Monthly Archives: October 2020

A robot that sucks up oil spills

I was surprised to find out that between 1989 when the Exxon Valdez oil spill fouled the coastline along Alaska and northern British Columbia and 2010 when the BP (British Petroleum) oil spill fouled the Gulf of Mexico and a number of US states, which border it, and Mexico’s state coastlines, there had been virtually no improvement in the environmental remediation technologies for oil spills (see my June 4, 2010 posting).

This summer we’ve had two major oil spills, one in the Russian Arctic (as noted in my August 14, 2020 posting; scroll down to the subhead ‘As for the Russian Arctic oil spill‘) and in the Indian Ocean near Mauritius and near a coral reef and marine protected areas (see this August 13, 2020 news item on the Canadian Broadcasting Corporation [CBC] news online website).

No word yet on whether or not remediation techniques have improved but this August 6, 2020 article by Adele Peters for Fast Company highlights a new robotic approach to cleaning marine oil spills,

A decade after a BP drilling rig exploded in the Gulf of Mexico, sending an estimated 168 million gallons of oil gushing into the water over the course of months, local wildlife are still struggling to recover. Many of the people who worked to clean up the spill are still experiencing health effects. At the time, the “cleanup” strategy involved setting oil slicks on fire and spraying mass quantities of a chemical meant to disperse it, both of which helped get rid of the oil, but also worsened pollution [emphasis mine].

A new robot designed to clean oil spills, now in development, demonstrates how future spills could be handled differently. The robot navigates autonomously on the ocean surface, running on solar power. When oil sensors on the device detect a spill, it triggers a pump that pushes oil and water inside, where a custom nanomaterial sucks up the oil and releases clean water.

Kabra [Tejas Sanjay Kabra, a graduate student at North Carolina State University] 3D-printed a small prototype of the robot, which he tested in a lab, a swimming pool, and then the open ocean. (The small version, about two feet across, can collect 20 gallons of oil at a time; the same device can be scaled up to much larger sizes). He now hopes to bring the product to market as quickly as possible, as major oil spills continue to occur—such as the spill in Russia in June that sent more than 20,000 metric tons of diesel into a pristine part of the Arctic.

Peters’s article provides more details and features an embedded video.

Kabra calls his technology, SoilioS (Spilled OIL recovery by Isis & Oleophilic Sponge) and he entered it in the 2020 James Dyson Awards. The undated James Dyson Award news release announcing the 2020 national winners does not include Kabra’s entry. Mind you, over 1700 inventors entered the 2020 competition.

I hope Kabra perseveres as his robot project looks quite interesting for a number of reasons as can be seen in his entry submission (from the James Dyson Award website),

Initially, I started with a literature review on various Nanomaterials made from tree leaves with specific properties of Hydrophobicity and oleophilicity. Then I narrowed down my research on four different types of leaves i.e., Holy basil, betel, subabul, and mango. Nanoparticles from these leaves were made by green synthesis method and SEM, EDX and XRD tests were conducted. From these tests, I found that the efficiency of material made from the subabul tree was max (82.5%). In order to carry out surface cleaning at sea, different robot designs were studied. Initially, the robot was built in a box structure with arms. The arms contained Nano-capillary; however, the prototype was bulky and inefficient. A new model was devised to reduce the weight as well as increase the efficiency of absorbing the oil spill. The new robot was designed to be in a meta-stable state. The curves of the robot are designed in such a way that it gives stability as well as hold all the components. The top part of the robot is a hollow dome to improve the stability in water. The robot is 3D printed to reduce weight. The 3D printed robot was tested in a pool. Further, work is going on to build a 222 feet robot to test with hardware suitable for sea.

Here’s what SoilioS looks like,

[downloaded from https://www.jamesdysonaward.org/en-US/2020/project/soilios/]

Kabra described what makes his technology from what is currently the state-of-the-art and his future plans (from the James Dyson Award website),

The current technology uses carbon Nano-particle, and some other uses plastic PVC with a chemical adhesive, which is harmful to the environment. On the other hand, SoilioS uses Nano-material made from tree leaves. The invented technology absorbs the oil and stores inside the container with a recovery rate of 80%. The recovered oil can be used for further application; however, on the other hand, the current products burn the oil [emphasis mine] at the cleaning site itself without any recovery rate, thereby increasing pollution. The durability of the invented technology is 8-10 years, and the Nanomaterial used for cleaning the oil spill is reusable for 180 cycles. On the other hand, the durability of the current technology is up to 3-5 years, and the material used is non-reusable. The cost of the invented product is only $5 and on the other hand, the existing technology costs up to $750.

I aim to develop, manufacture, and practically test the robot prototype in the sea so that it can be used to solve oil spill issues and can save billions of dollars. I hope this device will help the environment in a lot of ways and eventually decrease the side effects caused due to oil spills such as leukemia and dying marine life. Currently, I am testing the product on different grades of oil to improve its efficiency further and improving its scope of the application so that it can also be used in industries and household purposes.

I wish Kabra good luck as he works to bring his technology to market.

Food sensor made from of silk microneedles looks like velco

These sensors really do look like velcro,

The Velcro-like food sensor, made from an array of silk microneedles, can pierce through plastic packaging to sample food for signs of spoilage and bacterial contamination. Image: Felice Frankel

A September 9, 2020 news item on Nanowerk announces some research from the Massachusetts Institute (MIT),

MIT engineers have designed a Velcro-like food sensor, made from an array of silk microneedles, that pierces through plastic packaging to sample food for signs of spoilage and bacterial contamination.

The sensor’s microneedles are molded from a solution of edible proteins found in silk cocoons, and are designed to draw fluid into the back of the sensor, which is printed with two types of specialized ink. One of these “bioinks” changes color when in contact with fluid of a certain pH range, indicating that the food has spoiled; the other turns color when it senses contaminating bacteria such as pathogenic E. coli.

A Sept. 9, 2020 MIT news release (also on EurekAlert), which originated the news item, delves further into the research,

The researchers attached the sensor to a fillet of raw fish that they had injected with a solution contaminated with E. coli. After less than a day, they found that the part of the sensor that was printed with bacteria-sensing bioink turned from blue to red — a clear sign that the fish was contaminated. After a few more hours, the pH-sensitive bioink also changed color, signaling that the fish had also spoiled.

The results, published today in the journal Advanced Functional Materials, are a first step toward developing a new colorimetric sensor that can detect signs of food spoilage and contamination.

Such smart food sensors might help head off outbreaks such as the recent salmonella contamination in onions and peaches. They could also prevent consumers from throwing out food that may be past a printed expiration date, but is in fact still consumable.

“There is a lot of food that’s wasted due to lack of proper labeling, and we’re throwing food away without even knowing if it’s spoiled or not,” says Benedetto Marelli, the Paul M. Cook Career Development Assistant Professor in MIT’s Department of Civil and Environmental Engineering. “People also waste a lot of food after outbreaks, because they’re not sure if the food is actually contaminated or not. A technology like this would give confidence to the end user to not waste food.”

Marelli’s co-authors on the paper are Doyoon Kim, Yunteng Cao, Dhanushkodi Mariappan, Michael S. Bono Jr., and A. John Hart.

Silk and printing

The new food sensor is the product of a collaboration between Marelli, whose lab harnesses the properties of silk to develop new technologies, and Hart, whose group develops new manufacturing processes.

Hart recently developed a high-resolution floxography technique, realizing microscopic patterns that can enable low-cost printed electronics and sensors. Meanwhile, Marelli had developed a silk-based microneedle stamp that penetrates and delivers nutrients to plants. In conversation, the researchers wondered whether their technologies could be paired to produce a printed food sensor that monitors food safety.

