art

The physics of Jackson Pollock’s painting technique

I long ago stumbled across the fascination that Jackson Pollock’s art work exerts over physicists but this work from Brown University adds some colours to the picture (wordplay intended).

One: Number 31, 1950. Jackson Pollock (American, 1912–1956). 1950. Oil and enamel paint on canvas, 8′ 10″ x 17′ 5 5/8″ (269.5 x 530.8 cm) Courtesy: Museum of Modern Art (MOMA) [downloaded from: https://www.moma.org/learn/moma_learning/jackson-pollock-one-number-31-1950-1950/]

From an October 30, 2019 Brown University news release (also on EurekAlert),

The celebrated painter Jackson Pollock created his most iconic works not with a brush, but by pouring paint onto the canvas from above, weaving sinuous filaments of color into abstract masterpieces. A team of researchers analyzing the physics of Pollock’s technique has shown that the artist had a keen understanding of a classic phenomenon in fluid dynamics — whether he was aware of it or not.

In a paper published in the journal PLOS ONE, the researchers show that Pollock’s technique seems to intentionally avoid what’s known as coiling instability — the tendency of a viscous fluid to form curls and coils when poured on a surface.

“Like most painters, Jackson Pollock went through a long process of experimentation in order to perfect his technique,” said Roberto Zenit, a professor in Brown’s School of Engineering and senior author on the paper. “What we were trying to do with this research is figure out what conclusions Pollock reached in order to execute his paintings the way he wanted. Our main finding in this paper was that Pollock’s movements and the properties of his paints were such he avoided this coiling instability.”

Pollock’s technique typically involved pouring paint straight from a can or along a stick onto a canvas lying horizontally on the floor. It’s often referred to as the “drip technique,” but that’s a bit of a misnomer in the parlance of fluid mechanics, Zenit says. In fluid mechanics, “dripping” would be dispensing the fluid in a way that makes discrete droplets on the canvas. Pollock largely avoided droplets, in favor of unbroken filaments of paint stretching across the canvas.

In order to understand exactly how the technique worked, Zenit and colleagues from the Universidad Nacional Autonoma de Mexico analyzed extensive video of Pollock at work, taking careful measure of how fast he moved and how far from the canvas he poured his paints. Having gathered data on how Pollock worked, the researchers used an experimental setup to recreate his technique. Using the setup, the researchers could deposit paint using a syringe mounted at varying heights onto a canvas moving at varying speeds. The experiments helped to zero in on the most important aspects of what Pollock was doing.

“We can vary one thing at a time so we can decipher the key elements of the technique,” Zenit said. “For example, we could vary the height from which the paint is poured and keep the speed constant to see how that changes things.”

The researchers found that the combination of Pollock’s hand speed, the distance he maintained from the canvas and the viscosity of his paint seem to be aimed at avoiding coiling instability. Anyone who’s ever poured a viscous fluid — perhaps some honey on toast — has likely seen some coiling instability. When a small amount of a viscous fluid is poured, it tends to stack up like a coil of rope before oozing across the surface.

In the context of Pollock’s technique, the instability can result in paint filaments making pigtail-like curls when poured from the can. Some prior research had concluded that that the curved lines in Pollock’s paintings were a result of this instability, but this latest research shows the opposite.

“What we found is that he moved his hand at a sufficiently high speed and a sufficiently short height such that this coiling would not occur,” Zenit said.

Zenit says the findings could be useful in authenticating Pollock’s works. Too many tight curls might suggest that a drip-style painting is not a Pollock. The work could also inform other settings in which viscous fluids are stretched into filaments, such as the manufacture of fiber optics. But Zenit says his main interest in the work is that it’s simply a fascinating way to explore interesting questions in fluid mechanics.

“I consider myself to be a fluid mechanics messenger,” he said. “This is my excuse to talk science. It’s fascinating to see that painters are really fluid mechanicians, even though they may not know it.”

Here’s a link to and a citation for the paper,

Pollock avoided hydrodynamic instabilities to paint with his dripping technique by Bernardo Palacios, Alfonso Rosario, Monica M. Wilhelmus, Sandra Zetina, Roberto Zenit. PLOS ONE DOI: https://doi.org/10.1371/journal.pone.0223706 Published: October 30, 2019

This paper is open access.

I could not find any videos related to this research that I know how to embed but Palacios, Zetina, and Zenit have investigated Polock’s ‘physics’ before,

If you want to see Pollock dripping his painting in action, there’s a 10 min. 13 secs. film made in 1950 (Note: Links have been removed from text; link to 10 min. film is below),

In the summer of 1950, Hans Namuth approached Jackson Pollock and asked the abstract expressionist painter if he could photograph him in his studio, working with his “drip” technique of painting. When Namuth arrived, he found:

“A dripping wet canvas covered the entire floor. Blinding shafts of sunlight hit the wet canvas, making its surface hard to see. There was complete silence…. Pollock looked at the painting. Then unexpectedly, he picked up can and paintbrush and started to move around the canvas. It was as if he suddenly realized the painting was not finished. His movements, slow at first, gradually became faster and more dancelike as he flung black, white and rust-colored paint onto the canvas.”

The images from this shoot “helped transform Pollock from a talented, cranky loner into the first media-driven superstar of American contemporary art, the jeans-clad, chain-smoking poster boy of abstract expressionism,” one critic later wrote in The Washington Post.

You can find the film and accompanying Open Culture text intact with links here.

FACTT 2020: Festival of Art and Science Exhibition, March 9th – March 12th, 2020 in Toronto plus some ISEA (International Symposium on Electronic Arts) 2020 news

The FACTT 2020: FESTIVAL ART AND SCIENCE EXHIBITION is the third time (I believe) that the ArtSci Salon in Toronto has hosted this event. Marta de Menezes and a FACTT festival were mentioned for the first time here in a January 10, 2018 posting titled: CRISPR/Cas9 as a tool for artists (Art/sci Salon January 2018 events in Toronto, Canada) and an event in Winnipeg, Canada.