“Assessing the health of food by just measuring its surface is often not good enough. At some point, Benedetto mentioned his group’s microneedle work with plants, and we realized that we could combine our expertise to make a more effective sensor,” Hart recalls.

The team looked to create a sensor that could pierce through the surface of many types of food. The design they came up with consisted of an array of microneedles made from silk.

“Silk is completely edible, nontoxic, and can be used as a food ingredient, and it’s mechanically robust enough to penetrate through a large spectrum of tissue types, like meat, peaches, and lettuce,” Marelli says.

A deeper detection

To make the new sensor, Kim first made a solution of silk fibroin, a protein extracted from moth cocoons, and poured the solution into a silicone microneedle mold. After drying, he peeled away the resulting array of microneedles, each measuring about 1.6 millimeters long and 600 microns wide — about one-third the diameter of a spaghetti strand.

The team then developed solutions for two kinds of bioink — color-changing printable polymers that can be mixed with other sensing ingredients. In this case, the researchers mixed into one bioink an antibody that is sensitive to a molecule in E. coli. When the antibody comes in contact with that molecule, it changes shape and physically pushes on the surrounding polymer, which in turn changes the way the bioink absorbs light. In this way, the bioink can change color when it senses contaminating bacteria.

The researchers made a bioink containing antibodies sensitive to E. coli, and a second bioink sensitive to pH levels that are associated with spoilage. They printed the bacteria-sensing bioink on the surface of the microneedle array, in the pattern of the letter “E,” next to which they printed the pH-sensitive bioink, as a “C.” Both letters initially appeared blue in color.

Kim then embedded pores within each microneedle to increase the array’s ability to draw up fluid via capillary action. To test the new sensor, he bought several fillets of raw fish from a local grocery store and injected each fillet with a fluid containing either E. coli, Salmonella, or the fluid without any contaminants. He stuck a sensor into each fillet. Then, he waited.

After about 16 hours, the team observed that the “E” turned from blue to red, only in the fillet contaminated with E. coli, indicating that the sensor accurately detected the bacterial antigens. After several more hours, both the “C” and “E” in all samples turned red, indicating that every fillet had spoiled.

The researchers also found their new sensor indicates contamination and spoilage faster than existing sensors that only detect pathogens on the surface of foods.

“There are many cavities and holes in food where pathogens are embedded, and surface sensors cannot detect these,” Kim says. “So we have to plug in a bit deeper to improve the reliability of the detection. Using this piercing technique, we also don’t have to open a package to inspect food quality.”

The team is looking for ways to speed up the microneedles’ absorption of fluid, as well as the bioinks’ sensing of contaminants. Once the design is optimized, they envision the sensor could be used at various stages along the supply chain, from operators in processing plants, who can use the sensors to monitor products before they are shipped out, to consumers who may choose to apply the sensors on certain foods to make sure they are safe to eat.

Here’s a link to and a citation for the paper,

A Microneedle Technology for Sampling and Sensing Bacteria in the Food Supply Chain by Doyoon Kim, Yunteng Cao, Dhanushkodi Mariappan, Michael S. Bono Jr., A. John Hart, Benedetto Marelli. DOI: https://doi.org/10.1002/adfm.202005370 First published: 09 September 2020

This paper is behind a paywall.

Two cultures: the open science movement and the reproducibility movement

It’s C. P. Snow who comes to mind on seeing the words ‘science and two cultures’ (for anyone unfamiliar with the lecture and/or book see The Two Cultures Wikipedia entry).

This Sept. 14, 2020 news item on phys.org puts forward an entirely different concept concerning two cultures and science (Note: Links have been removed),

In the world of scientific research today, there’s a revolution going on—over the last decade or so, scientists across many disciplines have been seeking to improve the workings of science and its methods.

To do this, scientists are largely following one of two paths: the movement for reproducibility and the movement for open science. Both movements aim to create centralized archives for data, computer code and other resources, but from there, the paths diverge. The movement for reproducibility calls on scientists to reproduce the results of past experiments to verify earlier results, while open science calls on scientists to share resources so that future research can build on what has been done, ask new questions and advance science.

A Sept. 14, 2020 Indiana University (IU) news release (also on EurekAlert), which originated the news item, explains the research findings, which unexpectedly (for me) led to some conclusions about diversity with regard to gender in particular,

Now, an international research team led by IU’s Mary Murphy, Amanda Mejia, Jorge Mejia, Yan Xiaoran, Patty Mabry, Susanne Ressl, Amanda Diekman, and Franco Pestilli, finds the two movements do more than diverge. They have very distinct cultures, with two distinct literatures produced by two groups of researchers with little crossover. Their investigation also suggests that one of the movements — open science — promotes greater equity, diversity, and inclusivity. Their findings were recently reported in the Proceedings for the National Academy of Sciences [PNAS].

The team of researchers on the study, whose fields range widely – from social psychology, network science, neuroscience, structural biology, biochemistry, statistics, business, and education, among others – were taken by surprise by the results.

“The two movements have very few crossovers, shared authors or collaborations,” said Murphy. “They operate relatively independently. And this distinction between the two approaches is replicated across all scientific fields we examined.”

In other words, whether in biology, psychology or physics, scientists working in the open science participate in a different scientific culture than those working within the reproducibility culture, even if they work in the same disciplinary field. And which culture a scientist works in determines a lot about access and participation, particularly for women.

IU cognitive scientist Richard Shiffrin, who has previously been involved in efforts to improve science but did not participate in the current study, says the new study by Murphy and her colleagues provides a remarkable look into the way that current science operates. “There are two quite distinct cultures, one more inclusive, that promotes transparency of reporting and open science, and another, less inclusive, that promotes reproducibility as a remedy to the current practice of science,” he said.

A Tale of Two Sciences

To investigate the fault lines between the two movements, the team, led by network scientists Xiaoran Yan and Patricia Mabry, first conducted a network analysis of papers published from 2010-2017 identified with one of the two movements. The analysis showed that even though both movements span widely across STEM fields, the authors within them occupy two largely distinct networks. Authors who publish open science research, in other words, rarely produce research within reproducibility, and very few reproducibility researchers conduct open science research.

Next, information systems analyst Jorge Mejia and statistician Amanda Mejia applied a semantic text analysis to the abstracts of the papers to determine the values implicit in the language used to define the research. Specifically they looked at the degree to which the research was prosocial, that is, oriented toward helping others by seeking to solve large social problems.

“This is significant,” Murphy explained, “insofar as previous studies have shown that women often gravitate toward science that has more socially oriented goals and aims to improve the health and well-being of people and society. We found that open science has more prosocial language in its abstracts than reproducibility does.”

With respect to gender, the team found that “women publish more often in high-status authorship positions in open science, and that participation in high-status authorship positions has been increasing over time in open science, while in reproducibility women’s participation in high-status authorship positions is decreasing over time,” Murphy said.

The researchers are careful to point out that the link they found between women and open science is so far a correlation, not a causal connection.

“It could be that as more women join these movements, the science becomes more prosocial. But women could also be drawn to this prosocial model because that’s what they value in science, which in turn strengthens the prosocial quality of open science,” Murphy noted. “It’s likely to be an iterative cultural cycle, which starts one way, attracts people who are attracted to that culture, and consequently further builds and supports that culture.”

Diekman, a social psychologist and senior author on the paper, noted these patterns might help open more doors to science. “What we know from previous research is that when science conveys a more prosocial culture, it tends to attract not only more women, but also people of color and prosocially oriented men,” she said.

The distinctions traced in the study are also reflected in the scientific processes employed by the research team itself. As one of the most diverse teams to publish in the pages of PNAS, the research team used open science practices.