Here’s more from the March 3, 2020 ArtSci Salon announcements (received via email),

Sensorium Centre for Digital Arts and Technologies, ArtSci Salon, Cultivamos Cultura and Arte Institute present:

FACTT 2020: FESTIVAL ART AND SCIENCE Exhibition 
Monday, March 9th – Thursday, March 12th, 2020
11:00am-4:00pm
Gales Gallery (Accolade West Room 105) 
York University 

Exhibition Opening: March 9th from 6:00-7:30pm

Subway Stop, York University. 
Exit on the left – Accolade West is the building on the left

Don’t miss the 2020 Festival of Art and Science Exhibition – (Be)-Coming An Exhibition of Experimental Contemporary Art, co-sponsored by Sensorium: Centre for Digital Arts and Technology, ArtSci Salon, Arte Institute and Cultivamos Cultura. The exhibition features the work of invited artists from Portugal and North America, and AMPD students [I believe they are referring to students at York University’s School of the Arts, Media, Performance & Design]. The exhibition is curated by Marta DeMenezes [sic], Roberta Buiani and Joel Ong.

All are welcome to attend the exhibition opening which will take place on March 9th from 6:00-7:30pm in the Gales Gallery at York University. 

More soon at http://facebook.com/artscisalon and/or
http://twitter.com/ArtSci_Salon

About FACTT 2020

FACTT 2020 – (BE) COMING An Exhibition of Experimental Contemporary Art is about the impermanence of becoming permanent. A transformation is an extreme, radical change. The unavoidability of changes is a constant process we have throughout our lives. We may not always be aware of it, and often just spend so much energy avoiding this “law of nature” that we forget it exists and thrives for stability. (BE) COMING is an exhibition about change, the impossibility of not changing, the perpetual impermanence and the process of becoming. As we become aware of the need to change in our world, in our planet and our lives, it feels necessary to remember that life is a dynamic process. Life is a consistent process of transformation and adaptation. Art, more than any other human endeavour, is a reflection of this aspect of life and therefore the best way to remember the process of being something different, something else, something more, or something less, while becoming ourselves. 

****ETA March 11, 2020: CANCELLED. The Marta De Menezes talk has been cancelled****

According to the March 3, 2020 announcement, there’s another event associated with FACTT 2020; artist Marta De Menezes is being featured in a talk,

Sensorium Winter Lunchtime Seminar Series featuring: Marta De Menezes [sic]

Wednesday, March 11th, 2020
11:30am-12:30pm
The Sensorium Research Loft  [York University}
4th Floor GCFA, Room M333
RSVP to sensinfo@yorku.ca

Our second Sensorium Winter Lunchtime Seminar Series event of March will feature pioneering bio-artist Marta De Menezes [sic] who explores the use of biology and biotechnology as new art media and in conducting her practice in research laboratories that are her art studio.

Here are links for each of the sponsors: ArtSci Salon, Sensorium: Centre for Digital Arts and Technology, Arte Institute, and Cultivamos Cultura.

ISEA 2020

The 26th annual International Symposium on Electronic Arts (ISEA): Why Sentience? is being held from May 19 – 24, 2020 in Montreal, Canada and organizers have sen,t via email, a March 3, 2020 announcement,

DISCOVER THE PRELIMINARY PROGRAMMING!

Below is the list of accepted authors* from the call for submissions to ISEA2020. *Speakers are confirmed upon registration

PRELIMINARY PROGRAMMING HERE

REGISTRATION

ISEA2020, from May 19 to 24, 2020, will bring together in Montreal the scientific, academic and artistic work based on research and creative practices that explore new technologies. Don’t miss it!

EARLY-BIRD RATE ENDS ON MARCH 16, 2020!

REGISTER HERE

Major events of Printemps numérique [Montreal Digital Spring; this organization is one of the ISEA 2020 partners]

MTL connect: Montreal Digital week

ISEA2020

#intersections series

Youth QC 2030

Keynote speakers, workshops, special sessions, performances, and screenings are still to come.

I hope this Covid 19 situation is resolved soon. In the last paragraph of my March 2, 2020 posting I offered some information about articles along with links for more information about the virus.

*****ETA March 5, 2020: The ISEA 2020 keynote speakers were announced on March 5, 2020. Here they are (from the ISEA 2020 Keynote Speakers page):

THIERRY BARDINI

Professor in the Communication department at Université de Montréal
Agronomist (ENSA Montpellier, 1986) and sociologist (Ph.D. Paris X Nanterre, 1991), Thierry Bardini is full professor in the department of communication at the Université de Montréal, where he has been teaching since 1993. From 1990 to 1993, he was a visiting scholar and adjunct professor at the Annenberg School for communication at the University of Southern California, under the supervision of Everett M. Rogers. His research interests concern the contemporary cyberculture, from the production and uses of information and communication technologies to molecular biology. He is the author of Bootstrapping: Douglas Engelbart, Coevolution and the Genesis of Personal Computing (Stanford University Press, 2000), Junkware  (University of Minnesota Press, 2011) and Journey to the End of the Species (in collaboration with Dominique Lestel, Éditions Dis Voir, Paris, 2011). Thierry Bardini is currently working on his first research-creation project, Toward the Fourth Nature, with Beatriz Herrera and François-Joseph Lapointe.

Web Site : Université de Montréal

JOLENE RICKARD

Visual historian, artist and curator

Jolene Rickard, Ph.D. is a visual historian, artist and curator interested in the intersection of Indigenous knowledge and contemporary art, materiality, and ecocriticism with an emphasis on Hodinöhsö:ni aesthetics. A selection of publications includes: Diversifying Sovereignty and the Reception of Indigenous Art, Art Journal 76, no. 2 (2017), Aesthetics, Violence and Indigeneity, Public 27, no. 54 (Winter 2016), The Emergence of Global Indigenous Art, Sakahán, National Gallery of Canada (2013), and Visualizing Sovereignty in the Time of Biometric Sensors, The South Atlantic Quarterly: (2011). Recent exhibitions include the Minneapolis Institute of Arts, Hearts of Our People: Native Women Artists, 2019-2021, Crystal Bridges Museum of Art, Art For a New Understanding: Native Voices, 1950’s to Now,  2018-2020. Jolene is a 2020 Fulbright Research Scholar at McMaster University, ON, an Associate Professor in the departments of History of Art and Art, and the former Director of the American Indian and Indigenous Studies Program 2008-2020 (AIISP) at Cornell University, Ithaca, NY. Jolene is from the Tuscarora Nation (Turtle Clan), Hodinöhsö:ni Confederacy.