“The initial intuition, before the project started, was that investigators have come to this debate from very different perspectives and with different intellectual interests. These interests might attract different categories of researchers.” says Pestilli, an IU neuroscientist. “Some of us are working on improving science by providing new technology and opportunities to reduce human mistakes and promote teamwork. Yet we also like to focus on the greater good science does for society, every day. We are perhaps seeing more of this now in the time of the COVID-19 pandemic.”

With a core of eight lead scientists at IU, the team also included 20 more co-authors, mostly women and people of color who are experts on how to increase the participation of underrepresented groups in science; diversity and inclusion; and the movements to improve science.

Research team leader Mary Murphy noted that in this cultural moment of examining inequality throughout our institutions, looking at who gets to participate in science can yield great benefit.

“Trying to understand inequality in science has the potential to benefit society now more than ever. Understanding how the culture of science can compound problems of inequality or mitigate them could be a real advance in this moment when long-standing inequalities are being recognized–and when there is momentum to act and create a more equitable science.”

I think someone had a little fun writing the news release. First, there’s a possible reference to C. P. Snow’s The Two Cultures and, then, a reference to Charles Dickens’ A Tale of Two Cities (Wikipedia entry here) along with, possibly, an allusion to the French Revolution (liberté, égalité, et fraternité). Going even further afield, is there also an allusion to a science revolution? Certainly the values of liberty and equality would seem to fit in with the findings.

Here’s a link to and a citation for the paper,

Open science, communal culture, and women’s participation in the movement to improve science by Mary C. Murphy, Amanda F. Mejia, Jorge Mejia, Xiaoran Yan, Sapna Cheryan, Nilanjana Dasgupta, Mesmin Destin, Stephanie A. Fryberg, Julie A. Garcia, Elizabeth L. Haines, Judith M. Harackiewicz, Alison Ledgerwood, Corinne A. Moss-Racusin, Lora E. Park, Sylvia P. Perry, Kate A. Ratliff, Aneeta Rattan, Diana T. Sanchez, Krishna Savani, Denise Sekaquaptewa, Jessi L. Smith, Valerie Jones Taylor, Dustin B. Thoman, Daryl A. Wout, Patricia L. Mabry, Susanne Ressl, Amanda B. Diekman, and Franco Pestilli PNAS DOI: https://doi.org/10.1073/pnas.1921320117 First published September 14, 2020

This paper appears to be open access.

Here’s an image representing the researchers’ findings,

Caption: Figure 1. From “I” science to team science. Moving from an ‘!’-focused, independent, lab-centric approach to science to a more collaborative team science that promotes communal values, sharing, education, and training. Teamwork is a strength for scientific work and discovery; the total is more than the sum of the individual part contributions. Credit: Indiana University

Mystery of North American insect bioluminescent systems unraveled by Brazilian scientists

I’ve always been fond of ‘l’ words and so it is that I’m compelled to post a story about a “luciferin-luciferase system” or, in this case, a story about insect bioluminescence.

Caption: Researchers isolated molecules present in the larvae of the fungus gnat Orfelia fultoni Credit: Vadim Viviani, UFSCar

A September 9, 2020 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) press release (also on EurekAlert but published Sept. 11, 2020) announces research into ‘blue’ bioluminescence,

Molecules belonging to an almost unknown bioluminescent system found in larvae of the fungus gnat Orfelia fultoni (subfamily Keroplatinae) have been isolated for the first time by researchers at the Federal University of São Carlos (UFSCar) in the state of São Paulo, Brazil. The small fly is one of the few terrestrial organisms that produce blue light. It inhabits riverbanks in the Appalachian Mountains in the eastern United States. A key part of its bioluminescent system is a molecule also present in two recently discovered Brazilian flies.

The study, supported by Paulo Research Foundation – FAPESP, is published in Scientific Reports. Five authors are affiliated with UFSCar and two with universities in the United States.

The bioluminescent systems of glow-worms, fireflies and other insects are normally made up of luciferin (a low molecular weight molecule) and luciferase, an enzyme that catalyzes the oxidation of luciferin by oxygen, producing light. While some bioluminescent systems are well known and even used in biotechnological applications, others are poorly understood, including blue light-emitting systems, such as that of O. fultoni.

“In the published paper, we describe the properties of the insect’s luciferase and luciferin and their anatomical location in its larvae. We also specify several possible proteins that are possible candidates for the luciferase. We don’t yet know what type of protein it is, but it’s likely to be a hexamerin. In insects, hexamerins are storage proteins that provide amino acids, besides having other functions, such as binding low molecular weight compounds, like luciferin,” said Vadim Viviani, a professor in UFSCar’s Sustainability Science and Technology Center (CCTS) in Sorocaba, São Paulo, and principal investigator for the study.

The study was part of the FAPESP-funded project “Arthropod bioluminescence“. The partnership with United States-based researchers dates from a previous project, supported by FAPESP and the United States National Science Foundation (NSF), in partnership with Vanderbilt University (VU), located in Nashville, Tennessee.

In addition to luciferin and luciferase, researchers began characterizing a complex found in insects of the family Keroplatidae, which, in addition to O. fultoni, also includes a Brazilian species in the genus Neoditomyia that produces only luciferin and hence does not emit light.

Because they do not use it to emit light, the luciferin in O. fultoni and the Brazilian Neoditomyia has been named keroplatin. In larvae of this subfamily, keroplatin is associated with “black bodies” – large cells containing dark granules, proteins and probably mitochondria (energy-producing organelles). Researchers are still investigating the biological significance of this association between keroplatin and mitochondria.

“It’s a mystery,” Viviani said. “This luciferin may play a role in the mitochondrial energy metabolism. At night, probably in the presence of a natural chemical reducer, the luciferin is released by these black bodies and reacts with the surrounding luciferase to produce blue light. These are possibilities we plan to study.”

Brazilian cousins

An important factor in the elucidation of the United States insect’s bioluminescent system was the discovery of a larva that lives in Intervales State Park in São Paulo in 2018. It does not emit light but produces luciferin, similar to O. fultoni (read more at: agencia.fapesp.br/29066).

In their latest study, the group injected purified luciferase from the United States species into larvae of the Brazilian species, which then produced blue light. The nonluminescent Brazilian species is more abundant in nature than the United States species, so a larger amount of the material could be obtained for study purposes, especially to characterize the luciferin (keroplatin) present in both species.

In 2019, the group discovered and described Neoceroplatus betaryensis, a new species of fungus gnat, in collaboration with Cassius Stevani, a professor at the University of São Paulo’s Institute of Chemistry (IQ-USP). It was the first blue light-emitting insect found in South America and was detected in a privately held forest reserve near the Upper Ribeira State Tourist Park (PETAR) in the southern portion of the state of São Paulo. A close relative of O. fultoni, N. betaryensis inhabits fallen tree trunks in humid places (read more at: agencia.fapesp.br/31797).

“We show that the bioluminescent system of this Brazilian species is identical to that of O. fultoni. However, the insect is very rare, and so it’s hard to obtain sufficient material for research purposes,” Viviani said.

The researchers are now cloning the insect’s luciferase and characterizing it in molecular terms. They are also analyzing the chemical structure of its luciferin and the morphology of its lanterns.

“Once all this has been determined, we’ll be able to synthesize the luciferin and luciferase in the lab and use these systems in a range of biotech applications, such as studying cells. This will help us understand more about human diseases, among other things,” Viviani said.

Here’s a link to and a citation for the paper,

A new brilliantly blue-emitting luciferin-luciferase system from Orfelia fultoni and Keroplatinae (Diptera) by Vadim R. Viviani, Jaqueline R. Silva, Danilo T. Amaral, Vanessa R. Bevilaqua, Fabio C. Abdalla, Bruce R. Branchini & Carl H. Johnson. Scientific Reports volume 10, Article number: 9608 (2020) DOI: https://doi.org/10.1038/s41598-020-66286-1 Published 15 June 2020

This paper is open access.

Toronto’s ArtSci Salon and its Kaleidoscopic Imaginations on Oct 27, 2020 – 7:30 pm (EDT)

The ArtSci Salon is getting quite active these days. Here’s the latest from an Oct. 22, 2020 ArtSci Salon announcement (received via email), which can also be viewed on their Kaleidoscope event page,

Kaleidoscopic Imaginations

Performing togetherness in empty spaces

An experimental  collaboration between the ArtSci Salon, the Digital Dramaturgy Lab_squared/ DDL2 and Sensorium: Centre for Digital Arts and Technology, York University (Toronto, Ontario, Canada)

Tuesday, October 27, 2020

7:30 pm [EDT]

Join our evening of live-streamed, multi-media  performances, following a kaleidoscopic dramaturgy of complexity discourses as inspired by computational complexity theory gatherings.

We are presenting installations, site-specific artistic interventions and media experiments, featuring networked audio and video, dance and performances as we repopulate spaces – The Fields Institute and surroundings – forced to lie empty due to the pandemic. Respecting physical distance and new sanitation and safety rules can be challenging, but it can also open up new ideas and opportunities.

NOTE: DDL2  contributions to this event are sourced or inspired by their recent kaleidoscopic performance “Rattling the the Curve – Paradoxical ECODATA performances of A/I (artistic intelligence), and facial recognition of humans and trees

Virtual space/live streaming concept and design: DDL2  Antje Budde, Karyn McCallum and Don Sinclair

Virtual space and streaming pilot: Don Sinclair

Here are specific programme details (from the announcement),

  1. Signing the Virus – Video (2 min.)
    Collaborators: DDL2 Antje Budde, Felipe Cervera, Grace Whiskin
  2. Niimi II – – Performance and outdoor video projection (15 min.)
    (Nimii means in Anishinaabemowin: s/he dances) Collaborators: DDL2 Candy Blair, Antje Budde, Jill Carter, Lars Crosby, Nina Czegledy, Dave Kemp
  3. Oracle Jane (Scene 2) – A partial playreading on the politics of AI (30 min.)
    Playwright: DDL2 Oracle Collaborators: DDL2 Antje Budde, Frans Robinow, George Bwannika Seremba, Amy Wong and AI ethics consultant Vicki Zhang
  4. Vriksha/Tree – Dance video and outdoor projection (8 min.)
    Collaborators: DDL2 Antje Budde, Lars Crosby, Astad Deboo, Dave Kemp, Amit Kumar
  5. Facial Recognition – Performing a Plate Camera from a Distance (3 min.)
    Collaborators: DDL2 Antje Budde, Jill Carter, Felipe Cervera, Nina Czegledy, Karyn McCallum, Lars Crosby, Martin Kulinna, Montgomery C. Martin, George Bwanika Seremba, Don Sinclair, Heike Sommer
  6. Cutting Edge – Growing Data (6 min.)
    DDL2 A performance by Antje Budde
  7. “void * ambience” – Architectural and instrumental acoustics, projection mapping Concept: Sensorium: The Centre for Digital Art and Technology, York University Collaborators: Michael Palumbo, Ilze Briede [Kavi], Debashis Sinha, Joel Ong

This performance is part of a series (from the announcement),

These three performances are part of Boundary-Crossings: Multiscalar Entanglements in Art, Science and Society, a public Outreach program supported by the Fiends [sic] Institute for Research in Mathematical Science. Boundary Crossings is a series exploring how the notion of boundaries can be transcended and dissolved in the arts and the humanities, the biological and the mathematical sciences, as well as human geography and political economy. Boundaries are used to establish delimitations among disciplines; to discriminate between the human and the non-human (body and technologies, body and bacteria); and to indicate physical and/or artificial boundaries, separating geographical areas and nation states. Our goal is to cross these boundaries by proposing new narratives to show how the distinctions, and the barriers that science, technology, society and the state have created can in fact be re-interpreted as porous and woven together.

This event is curated and produced by ArtSci Salon; Digital Dramaturgy Lab_squared/ DDL2; Sensorium: Centre for Digital Arts and Technology, York University; and Ryerson University; it is supported by The Fields Institute for Research in Mathematical Sciences

Streaming Link 

Finally, the announcement includes biographical information about all of the ‘boundary-crossers’,

Candy Blair (Tkaron:to/Toronto)
Candy Blair/Otsίkh:èta (they/them) is a mixed First Nations/European,
2-spirit interdisciplinary visual and performing artist from Tio’tía:ke – where the group split (“Montreal”) in Québec.

While continuing their work as an artist they also finished their Creative Arts, Literature, and Languages program at Marianopolis College (cégep), their 1st year in the Theatre program at York University, and their 3rd year Acting Conservatory Program at the Centre For Indigenous Theatre in Tsí Tkaròn:to – Where the trees stand in water (Toronto”).

Some of Candy’s noteable performances are Jill Carter’s Encounters at the Edge of the Woods, exploring a range of issues with colonization; Ange Loft’s project Talking Treaties, discussing the treaties of the “Toronto” purchase; Cheri Maracle’s The Story of Six Nations, exploring Six Nation’s origin story through dance/combat choreography, and several other performances, exploring various topics around Indigenous language, land, and cultural restoration through various mediums such as dance,
modelling, painting, theatre, directing, song, etc. As an activist and soon to be entrepreneur, Candy also enjoys teaching workshops around promoting Indigenous resurgence such as Indigenous hand drumming, food sovereignty, beading, medicine knowledge, etc..

Working with their collectives like Weave and Mend, they were responsible for the design, land purification, and installation process of the four medicine plots and a community space with their 3 other members. Candy aspires to continue exploring ways of decolonization through healthy traditional practices from their mixed background and the arts in the hopes of eventually supporting Indigenous relations
worldwide.

Antje Budde
Antje Budde is a conceptual, queer-feminist, interdisciplinary experimental scholar-artist and an Associate Professor of Theatre Studies, Cultural Communication and Modern Chinese Studies at the Centre for Drama, Theatre and Performance Studies, University of Toronto. Antje has created multi-disciplinary artistic works in Germany, China and Canada and works tri-lingually in German, English and Mandarin. She is the founder of a number of queerly feminist performing art projects including most recently the (DDL)2 or (Digital Dramaturgy Lab)Squared – a platform for experimental explorations of digital culture, creative labor, integration of arts and science, and technology in performance. She is interested in the intersections of natural sciences, the arts, engineering and computer science.

Roberta Buiani
Roberta Buiani (MA; PhD York University) is the Artistic Director of the ArtSci Salon at the Fields Institute for Research in Mathematical Sciences (Toronto). Her artistic work has travelled to art festivals (Transmediale; Hemispheric Institute Encuentro; Brazil), community centres and galleries (the Free Gallery Toronto; Immigrant Movement
International, Queens, Myseum of Toronto), and science institutions (RPI; the Fields Institute). Her writing has appeared on Space and Culture, Cultural Studies and The Canadian Journal of Communication_among others. With the ArtSci Salon she has launched a series of experiments in “squatting academia”, by re-populating abandoned spaces and cabinets across university campuses with SciArt installations.

Currently, she is a research associate at the Centre for Feminist Research and a Scholar in Residence at Sensorium: Centre for Digital Arts and Technology at York University [Toronto, Ontario, Canada].