Web Site: Cornell University

RAMON AMARO

Lecturer in the Department of Visual Cultures at Goldsmiths, University of London.
Dr. Ramon Amaro, Ph.D. is a Lecturer in the Department of Visual Cultures at Goldsmiths, University of London. Previously he was Research Fellow in Digital Culture at Het Nieuwe Instituut in Rotterdam and visiting tutor in Media Theory at the Royal Academy of Art, The Hague, NL (KABK). Ramon completed his PhD in Philosophy at Goldsmiths, while holding a Masters degree in Sociological Research from the University of Essex and a BSe in Mechanical Engineering from the University of Michigan, Ann Arbor. He has worked as Assistant Editor for the SAGE open access journal Big Data & Society; quality design engineer for General Motors; and programmes manager for the American Society of Mechanical Engineers (ASME). His research interests include machine learning, the philosophies of mathematics and engineering, critical Black thought, and philosophies of being.

Web Site : sambarhino.com and Twitter : https://twitter.com/sambarhino

I will try to keep up with the news from ISEA 2020: Why Sentience?

Geometry and art, an exhibition in Toronto (Canada)

I received this notice from ArtSci Salon mailing (on February 7, 2020 via email),

Geometry is Life

Robin Kingsburgh

February 5 — 16, 2020
Opening Reception: Saturday, February 8, 2 — 5 pm​

Cicada (detail), Robin Kingsburgh (Acrylic on MDF board, 36″ x 38″, 2018)

My work takes inspiration from geometry. For me the square and the circle are starting points. And ending points. The square, defined by the horizontal and the vertical: it’s all you need. The circle: a snake biting its tail; the beginning and end; the still point. Geometric archetypes. But there is no perfect circle; there is no perfect square. The beauty of Pythagoras is within our minds. Rendered by the human hand, the square becomes imperfect, and becomes a part of the human world – where imperfection reigns. The rhythm of imperfection is beauty, where order and chaos dance, and sometimes balance.

Robin Kingsburgh is a trained astronomer (Ph.D. in Astronomy, 1992, University College London). Her artistic education comes from studies at University of Toronto, as well as in the U.K. and France, and has paralleled her scientific development. She currently teaches various Natural Science courses at York University, Toronto. Her scientific background influences her artwork in an indirect, subconscious way, where she employs geometric motifs as a frequent theme. She is a member of Propeller Gallery, where she shows her artwork on a regular basis. She has recently been elected to the Ontario Society of Artists.

There you have it. Have a nice weekend!

ETA February 10, 2020: I’m sorry I forgot to include the address: Propeller Gallery, 30 Abell St Toronto. Wed-Sat 12-6pm, Sun 12-5pm

Good for your bones and good for art conservation: calcium

The statues on Easter Island, the Great Wall of China, Egyptian pyramids, MesoAmerican pyramids, castles in Europe and other structures made of stone are deteriorating and now comes another approach to halting the destruction. (I have covered other approaches to the problem in two previous postings, a December 5, 2017 posting, Europe’s cathedrals get a ‘lift’ with nanoparticles, and an October 21, 2014 posting, Heart of stone.)

An August 7, 2019 news item on ScienceDaily announces the latest in conserving stone monuments and structures,

When it comes to cultural heritage sites, there are few things historians wouldn’t do to preserve them for future generations. In particular, stone buildings and sculptures made of plaster and marble are increasingly at risk of damage from air pollution, acid rain and other factors. Researchers now report a new, calcium-based conservation treatment inspired by nature that overcomes many drawbacks of currently used methods.

An August 7, 2019 American Chemical Society (ACS) news release, which originated the news item, provides a bit more technical detail,

Historically, conservation scientists have turned to alkoxysilanes, silicon-based molecules used to consolidate stone and other artworks, in their preservation efforts. However, alkoxysilane treatments do not bond properly with non-silicate surfaces, are prone to cracking and are limited in their ability to repel water. Adding other compounds to this treatment have helped overcome these effects, but only to a point. Instead Encarnación Ruiz Agudo and colleagues looked to nature for inspiration, and found that calcium could be the answer. As a major element of strong, natural structures like bone and kidney stones, the researchers theorized that nanoparticles made from calcium could bolster alkoxysilanes and provide the desired protective effects to conserve historical artifacts.

The researchers made calcium carbonate and calcium oxalate nanoparticles and included polydimethylsiloxane (PDMS) as a stabilizer. PDMS also likely helps the nanoparticles bond to surfaces. The team added the nanoparticles to traditional alkoxysilane treatments, then applied them to samples of three different building materials: white marble, calcarenite limestone and gypsum plaster, and put the samples through a battery of tests. Overall, the results showed enhanced hydrophobicity, less cracking and improved surface adhesion compared to alkoxysilane treatments alone, with calcium oxalate providing a marked improvement in acid resistance. A minimal color effect was observed, but the researchers say this change was within acceptable values for conservation efforts.

The authors acknowledge funding from the European Regional Development Fund, the Regional Government of Andalusia, the Spanish Ministry of Economy and Finance and the University of Granada.

Here’s a link to and a citation for the paper,

Bioinspired Alkoxysilane Conservation Treatments for Building Materials Based on Amorphous Calcium Carbonate and Oxalate Nanoparticles by A. Burgos-Cara, C. Rodríguez-Navarro, M. Ortega-Huertas, E. Ruiz-Agudo. ACS Appl. Nano Mater.2019XXXXXXXXXX-XXX DOI: https://doi.org/10.1021/acsanm.9b00905 Publication Date:July 18, 2019 Copyright © 2019 American Chemical Society

This paper is behind a paywall.

More of the ‘blackest black’

There’s a very good November 11, 2019 article by Natalie Angier for the New York Times on carbon nanotubes (CNTs) and the colour black,

On a laboratory bench at the National Institute of Standards and Technology was a square tray with two black disks inside, each about the width of the top of a Dixie cup. Both disks were undeniably black, yet they didn’t look quite the same.

Solomon Woods, 49, a trim, dark-haired, soft-spoken physicist, was about to demonstrate how different they were, and how serenely voracious a black could be.