Jill Carter (Tkaron:to/ Toronto)
Jill (Anishinaabe/Ashkenazi) is a theatre practitioner and researcher, currently cross appointed to the Centre for Drama, Theatre and Performance Studies; the Transitional Year Programme; and Indigenous Studies at the University of Toronto. She works with many members of Tkaron:to’s Indigenous theatre community to support the development of new works and to disseminate artistic objectives, process, and outcomes through community- driven research projects. Her scholarly research,
creative projects, and activism are built upon ongoing relationships with Indigenous Elders, Artists and Activists, positioning her as witness to, participant in, and disseminator of oral histories that speak to the application of Indigenous aesthetic principles and traditional knowledge systems to contemporary performance.The research questions she pursues revolve around the mechanics of story creation,
the processes of delivery and the manufacture of affect.

More recently, she has concentrated upon Indigenous pedagogical models for the rehearsal studio and the lecture hall; the application of Indigenous [insurgent] research methods within performance studies; the politics of land acknowledgements; and land – based dramaturgies/activations/interventions.

Jill also works as a researcher and tour guide with First Story Toronto; facilitates Land Acknowledgement, Devising, and Land-based Dramaturgy Workshops for theatre makers in this city; and performs with the Talking Treaties Collective (Jumblies Theatre, Toronto).

In September 2019, Jill directed Encounters at the Edge of the Woods. This was a devised show, featuring Indigenous and Settler voices, and it opened Hart House Theatre’s 100th season; it is the first instance of Indigenous presence on Hart House Theatre’s stage in its 100 years of existence as the cradle for Canadian theatre.

Nina Czegledy
(Toronto) artist, curator, educator, works internationally on collaborative art, science & technology projects. The changing perception of the human body and its environment as well as paradigm shifts in the arts inform her projects. She has exhibited and published widely, won awards for her artwork and has initiated, lead and participated in workshops, forums and festivals worldwide at international events.

Astad Deboo (Mumbai, India)
Astad Deboo is a contemporary dancer and choreographer who employs his
training in Indian classical dance forms of Kathak as well as Kathakali to create a dance form that is unique to him. He has become a pioneer of modern dance in India. Astad describes his style as “contemporary in vocabulary and traditional in restraints.” Throughout his long and illustrious career, he has worked with various prominent performers such as Pina Bausch, Alis on Becker Chase and Pink Floyd and performed in many parts of the world. He has been awarded the Sangeet Natak Akademi Award (1996) and Padma Shri (2007), awarded by the Government of India. In January 2005 along with 12 young women with hearing impairment supported by the Astad Deboo Dance Foundation, he performed at the 20th Annual Deaf Olympics at Melbourne, Australia. Astad has a long record of working with disadvantaged youth.

Ilze Briede [Kavi]
Ilze Briede [artist name: Kavi] is a Latvian/Canadian artist and researcher with broad and diverse interests. Her artistic practice, a hybrid of video, image and object making, investigates the phenomenon of perception and the constraints and boundaries between the senses and knowing. Kavi is currently pursuing a PhD degree in Digital Media at York University with a research focus on computational creativity and generative art. She sees computer-generated systems and algorithms as a potentiality for co-creation and collaboration between human and machine. Kavi has previously worked and exhibited with Fashion Art Toronto, Kensington Market Art Fair, Toronto Burlesque Festival, Nuit Blanche, Sidewalk Toronto and the Toronto Symphony Orchestra.

Dave Kemp
Dave Kemp is a visual artist whose practice looks at the intersections and interactions between art, science and technology: particularly at how these fields shape our perception and understanding of the world. His artworks have been exhibited widely at venues such as at the McIntosh Gallery, The Agnes Etherington Art Centre, Art Gallery of Mississauga, The Ontario Science Centre, York Quay Gallery, Interaccess,
Modern Fuel Artist-Run Centre, and as part of the Switch video festival in Nenagh, Ireland. His works are also included in the permanent collections of the Agnes Etherington Art Centre and the Canada Council Art Bank.

Stephen Morris
Stephen Morris is Professor of experimental non-linear Physics in the faculty of Physics at the University of Toronto. He is the scientific Director of the ArtSci salon at the Fields Institute for Research in Mathematical Sciences. He often collaborates with artists and has himself performed and produced art involving his own scientific instruments and experiments in non-linear physics and pattern formation

Michael Palumbo
Michael Palumbo (MA, BFA) is an electroacoustic music improviser, coder, and researcher. His PhD research spans distributed creativity and version control systems, and is expressed through “git show”, a distributed electroacoustic music composition and design experiment, and “Mischmasch”, a collaborative modular synthesizer in virtual reality. He studies with Dr. Doug Van Nort as a researcher in the Distributed
Performance and Sensorial Immersion Lab, and Dr. Graham Wakefield at the Alice Lab for Computational Worldmaking. His works have been presented internationally, including at ISEA, AES, NIME, Expo ’74, TIES, and the Network Music Festival. He performs regularly with a modular synthesizer, runs the Exit Points electroacoustic improvisation series, and is an enthusiastic gardener and yoga practitioner.

Joel Ong (PhD. Digital Arts and Experimental Media (DXARTS, University
of Washington)

Joel Ong is a media artist whose works connect scientific and artistic approaches to the environment, particularly with respect to sound and physical space.  Professor Ong’s work explores the way objects and spaces can function as repositories of ‘frozen sound’, and in elucidating these, he is interested in creating what systems theorist Jack Burnham (1968) refers to as “art (that) does not reside in material entities, but in relations between people and between people and the components of their environment”.

A serial collaborator, Professor Ong is invested in the broader scope of Art-Science collaborations and is engaged constantly in the discourses and processes that facilitate viewing these two polemical disciplines on similar ground.  His graduate interdisciplinary work in nanotechnology and sound was conducted at SymbioticA, the Center of Excellence for Biological Arts at the University of Western Australia and supervised by BioArt pioneers and TCA (The Tissue Culture and Art Project) artists Dr Ionat Zurr and Oron Catts.

George Bwanika Seremba
George Bwanika Seremba,is an actor, playwright and scholar. He was born
in Uganda. George holds an M. Phil, and a Ph.D. in Theatre Studies, from Trinity
College Dublin. In 1980, having barely survived a botched execution by the Military Intelligence, he fled into exile, resettling in Canada (1983). He has performed in numerous plays including in his own, “Come Good Rain”, which was awarded a Dora award (1993). In addition, he published a number of edited play collections including “Beyond the pale: dramatic writing from First Nations writers & writers of colour” co-edited by Yvette Nolan, Betty Quan, George Bwanika Seremba. (1996).

George was nominated for the Irish Times’ Best Actor award in Dublin’s Calypso Theatre’s for his role in Athol Fugard’s “Master Harold and the boys”. In addition to theatre he performed in several movies and on television. His doctoral thesis (2008) entitled “Robert Serumaga and the Golden Age of Uganda’s Theatre (1968-1978): (Solipsism, Activism, Innovation)” will be published as a monograph by CSP (U.K) in 2021.

Don Sinclair (Toronto)
Don is Associate Professor in the Department of Computational Arts at York University. His creative research areas include interactive performance, projections for dance, sound art, web and data art, cycling art, sustainability, and choral singing most often using code and programming. Don is particularly interested in processes of artistic creation that integrate digital creative coding-based practices with performance in dance and theatre. As well, he is an enthusiastic cyclist.

Debashis Sinha
Driven by a deep commitment to the primacy of sound in creative expression, Debashis Sinha has realized projects in radiophonic art, music, sound art, audiovisual performance, theatre, dance, and music across Canada and internationally. Sound design and composition credits include numerous works for Peggy Baker Dance Projects and productions with Canada’s premiere theatre companies including The Stratford Festival, Soulpepper, Volcano Theatre, Young People’s Theatre, Project Humanity, The Theatre Centre, Nightwood Theatre, Why Not Theatre, MTC Warehouse and Necessary Angel. His live sound practice on the concert stage has led to appearances at MUTEK Montreal, MUTEK Japan, the Guelph Jazz Festival, the Banff Centre, The Music Gallery, and other venues. Sinha teaches sound design at York University and the National Theatre School, and is currently working on a multi-part audio/performance work incorporating machine learning and AI funded by the Canada Council for the Arts.