“The human eye is extraordinarily sensitive to light,” Dr. Woods said. Throw a few dozen photons its way, a few dozen quantum-sized packets of light, and the eye can readily track them.

Dr. Woods pulled a laser pointer from his pocket. “This pointer,” he said, “puts out 100 trillion photons per second.” He switched on the laser and began slowly sweeping its bright beam across the surface of the tray.

On hitting the white background, the light bounced back almost unimpeded, as rude as a glaring headlight in a rearview mirror.

The beam moved to the first black disk, a rondel of engineered carbon now more than a decade old. The light dimmed significantly, as a sizable tranche of the incident photons were absorbed by the black pigment, yet the glow remained surprisingly strong.

Finally Dr. Woods trained his pointer on the second black disk, and suddenly the laser’s brilliant beam, its brash photonic probe, simply — disappeared. Trillions of light particles were striking the black disk, and virtually none were winking back up again. It was like watching a circus performer swallow a sword, or a husband “share” your plate of French fries: Hey, where did it all go?

N.I.S.T. disk number two was an example of advanced ultra-black technology: elaborately engineered arrays of tiny carbon cylinders, or nanotubes, designed to capture and muzzle any light they encounter. Blacker is the new black, and researchers here and abroad are working to create ever more efficient light traps, which means fabricating materials that look ever darker, ever flatter, ever more ripped from the void.

The N.I.S.T. ultra-black absorbs at least 99.99 percent of the light that stumbles into its nanotube forest. But scientists at the Massachusetts Institute of Technology reported in September the creation of a carbon nanotube coating that they claim captures better than 99.995 of the incident light.

… The more fastidious and reliable the ultra-black, the more broadly useful it will prove to be — in solar power generators, radiometers, industrial baffles and telescopes primed to detect the faintest light fluxes as a distant planet traverses the face of its star.

Psychology and metaphors

It’s not all technical, Angier goes on to mention the psychological and metaphorical aspects,

Psychologists have gathered evidence that black is among the most metaphorically loaded of all colors, and that we absorb our often contradictory impressions about black at a young age.

Reporting earlier this year in the Quarterly Journal of Experimental Psychology, Robin Kramer and Joanne Prior of the University of Lincoln in the United Kingdom compared color associations in a group of 104 children, aged 5 to 10, with those of 100 university students.

The researchers showed subjects drawings in which a lineup of six otherwise identical images differed only in some aspect of color. The T-shirt of a boy taking a test, for example, was switched from black to blue to green to red to white to yellow. The same for a businessman’s necktie, a schoolgirl’s dress, a dog’s collar, a boxer’s gloves.

Participants were asked to link images with traits. Which boy was likeliest to cheat on the test? Which man was likely to be in charge at work? Which girl was the smartest in her class, which dog the scariest?

Again and again, among both children and young adults, black pulled ahead of nearly every color but red. Black was the color of cheating, and black was the color of cleverness. A black tie was the mark of a boss, a black collar the sign of a pit bull. Black was the color of strength and of winning. Black was the color of rage.

Art

Then, there is the world of art,

For artists, black is basal and nonnegotiable, the source of shadow, line, volume, perspective and mood. “There is a black which is old and a black which is fresh,” Ad Reinhardt, the abstract expressionist artist, said. “Lustrous black and dull black, black in sunlight and black in shadow.”

So essential is black to any aesthetic act that, as David Scott Kastan and Stephen Farthing describe in their scholarly yet highly entertaining book, “On Color,” modern artists have long squabbled over who pioneered the ultimate visual distillation: the all-black painting.

Was it the Russian Constructivist Aleksandr Rodchenko, who in 1918 created a series of eight seemingly all-black canvases? No, insisted the American artist Barnett Newman: Those works were very dark brown, not black. He, Mr. Newman, deserved credit for his 1949 opus, “Abraham,” which in 1966 he described as “the first and still the only black painting in history.”

But what about Kazimir Malevich’s “Black Square” of 1915? True, it was a black square against a white background, but the black part was the point. Then again, the English polymath Robert Fludd had engraved a black square in a white border back in 1617.

Clearly, said Alfred H. Barr, Jr., the first director of the Museum of Modern Art, “Each generation must paint its own black square.”

Structural colour

Solomon and his NIST colleagues and the MIT scientists are all trying to create materials with structural colour, in this case, black. Angier goes on to discuss structural colour in nature mentioning bird feathers and spiders as examples of where you might find superblacks. For anyone unfamiliar with structural colour, the colour is not achieved with pigment or dye but with tiny structures, usually measured at the nanoscale, on a bird’s wing, a spider’s belly, a plant leaf, etc. Structural colour does not fade or change . Still, it’s possible to destroy the structures, i.e., the colour, but light and time will not have any effect since it’s the tiny structures and their optical properties which are producing the colour . (Even after all these years, my favourite structural colour story remains a Feb. 1, 2013 article, Color from Structure, by Cristina Luiggi for The Scientist magazine. For a shorter version, I excerpted parts of Luiggi’s story for my February 7, 2013 posting.)

The examples of structural colour in Angier’s article were new to me. However, there are many, many examples elsewhere,. You can find some here by using the terms ‘structural colour’ or ‘structural color’ in the blog’s search engine.

Angier’s is a really good article and I strongly recommend reading it if you have time but I’m a little surprised she doesn’t mention Vantablack and the artistic feud. More about that in a moment,

Massachusetts Institute of Technology and a ‘blacker black’

According to MIT (Massachusetts Institute of Technology), they have the blackest black. It too is courtesy of carbon nanotubes.

The Redemption of Vanity, is a work of art by MIT artist in residence Diemut Strebe that has been realized together with Brian L. Wardle, Professor of Aeronautics and Astronautics and Director of necstlab and Nano- Engineered Composite aerospace STructures (NECST) Consortium and his team Drs. Luiz Acauan and Estelle Cohen. Strebe’s residency at MIT is supported by the Center for Art, Science & Technology (CAST). Image: Diemut Strebe

What you see in the above ‘The Redemption of Vanity’ was on show at the New York Stock Exchange (NYSE) from September 13 – November 29, 2019. It’s both an art piece and a demonstration of MIT’s blackest black.

There are two new releases from MIT. The first is the more technical one. From a Sept. 12, 2019 MIT news release,

With apologies to “Spinal Tap,” it appears that black can, indeed, get more black.

MIT engineers report today that they have cooked up a material that is 10 times blacker than anything that has previously been reported. The material is made from vertically aligned carbon nanotubes, or CNTs — microscopic filaments of carbon, like a fuzzy forest of tiny trees, that the team grew on a surface of chlorine-etched aluminum foil. The foil captures at least 99.995 percent* of any incoming light, making it the blackest material on record.

The researchers have published their findings today in the journal ACS-Applied Materials and Interfaces. They are also showcasing the cloak-like material as part of a new exhibit today at the New York Stock Exchange, titled “The Redemption of Vanity.”

The artwork, conceived by Diemut Strebe, an artist-in-residence at the MIT Center for Art, Science, and Technology, in collaboration with Brian Wardle, professor of aeronautics and astronautics at MIT, and his group, and MIT Center for Art, Science, and Technology artist-in-residence Diemut Strebe, features a 16.78-carat natural yellow diamond from LJ West Diamonds, estimated to be worth $2 million, which the team coated with the new, ultrablack CNT material. The effect is arresting: The gem, normally brilliantly faceted, appears as a flat, black void.

Wardle says the CNT material, aside from making an artistic statement, may also be of practical use, for instance in optical blinders that reduce unwanted glare, to help space telescopes spot orbiting exoplanets.

“There are optical and space science applications for very black materials, and of course, artists have been interested in black, going back well before the Renaissance,” Wardle says. “Our material is 10 times blacker than anything that’s ever been reported, but I think the blackest black is a constantly moving target. Someone will find a blacker material, and eventually we’ll understand all the underlying mechanisms, and will be able to properly engineer the ultimate black.”

Wardle’s co-author on the paper is former MIT postdoc Kehang Cui, now a professor at Shanghai Jiao Tong University.

Into the void

Wardle and Cui didn’t intend to engineer an ultrablack material. Instead, they were experimenting with ways to grow carbon nanotubes on electrically conducting materials such as aluminum, to boost their electrical and thermal properties.

But in attempting to grow CNTs on aluminum, Cui ran up against a barrier, literally: an ever-present layer of oxide that coats aluminum when it is exposed to air. This oxide layer acts as an insulator, blocking rather than conducting electricity and heat. As he cast about for ways to remove aluminum’s oxide layer, Cui found a solution in salt, or sodium chloride.

At the time, Wardle’s group was using salt and other pantry products, such as baking soda and detergent, to grow carbon nanotubes. In their tests with salt, Cui noticed that chloride ions were eating away at aluminum’s surface and dissolving its oxide layer.

“This etching process is common for many metals,” Cui says. “For instance, ships suffer from corrosion of chlorine-based ocean water. Now we’re using this process to our advantage.”

Cui found that if he soaked aluminum foil in saltwater, he could remove the oxide layer. He then transferred the foil to an oxygen-free environment to prevent reoxidation, and finally, placed the etched aluminum in an oven, where the group carried out techniques to grow carbon nanotubes via a process called chemical vapor deposition.

By removing the oxide layer, the researchers were able to grow carbon nanotubes on aluminum, at much lower temperatures than they otherwise would, by about 100 degrees Celsius. They also saw that the combination of CNTs on aluminum significantly enhanced the material’s thermal and electrical properties — a finding that they expected.

What surprised them was the material’s color.

“I remember noticing how black it was before growing carbon nanotubes on it, and then after growth, it looked even darker,” Cui recalls. “So I thought I should measure the optical reflectance of the sample.

“Our group does not usually focus on optical properties of materials, but this work was going on at the same time as our art-science collaborations with Diemut, so art influenced science in this case,” says Wardle.

Wardle and Cui, who have applied for a patent on the technology, are making the new CNT process freely available to any artist to use for a noncommercial art project.

“Built to take abuse”

Cui measured the amount of light reflected by the material, not just from directly overhead, but also from every other possible angle. The results showed that the material absorbed at least 99.995 percent of incoming light, from every angle. In other words, it reflected 10 times less light than all other superblack materials, including Vantablack. If the material contained bumps or ridges, or features of any kind, no matter what angle it was viewed from, these features would be invisible, obscured in a void of black.  

The researchers aren’t entirely sure of the mechanism contributing to the material’s opacity, but they suspect that it may have something to do with the combination of etched aluminum, which is somewhat blackened, with the carbon nanotubes. Scientists believe that forests of carbon nanotubes can trap and convert most incoming light to heat, reflecting very little of it back out as light, thereby giving CNTs a particularly black shade.

“CNT forests of different varieties are known to be extremely black, but there is a lack of mechanistic understanding as to why this material is the blackest. That needs further study,” Wardle says.

The material is already gaining interest in the aerospace community. Astrophysicist and Nobel laureate John Mather, who was not involved in the research, is exploring the possibility of using Wardle’s material as the basis for a star shade — a massive black shade that would shield a space telescope from stray light.

“Optical instruments like cameras and telescopes have to get rid of unwanted glare, so you can see what you want to see,” Mather says. “Would you like to see an Earth orbiting another star? We need something very black. … And this black has to be tough to withstand a rocket launch. Old versions were fragile forests of fur, but these are more like pot scrubbers — built to take abuse.”

[Note] An earlier version of this story stated that the new material captures more than 99.96 percent of incoming light. That number has been updated to be more precise; the material absorbs at least 99.995 of incoming light.

Here’s an August 29, 2019 news release from MIT announcing the then upcoming show. Usually I’d expect to see a research paper associated with this work but this time it seems to an art exhibit only,

The MIT Center for Art, Science &Technology (CAST) and the New York Stock Exchange (NYSE) will present The Redemption of Vanity,created by artist Diemut Strebe in collaboration with MIT scientist Brian Wardle and his lab, on view at the New York Stock Exchange September 13, 2019 -November 25, 2019. For the work, a 16.78 carat natural yellow diamond valued at $2 million from L.J.West was coated using a new procedure of generating carbon nanotubes (CNTs), recently measured to be the blackest black ever created, which makes the diamond seem to disappear into an invisible void. The patented carbon nanotube technology (CNT) absorbs more than 99.96% of light and was developed by Professor Wardle and his necstlablab at MIT.