Vicki (Jingjing) Zhang (Toronto)
Vicki Zhang is a faculty member at University of Toronto’s statistics department. She is the author of Uncalculated Risks (Canadian Scholar’s Press, 2014). She is also a playwright, whose plays have been produced or stage read in various festivals and venues in Canada including Toronto’s New Ideas Festival, Winnipeg’s FemFest, Hamilton Fringe Festival, Ergo Pink Fest, InspiraTO festival, Toronto’s Festival of Original Theatre (FOOT), Asper Center for Theatre and Film, Canadian Museum for Human Rights, Cultural Pluralism in the Arts Movement Ontario (CPAMO), and the Canadian Play Thing. She has also written essays and short fiction for Rookie Magazine and Thread.

If you can’t attend this Oct. 27, 2020 event, there’s still the Oct. 29, 2020 Boundary-Crossings event: Beauty Kit (see my Oct. 12, 2020 posting for more).

As for Kaleidoscopic Imaginations, you can access the Streaming Link On Oct. 27, 2020 at 7:30 pm EDT (4 pm PDT).

Technical University of Munich: embedded ethics approach for AI (artificial intelligence) and storing a tv series in synthetic DNA

I stumbled across two news bits of interest from the Technical University of Munich in one day (Sept. 1, 2020, I think). The topics: artificial intelligence (AI) and synthetic DNA (deoxyribonucleic acid).

Embedded ethics and artificial intelligence (AI)

An August 27, 2020 Technical University of Munich (TUM) press release (also on EurekAlert but published Sept. 1, 2020) features information about a proposal to embed ethicists in with AI development teams,

The increasing use of AI (artificial intelligence) in the development of new medical technologies demands greater attention to ethical aspects. An interdisciplinary team at the Technical University of Munich (TUM) advocates the integration of ethics from the very beginning of the development process of new technologies. Alena Buyx, Professor of Ethics in Medicine and Health Technologies, explains the embedded ethics approach.

Professor Buyx, the discussions surrounding a greater emphasis on ethics in AI research have greatly intensified in recent years, to the point where one might speak of “ethics hype” …

Prof. Buyx: … and many committees in Germany and around the world such as the German Ethics Council or the EU Commission High-Level Expert Group on Artificial Intelligence have responded. They are all in agreement: We need more ethics in the development of AI-based health technologies. But how do things look in practice for engineers and designers? Concrete solutions are still few and far between. In a joint pilot project with two Integrative Research Centers at TUM, the Munich School of Robotics and Machine Intelligence (MSRM) with its director, Prof. Sami Haddadin, and the Munich Center for Technology in Society (MCTS), with Prof. Ruth Müller, we want to try out the embedded ethics approach. We published the proposal in Nature Machine Intelligence at the end of July [2020].

What exactly is meant by the “embedded ethics approach”?

Prof.Buyx: The idea is to make ethics an integral part of the research process by integrating ethicists into the AI development team from day one. For example, they attend team meetings on a regular basis and create a sort of “ethical awareness” for certain issues. They also raise and analyze specific ethical and social issues.

Is there an example of this concept in practice?

Prof. Buyx: The Geriatronics Research Center, a flagship project of the MSRM in Garmisch-Partenkirchen, is developing robot assistants to enable people to live independently in old age. The center’s initiatives will include the construction of model apartments designed to try out residential concepts where seniors share their living space with robots. At a joint meeting with the participating engineers, it was noted that the idea of using an open concept layout everywhere in the units – with few doors or individual rooms – would give the robots considerable range of motion. With the seniors, however, this living concept could prove upsetting because they are used to having private spaces. At the outset, the engineers had not given explicit consideration to this aspect.

Prof.Buyx: The approach sounds promising. But how can we avoid “embedded ethics” from turning into an “ethics washing” exercise, offering companies a comforting sense of “being on the safe side” when developing new AI technologies?

That’s not something we can be certain of avoiding. The key is mutual openness and a willingness to listen, with the goal of finding a common language – and subsequently being prepared to effectively implement the ethical aspects. At TUM we are ideally positioned to achieve this. Prof. Sami Haddadin, the director of the MSRM, is also a member of the EU High-Level Group of Artificial Intelligence. In his research, he is guided by the concept of human centered engineering. Consequently, he has supported the idea of embedded ethics from the very beginning. But one thing is certain: Embedded ethics alone will not suddenly make AI “turn ethical”. Ultimately, that will require laws, codes of conduct and possibly state incentives.

Here’s a link to and a citation for the paper espousing the embedded ethics for AI development approach,

An embedded ethics approach for AI development by Stuart McLennan, Amelia Fiske, Leo Anthony Celi, Ruth Müller, Jan Harder, Konstantin Ritt, Sami Haddadin & Alena Buyx. Nature Machine Intelligence (2020) DOI: https://doi.org/10.1038/s42256-020-0214-1 Published 31 July 2020

This paper is behind a paywall.

Religion, ethics and and AI

For some reason embedded ethics and AI got me to thinking about Pope Francis and other religious leaders.

The Roman Catholic Church and AI

There was a recent announcement that the Roman Catholic Church will be working with MicroSoft and IBM on AI and ethics (from a February 28, 2020 article by Jen Copestake for British Broadcasting Corporation (BBC) news online (Note: A link has been removed),

Leaders from the two tech giants met senior church officials in Rome, and agreed to collaborate on “human-centred” ways of designing AI.

Microsoft president Brad Smith admitted some people may “think of us as strange bedfellows” at the signing event.

“But I think the world needs people from different places to come together,” he said.

The call was supported by Pope Francis, in his first detailed remarks about the impact of artificial intelligence on humanity.

The Rome Call for Ethics [sic] was co-signed by Mr Smith, IBM executive vice-president John Kelly and president of the Pontifical Academy for Life Archbishop Vincenzo Paglia.

It puts humans at the centre of new technologies, asking for AI to be designed with a focus on the good of the environment and “our common and shared home and of its human inhabitants”.

Framing the current era as a “renAIssance”, the speakers said the invention of artificial intelligence would be as significant to human development as the invention of the printing press or combustion engine.

UN Food and Agricultural Organization director Qu Dongyu and Italy’s technology minister Paola Pisano were also co-signatories.

Hannah Brockhaus’s February 28, 2020 article for the Catholic News Agency provides some details missing from the BBC report and I found it quite helpful when trying to understand the various pieces that make up this initiative,

The Pontifical Academy for Life signed Friday [February 28, 2020], alongside presidents of IBM and Microsoft, a call for ethical and responsible use of artificial intelligence technologies.

According to the document, “the sponsors of the call express their desire to work together, in this context and at a national and international level, to promote ‘algor-ethics.’”

“Algor-ethics,” according to the text, is the ethical use of artificial intelligence according to the principles of transparency, inclusion, responsibility, impartiality, reliability, security, and privacy.

The signing of the “Rome Call for AI Ethics [PDF]” took place as part of the 2020 assembly of the Pontifical Academy for Life, which was held Feb. 26-28 [2020] on the theme of artificial intelligence.

One part of the assembly was dedicated to private meetings of the academics of the Pontifical Academy for Life. The second was a workshop on AI and ethics that drew 356 participants from 41 countries.