“Any object covered with this CNT material loses all its plasticity and appears entirely flat, abbreviated/reduced to a black silhouette. In outright contradiction to this we see that a diamond,while made of the very same element (carbon) performs the most intense reflection of light on earth.Because of the extremely high light absorbtive qualities of the CNTs, any object, in this case a large diamond coated with CNT’s, becomes a kind of black hole absent of shadows,“ explains Strebe.“The unification of extreme opposites in one object and the particular aesthetic features of the CNTs caught my imagination for this art project.”

“Strebe’s art-science collaboration caused us to look at the optical properties of our new CNT growth, and we discovered that these particular CNTs are blacker than all other reported materials by an order of magnitude across the visible spectrum”, says Wardle. The MIT team is offering the process for any artist to use. “We do not believe in exclusive ownership of any material or idea for any artwork and have opened our method to any artist,” say Strebe and Wardle.“

The project explores material and immaterial value attached to objects and concepts in reference to luxury, society and to art. We are presenting the literal devaluation of a diamond, which is highly symbolic and of high economic value.It presents a challenge to art market mechanisms on the one hand, while expressing at the same time questions of the value of art in a broader way. In this sense it manifests an inquiry into the significance of the value of objects of art and the art market,” says Strebe. “We are honored to present this work at The New York Stock Exchange, which I believe to be a most fitting location to consider the ideas embedded in The Redemption of Vanity.”

“The New York Stock Exchange, a center of financial and technological innovation for 227 years, is the perfect venue to display Diemut Strebe and Professor Brian Wardle’s collaboration. Their work brings together cutting-edge nanotube technology and a natural diamond, which is a symbol of both value and longevity,” said John Tuttle, NYSE Group Vice Chairman & Chief Commercial Officer.

“We welcome all scientists and artists to venture into the world of natural color diamonds. The Redemption of Vanity exemplifies the bond between art, science, and luxury. The 16-carat vivid yellow diamond in the exhibit spent millions of years in complete darkness, deep below the earth’s surface. It was only recently unearthed —a once-in-a-lifetime discovery of exquisite size and color. Now the diamond will relive its journey to darkness as it is covered in the blackest of materials. Once again, it will become a reminder that something rare and beautiful can exist even in darkness,”said Larry West.

The “disappearing” diamond in The Redemption of Vanity is a $2 Million Fancy Vivid Yellow SI1 (GIA), Radiant shape, from color diamond specialist, L.J. West Diamonds Inc. of New York.

The Redemption of Vanity, conceived by Diemut Strebe, has been realized with Brian L. Wardle, Professor of Aeronautics and Astronautics and Director of necstlab and Nano-Engineered Composite aerospace STructures (NECST) Consortium and his team Drs. Luiz Acauan and Estelle Cohen, in conjunction with Strebe’s residency at MIT supported by the Center for Art, Science & Technology (CAST).

ABOUT THE ARTISTS

Diemut Strebe is a conceptual artist based in Boston, MA and a MIT CAST Visiting Artist. She has collaborated with several MIT faculty, including Noam Chomsky and Robert Langer on Sugababe (2014), Litmus (2014) and Yeast Expression(2015); Seth Lloyd and Dirk Englund on Wigner’s Friends(2014); Alan Guth on Plötzlich! (2018); researchers in William Tisdale’s Lab on The Origin of the Works of Art(2018); Regina Barzilay and Elchanan Mossel on The Prayer (2019); and Ken Kamrin and John Brisson on The Gymnast (2019). Strebe is represented by the Ronald Feldman Gallery.

Brian L. Wardle is a Professor of Aeronautics and Astronautics at MIT and the director of the necstlab research group and MIT’s Nano-Engineered Composite aerospace STructures (NECST) Consortium. Wardle previously worked with CAST Visiting Artist Trevor Paglen on The Last Picturesproject (2012).

ABOUT THE MIT CENTER FOR ART, SCIENCE & TECHNOLOGY

A major cross-school initiative, the MIT Center for Art, Science & Technology (CAST) creates new opportunities for art, science and technology to thrive as interrelated, mutually informing modes of exploration, knowledge and discovery. CAST’s multidisciplinary platform presents performing and visual arts programs, supports research projects for artists working with science and engineering labs, and sponsors symposia, classes, workshops, design studios, lectures and publications. The Center is funded in part by a generous grant from the Andrew W. Mellon Foundation. Evan Ziporyn is the Faculty Director and Leila W. Kinney is the Executive Director.Since its inception in 2012, CAST has been the catalyst for more than 150 artist residencies and collaborative projects with MIT faculty and students, including numerous cross-disciplinary courses, workshops, concert series, multimedia projects, lectures and symposia. The visiting artists program is a cornerstone of CAST’s activities, which encourages cross-fertilization among disciplines and intensive interaction with MIT’s faculty and students. More info at https://arts.mit.edu/cast/ .

HISTORY OF VISITING ARTISTS AT MIT

Since the late 1960s, MIT has been a leader in integrating the arts and pioneering a model for collaboration among artists, scientists and engineers in a research setting. CAST’s Visiting Artists Program brings internationally acclaimed artists to engage with MIT’s creative community in ways that are mutually enlightening for the artists and for faculty, students and research staff at the Institute. Artists who have worked extensively at MIT include Mel Chin, Olafur Eliasson, Rick Lowe, Vik Muniz, Trevor Paglen, Tomás Saraceno, Maya Beiser, Agnieszka Kurant, and Anicka Yi.

ABOUT L.J. WEST DIAMONDS

L.J. West Diamonds is a three generation natural color diamond whole sale rfounded in the late 1970’s by Larry J. West and based in New York City. L.J. West has established itself as one of the world’s prominent houses for some of the most rare and important exotic natural fancy color diamonds to have ever been unearthed. This collection includes a vast color spectrum of rare pink, blue, yellow, green, orange and red diamonds. L.J. West is an expert in every phase of the jewelry process –from sourcing to the cutting, polishing and final design. Each exceptional jewel is carefully set to become a unique work of art.The Redemption of Vanity is on view at the New York Stock Exchange by appointment only.

Press viewing: September 13, 2019 at 3pmNew York Stock Exchange, 11 Wall Street, New York, NY 10005RSVP required. Please check-in at the blue tent at 2 Broad Street(at the corner of Wall and Broad Streets). All guests are required to show a government issued photo ID and go through airport-like security upon entering the NYSE.NYSE follows a business casual dress code -jeans & sneakers are not permitted.

No word yet if there will be other showings.

An artistic feud (of sorts)

Earlier this year, I updated a story on Vantablack. It was the blackest black, blocking 99.8% of light when I featured it in a March 14, 2016 posting. The UK company making the announcement, Surrey NanoSystems, then laid the groundwork for an artistic feud when it granted exclusive rights to their carbon nanotube-based coating, Vantablack, to Sir Anish Kapoor mentioned here in an April 16, 2016 posting.

This exclusivity outraged some artists notably, Stuart Semple. In his first act of defiance, he created the pinkest pink. Next, came a Kickstarter campaign to fund Semple’s blackest black, which would be available to all artists except Anish Kapoor. You can read all about the pinkest pink and blackest black as per Semple in my February 21, 2019 posting. You can also get a bit of an update in an Oct. 17, 2019 Stuart Semple proffile by Berenice Baker for Verdict,

… so I managed to hire a scientist, Jemima, to work in the studio with me. She got really close to a super black, and we made our own pigment to this recipe and it was awesome, but we couldn’t afford to put it into manufacture because it cost £25,000.”

Semple launched a Kickstarter campaign and was amazed to raise half a million pounds, making it the second most-supported art Kickstarter of all time.

The ‘race to the blackest’ is well underway, with MIT researchers recently announcing a carbon nanotube-based black whose light absorption they tested by coasting a diamond. But Semple is determined that his black should be affordable by all artists and work like a paint, not only perform in laboratory conditions. He’s currently working with Jemima and two chemists to upgrade the recipe for Black 3.2.

I don’t know how Semple arrived at his blackest black. I think it’s unlikely that he achieved the result by working with carbon nanotubes since my understanding is that CNTs aren’t that easy to produce.

Finally

Interesting, eh? In just a few years scientists have progressed from achieving a 99.8% black to 99.999%. It doesn’t seem like that big a difference to me but with Solomon Woods, at the beginning of this post, making the point that our eyes are very sensitive to light, an artistic feud, and a study uncovering deep emotions, getting the blackest black is a much more artistically fraught endeavour than I had imagined.

Science Slam on November 29, 2019 and Collider Cafe: Art. Science. Analogies. on December 4, 2019 in Vancouver, Canada

Starting in date order:

Science Slam in Vancouver on November 29, 2019

I first featured science slams in a July 17, 2013 posting when they popped up in the UK although I think they originated in Germany. As for Science Slam Canada, I think they started in 2016, (t least, that’s when they started their twitter feed).

As for the upcoming event, here’s more from Science Slam Vancouver’s event page (on the ‘at all events in’ website),

Science Slam YVR at Fox
It’s beginning to look a lot like … it’s time to have another Science Slam at the Fox!

For those of you who have never experienced the wonder of Science Slam, welcome! We are Vancouver’s most epic science showdown. Sit back, relax, and watch as our competitors battle to achieve science communication fame and glory.

What exactly is a science slam? Based on the format of a poetry slam, a science slam is a competition where speakers gather to share their science with you – the audience. Competitors have five minutes to present on any science topic without the use of a slideshow and are judged based on communication skills, audience impact and scientific content. Props and creative presentation styles are encouraged!

Whether you’re a researcher, student, educator, artist, or communicator, our stage is open to you. If you’ve got a science topic you’re researching, or just a topic you’re excited about, send in an application! If you’re not sure about an idea, just ask!

Application link: https://forms.gle/y5nQZwLzVUcRiHZT9

YouTube channel (for creative inspiration): https://www.youtube.com/channel/UCWmI8llf3pAW5xtbvnXmsog

*Early Bird Tickets are $10, Regular are $12. [emphasis mine] Purchase them here:
https://www.eventbrite.com/e/science-slam-at-fox-tickets-80868462749

Doors open at 7pm, event begins at 7:30pm. We’ll see you there!

Accessibility Notes:

Science Slam acknowledges that this event takes place on the traditional, ancestral, and unceded territory of the Squamish, Sto:lo, Musqueam, and Tsleil Waututh Nation. Many of our attendees, Science Slam included, are are guests of these territories and must act accordingly.

Science Slam is an inclusive event, as a result hate speech and abuse will not be tolerated. This includes anti-blackness, anti-indigenous, transphobia, homophobia, biphobia, islamophobia, xenophobia, fatphobia, ableism, transmisogyny, misogyny, femmephobia, cissexism, and anti-immigrant attitudes.

Ticket Information Ticket Price
*General Admission CAD 14
*Early Bird Ticket CAD 12 [emphases mine]

I went to the eventbrite website where you can purchase tickets and the prices reflect the first set in the announcement. Early bird tickets are sold out, which leaves you with General Admission at $12.

Collider Cafe in Vancouver on December 4, 2019

I think they were tired when they (CuriosityCollider.org) came up with the title for the upcoming Collider Cafe December 2019 event. Unfortunately, the description isn’t too exciting either. On the plus side, their recent Invasive Systems Collisions Festival was pretty interesting and one of the exhibits from that festival is being featured (artist: Laara Cerman; scientist: Scott Pownell)..

Here’s more about the upcoming Collider Cafe from their November 27, 2019 announcement (received via email),

Art. Science. Analogies.

Let analogies guide us through exploring the art and science in chemistry, nature, genetics, and technology.

Our #ColliderCafe is a space for artists, scientists, makers, and anyone interested in art+science to meet, discover, and connect. Are you curious? Join us at “Collider Cafe: Art. Science. Analosiges.” to explore how art and science intersect in the exploration of curiosity.

When: 8:00pm on Wednesday, December 4, 2019. Doors open at 7:30pm.
Where: Pizzeria Barbarella. 654 E Broadway, Vancouver, BC (Google Map).
Cost: $5-10 (sliding scale) cover at the door. Proceeds will be used to cover the cost of running this event, and to fund future Curiosity Collider events.