On the morning of Feb. 28 [2020], a public event took place called “renAIssance. For a Humanistic Artificial Intelligence” and included the signing of the AI document by Microsoft President Brad Smith, and IBM Executive Vice-president John Kelly III.

The Director General of FAO, Dongyu Qu, and politician Paola Pisano, representing the Italian government, also signed.

The president of the European Parliament, David Sassoli, was also present Feb. 28.

Pope Francis canceled his scheduled appearance at the event due to feeling unwell. His prepared remarks were read by Archbishop Vincenzo Paglia, president of the Academy for Life.

You can find Pope Francis’s comments about the document here (if you’re not comfortable reading Italian, hopefully, the English translation which follows directly afterward will be helpful). The Pope’s AI initiative has a dedicated website, Rome Call for AI ethics, and while most of the material dates from the February 2020 announcement, they are keeping up a blog. It has two entries, one dated in May 2020 and another in September 2020.

Buddhism and AI

The Dalai Lama is well known for having an interest in science and having hosted scientists for various dialogues. So, I was able to track down a November 10, 2016 article by Ariel Conn for the futureoflife.org website, which features his insights on the matter,

The question of what it means and what it takes to feel needed is an important problem for ethicists and philosophers, but it may be just as important for AI researchers to consider. The Dalai Lama argues that lack of meaning and purpose in one’s work increases frustration and dissatisfaction among even those who are gainfully employed.

“The problem,” says the Dalai Lama, “is … the growing number of people who feel they are no longer useful, no longer needed, no longer one with their societies. … Feeling superfluous is a blow to the human spirit. It leads to social isolation and emotional pain, and creates the conditions for negative emotions to take root.”

If feeling needed and feeling useful are necessary for happiness, then AI researchers may face a conundrum. Many researchers hope that job loss due to artificial intelligence and automation could, in the end, provide people with more leisure time to pursue enjoyable activities. But if the key to happiness is feeling useful and needed, then a society without work could be just as emotionally challenging as today’s career-based societies, and possibly worse.

I also found a talk on the topic by The Venerable Tenzin Priyadarshi, first here’s a description from his bio at the Dalai Lama Center for Ethics and Transformative Values webspace on the Massachusetts Institute of Technology (MIT) website,

… an innovative thinker, philosopher, educator and a polymath monk. He is Director of the Ethics Initiative at the MIT Media Lab and President & CEO of The Dalai Lama Center for Ethics and Transformative Values at the Massachusetts Institute of Technology. Venerable Tenzin’s unusual background encompasses entering a Buddhist monastery at the age of ten and receiving graduate education at Harvard University with degrees ranging from Philosophy to Physics to International Relations. He is a Tribeca Disruptive Fellow and a Fellow at the Center for Advanced Study in Behavioral Sciences at Stanford University. Venerable Tenzin serves on the boards of a number of academic, humanitarian, and religious organizations. He is the recipient of several recognitions and awards and received Harvard’s Distinguished Alumni Honors for his visionary contributions to humanity.

He gave the 2018 Roger W. Heyns Lecture in Religion and Society at Stanford University on the topic, “Religious and Ethical Dimensions of Artificial Intelligence.” The video runs over one hour but he is a sprightly speaker (in comparison to other Buddhist speakers I’ve listened to over the years).

Judaism, Islam, and other Abrahamic faiths examine AI and ethics

I was delighted to find this January 30, 2020 Artificial Intelligence: Implications for Ethics and Religion event as it brought together a range of thinkers from various faiths and disciplines,

New technologies are transforming our world every day, and the pace of change is only accelerating.  In coming years, human beings will create machines capable of out-thinking us and potentially taking on such uniquely-human traits as empathy, ethical reasoning, perhaps even consciousness.  This will have profound implications for virtually every human activity, as well as the meaning we impart to life and creation themselves.  This conference will provide an introduction for non-specialists to Artificial Intelligence (AI):

What is it?  What can it do and be used for?  And what will be its implications for choice and free will; economics and worklife; surveillance economies and surveillance states; the changing nature of facts and truth; and the comparative intelligence and capabilities of humans and machines in the future? 

Leading practitioners, ethicists and theologians will provide cross-disciplinary and cross-denominational perspectives on such challenges as technology addiction, inherent biases and resulting inequalities, the ethics of creating destructive technologies and of turning decision-making over to machines from self-driving cars to “autonomous weapons” systems in warfare, and how we should treat the suffering of “feeling” machines.  The conference ultimately will address how we think about our place in the universe and what this means for both religious thought and theological institutions themselves.

UTS [Union Theological Seminary] is the oldest independent seminary in the United States and has long been known as a bastion of progressive Christian scholarship.  JTS [Jewish Theological Seminary] is one of the academic and spiritual centers of Conservative Judaism and a major center for academic scholarship in Jewish studies. The Riverside Church is an interdenominational, interracial, international, open, welcoming, and affirming church and congregation that has served as a focal point of global and national activism for peace and social justice since its inception and continues to serve God through word and public witness. The annual Greater Good Gathering, the following week at Columbia University’s School of International & Public Affairs, focuses on how technology is changing society, politics and the economy – part of a growing nationwide effort to advance conversations promoting the “greater good.”

They have embedded a video of the event (it runs a little over seven hours) on the January 30, 2020 Artificial Intelligence: Implications for Ethics and Religion event page. For anyone who finds that a daunting amount of information, you may want to check out the speaker list for ideas about who might be writing and thinking on this topic.

As for Islam, I did track down this November 29, 2018 article by Shahino Mah Abdullah, a fellow at the Institute of Advanced Islamic Studies (IAIS) Malaysia,

As the global community continues to work together on the ethics of AI, there are still vast opportunities to offer ethical inputs, including the ethical principles based on Islamic teachings.

This is in line with Islam’s encouragement for its believers to convey beneficial messages, including to share its ethical principles with society.

In Islam, ethics or akhlak (virtuous character traits) in Arabic, is sometimes employed interchangeably in the Arabic language with adab, which means the manner, attitude, behaviour, and etiquette of putting things in their proper places. Islamic ethics cover all the legal concepts ranging from syariah (Islamic law), fiqh ( jurisprudence), qanun (ordinance), and ‘urf (customary practices).

Adopting and applying moral values based on the Islamic ethical concept or applied Islamic ethics could be a way to address various issues in today’s societies.

At the same time, this approach is in line with the higher objectives of syariah (maqasid alsyariah) that is aimed at conserving human benefit by the protection of human values, including faith (hifz al-din), life (hifz alnafs), lineage (hifz al-nasl), intellect (hifz al-‘aql), and property (hifz al-mal). This approach could be very helpful to address contemporary issues, including those related to the rise of AI and intelligent robots.

..

Part of the difficulty with tracking down more about AI, ethics, and various religions is linguistic. I simply don’t have the language skills to search for the commentaries and, even in English, I may not have the best or most appropriate search terms.

Television (TV) episodes stored on DNA?

According to a Sept. 1, 2020 news item on Nanowerk, the first episode of a tv series, ‘Biohackers’ has been stored on synthetic DNA (deoxyribonucleic acid) by a researcher at TUM and colleagues at another institution,

The first episode of the newly released series “Biohackers” was stored in the form of synthetic DNA. This was made possible by the research of Prof. Reinhard Heckel of the Technical University of Munich (TUM) and his colleague Prof. Robert Grass of ETH Zürich.

They have developed a method that permits the stable storage of large quantities of data on DNA for over 1000 years.

A Sept. 1, 2020 TUM press release, which originated the news item, proceeds with more detail in an interview format,

Prof. Heckel, Biohackers is about a medical student seeking revenge on a professor with a dark past – and the manipulation of DNA with biotechnology tools. You were commissioned to store the series on DNA. How does that work?