//Special thanks to Pizzeria Barbarella for hosting the upcoming Collider Cafe!//

With speakers:
Vance Williams (Chemistry) – Crystalline Landscapes
Laara Cerman (Art & Nature) and Scott Pownell (Genetics) – Flora’s Song (DNA Sonification)
Chris Dunnett (Multidisciplinary Art) – Poetry of Technology

Plus, interact with Laara and Scott’s work “Flora’s Song No. 1 in C Major” – a hand-cranked music box that plays a tune created from the DNA of local invasive plants.

Also, CC Creative Director Char Hoyt will share highlights from our annual art-science festival Collisions Festival: Invasive Systems.

Head to the Facebook event page – let us know you are coming and share this event with others! Follow updates on Instagram via @curiositycollider or #ColliderCafe. 

Back to me, I’m still struggling with this hugely changed Word Press, which they claim is an ‘improvement’. In any case, for this second event, I decided that choosing a larger font size was superior to putting everything into a single block as I did for the Science Slam event. Please let me know if you have any opinions on the matter in the comments section.

Moving on, don’t expect Chris Dunnett’s presentation ‘Poetry of Technology’ to necessarily feature any poetry, if his website is any indication of his work. Also, I notice that Vance Williams is associated with 4D Labs at Simon Fraser University. At one time, 4D Labs was a ‘nanotechnology’ lab but at this time (November 29, 2019), it seems they are a revenue-producing group selling their materials expertise and access to their lab equipment to industry and other academic institutions. Still, Williams may feature some nanoscale work as part of his presentation.

Smartphone as augmented reality system with software from Brown University

You need to see this,

Amazing, eh? The researchers are scheduled to present this work sometime this week at the ACM Symposium on User Interface Software and Technology (UIST) being held in New Orleans, US, from October 20-23, 2019.

Here’s more about ‘Portal-ble’ in an October 16, 2019 news item on ScienceDaily,

A new software system developed by Brown University [US] researchers turns cell phones into augmented reality portals, enabling users to place virtual building blocks, furniture and other objects into real-world backdrops, and use their hands to manipulate those objects as if they were really there.

The developers hope the new system, called Portal-ble, could be a tool for artists, designers, game developers and others to experiment with augmented reality (AR). The team will present the work later this month at the ACM Symposium on User Interface Software and Technology (UIST 2019) in New Orleans. The source code for Andriod is freely available for download on the researchers’ website, and iPhone code will follow soon.

“AR is going to be a great new mode of interaction,” said Jeff Huang, an assistant professor of computer science at Brown who developed the system with his students. “We wanted to make something that made AR portable so that people could use anywhere without any bulky headsets. We also wanted people to be able to interact with the virtual world in a natural way using their hands.”

An October 16, 2019 Brown University news release (also on EurekAlert), which originated the news item, provides more detail,

Huang said the idea for Portal-ble’s “hands-on” interaction grew out of some frustration with AR apps like Pokemon GO. AR apps use smartphones to place virtual objects (like Pokemon characters) into real-world scenes, but interacting with those objects requires users to swipe on the screen.

“Swiping just wasn’t a satisfying way of interacting,” Huang said. “In the real world, we interact with objects with our hands. We turn doorknobs, pick things up and throw things. So we thought manipulating virtual objects by hand would be much more powerful than swiping. That’s what’s different about Portal-ble.”

The platform makes use of a small infrared sensor mounted on the back of a phone. The sensor tracks the position of people’s hands in relation to virtual objects, enabling users to pick objects up, turn them, stack them or drop them. It also lets people use their hands to virtually “paint” onto real-world backdrops. As a demonstration, Huang and his students used the system to paint a virtual garden into a green space on Brown’s College Hill campus.

Huang says the main technical contribution of the work was developing the right accommodations and feedback tools to enable people to interact intuitively with virtual objects.

“It turns out that picking up a virtual object is really hard if you try to apply real-world physics,” Huang said. “People try to grab in the wrong place, or they put their fingers through the objects. So we had to observe how people tried to interact with these objects and then make our system able accommodate those tendencies.”

To do that, Huang enlisted students in a class he was teaching to come up with tasks they might want to do in the AR world — stacking a set of blocks, for example. The students then asked other people to try performing those tasks using Portal-ble, while recording what people were able to do and what they couldn’t. They could then adjust the system’s physics and user interface to make interactions more successful.

“It’s a little like what happens when people draw lines in Photoshop,” Huang said. “The lines people draw are never perfect, but the program can smooth them out and make them perfectly straight. Those were the kinds of accommodations we were trying to make with these virtual objects.”

The team also added sensory feedback — visual highlights on objects and phone vibrations — to make interactions easier. Huang said he was somewhat surprised that phone vibrations helped users to interact. Users feel the vibrations in the hand they’re using to hold the phone, not in the hand that’s actually grabbing for the virtual object. Still, Huang said, vibration feedback still helped users to more successfully interact with objects.

In follow-up studies, users reported that the accommodations and feedback used by the system made tasks significantly easier, less time-consuming and more satisfying.

Huang and his students plan to continue working with Portal-ble — expanding its object library, refining interactions and developing new activities. They also hope to streamline the system to make it run entirely on a phone. Currently the infrared sensor requires an infrared sensor and external compute stick for extra processing power.

Huang hopes people will download the freely available source code and try it for themselves. 
“We really just want to put this out there and see what people do with it,” he said. “The code is on our website for people to download, edit and build off of. It will be interesting to see what people do with it.

Co-authors on the research paper were Jing Qian, Jiaju Ma, Xiangyu Li, Benjamin Attal, Haoming Lai, James Tompkin and John Hughes. The work was supported by the National Science Foundation (IIS-1552663) and by a gift from Pixar.

You can find the conference paper here on jeffhuang.com,

Portal-ble: Intuitive Free-hand Manipulationin Unbounded Smartphone-based Augmented Reality by Jing Qian, Jiaju Ma, Xiangyu Li∗, Benjamin Attal, Haoming Lai,James Tompkin, John F. Hughes, Jeff Huang. Brown University, Providence RI, USA; Southeast University, Nanjing, China. Presented at ACM Symposium on User Interface Software and Technology (UIST) being held in New Orleans, US

This is the first time I’ve seen an augmented reality system that seems accessible, i.e., affordable. You can find out more on the Portal-ble ‘resource’ page where you’ll also find a link to the source code repository. The researchers, as noted in the news release, have an Android version available now with an iPhone version to be released in the future.