First, I should mention that what we’re talking about is artificially generated – in other words, synthetic – DNA. DNA consists of four building blocks: the nucleotides adenine (A), thymine (T), guanine (G) and cytosine (C). Computer data, meanwhile, are coded as zeros and ones. The first episode of Biohackers consists of a sequence of around 600 million zeros and ones. To code the sequence 01 01 11 00 in DNA, for example, we decide which number combinations will correspond to which letters. For example: 00 is A, 01 is C, 10 is G and 11 is T. Our example then produces the DNA sequence CCTA. Using this principle of DNA data storage, we have stored the first episode of the series on DNA.

And to view the series – is it just a matter of “reverse translation” of the letters?

In a very simplified sense, you can visualize it like that. When writing, storing and reading the DNA, however, errors occur. If these errors are not corrected, the data stored on the DNA will be lost. To solve the problem, I have developed an algorithm based on channel coding. This method involves correcting errors that take place during information transfers. The underlying idea is to add redundancy to the data. Think of language: When we read or hear a word with missing or incorrect letters, the computing power of our brain is still capable of understanding the word. The algorithm follows the same principle: It encodes the data with sufficient redundancy to ensure that even highly inaccurate data can be restored later.

Channel coding is used in many fields, including in telecommunications. What challenges did you face when developing your solution?

The first challenge was to create an algorithm specifically geared to the errors that occur in DNA. The second one was to make the algorithm so efficient that the largest possible quantities of data can be stored on the smallest possible quantity of DNA, so that only the absolutely necessary amount of redundancy is added. We demonstrated that our algorithm is optimized in that sense.

DNA data storage is very expensive because of the complexity of DNA production as well as the reading process. What makes DNA an attractive storage medium despite these challenges?

First, DNA has a very high information density. This permits the storage of enormous data volumes in a minimal space. In the case of the TV series, we stored “only” 100 megabytes on a picogram – or a billionth of a gram of DNA. Theoretically, however, it would be possible to store up to 200 exabytes on one gram of DNA. And DNA lasts a long time. By comparison: If you never turned on your PC or wrote data to the hard disk it contains, the data would disappear after a couple of years. By contrast, DNA can remain stable for many thousands of years if it is packed right.

And the method you have developed also makes the DNA strands durable – practically indestructible.

My colleague Robert Grass was the first to develop a process for the “stable packing” of DNA strands by encapsulating them in nanometer-scale spheres made of silica glass. This ensures that the DNA is protected against mechanical influences. In a joint paper in 2015, we presented the first robust DNA data storage concept with our algorithm and the encapsulation process developed by Prof. Grass. Since then we have continuously improved our method. In our most recent publication in Nature Protocols of January 2020, we passed on what we have learned.

What are your next steps? Does data storage on DNA have a future?

We’re working on a way to make DNA data storage cheaper and faster. “Biohackers” was a milestone en route to commercialization. But we still have a long way to go. If this technology proves successful, big things will be possible. Entire libraries, all movies, photos, music and knowledge of every kind – provided it can be represented in the form of data – could be stored on DNA and would thus be available to humanity for eternity.

Here’s a link to and a citation for the paper,

Reading and writing digital data in DNA by Linda C. Meiser, Philipp L. Antkowiak, Julian Koch, Weida D. Chen, A. Xavier Kohll, Wendelin J. Stark, Reinhard Heckel & Robert N. Grass. Nature Protocols volume 15, pages86–101(2020) Issue Date: January 2020 DOI: https://doi.org/10.1038/s41596-019-0244-5 Published [online] 29 November 2019

This paper is behind a paywall.

As for ‘Biohackers’, it’s a German science fiction television series and you can find out more about it here on the Internet Movie Database.

Music for Incandescent Events: Skyview, Here (version 4) 25 October – 31 October 2020

This October 20, 2020 notice from Toronto’s ArtSci Salon (received via email) features a DIY musical event for dawn and dusk from Oct. 25 – 31, 2020 and it is a Canada-wide event series,

Dear media-arts and music organizations, arts educators & adventurous
radio programmers, kindly distribute this invitation to your members,
students, audiences and colleagues.

You’re invited to a free week-long dawn & dusk audio-viewing event
at a location of your choice:

Sunday October 25 – Saturday October 31

_ Music for Incandescent Events : Skyview, Here (version 4)_
Audio for skyscapes around sunset and sunrise. Livestream &
downloadable for portable sky-viewing adventures_ (variable times).
_
_ By Sarah Peebles. _
Presented by the Canadian Music Centre Ontario Chapter.

Day 1 event page, information & schedule overview – CMC

https://on.cmccanada.org/event/music-for-incandescent-events/

CMC Calendar with day by day links to each day’s event page

https://on.cmccanada.org/events/

Special thanks to CMC – Ontario & Mattew Fava for presenting and hosting this installation.

I hope you enjoy the experience!

I found more information on the event, which clarifies how people in Ontario and how people in the rest of Canada can participate in the Canadian Music Centre’s latest Incandescent Event,

South-Western Ontario, online | We invite audiences to tune-in during scheduled audio streams on Facebook during the week of October 25 occurring roughly at dawn and dusk for those based in South-Western Ontario. Streaming will coincide with the shifting light around sunrise/sunset within a broad zone ranging approximately from Peterborough in the East, to London in the West, and Barrie in the North. Tune in as the sky begins to change colour.

Across Canada, offline | Audiences are also invited to download the dawn-dusk audio files for this work in order to listen offline at a self-directed time based on their location. We encourage you to creatively locate yourself off-line via bicycle, ferry, boat, walking, or driving with your portable listening device.

Instructions for experiencing the pieces | Place yourself with a skyscape view of your choice, indoors or outdoors. Adjust your soundscape to your liking (e.g. open windows, sit under a tree, near waves or find a reflective surface, etc.). Listen online live or via audiofile (download) during sunset and/or sunrise, using good quality loudspeakers, headphones or earbuds.

About the Piece |Music for Incandescent Events meditates our perception of time, memory and place, creating a space for contemplation, for awareness of one’s physical environment, and for exploration of consciousness in the moment.

Each iteration of Incandescent Events combines different improvised short melodies and tones performed on a slightly de-tuned shô (Japanese mouth-organ), re-recorded several octaves lower than original pitch. I recorded these melodies at very close range while sitting near a reflective wall, catching rich beat patterns and sum/difference tones. These and additional frequencies beyond the range of human hearing transform into unexpected, complex audio events at slower play-back speeds, several octaves down.

Music for Incandescent Events version 1 (2002) is published on Somethings #1 (Last Visible Dog). Version 2 (installation) was commissioned by wade Collective for wade project in June, 2004, for Gibraltar Point, Toronto Islands; it showed at the McLuhan International Festival of the Future, “Scanning Nature” exhibition October, 2004 (DeLeon White Gallery rooftop deck. Version no. 3, Colour Temperature Event (for Gabriola Island, Berry Point, 2017), was curated for The QR Anthology

You can find the schedule for the streaming events (Oct. 25 -31, 2020) and a link to the music downloads at the Canadian Music Centre’s Music for Incandescent Events: Skyview, Here (version 4) event page.

Glass-like wood windows protect against UV rays and insulate heat

Engineers at the University of Maryland designed a transparent ceiling made of wood that highlights the natural woodgrain pattern. Credit: A. James Clark School of Engineering, University of Maryland [downloaded from https://phys.org/news/2020-08-glass-like-wood-insulates-tough-blocks.html]

An August 7, 2020 news item by Martha Hell on phys.org announces the latest research (links to previous posts about this research at the end of this post) on ‘transparent’ wood from the University of Maryland,

Need light but want privacy? A new type of wood that’s transparent, tough, and beautiful could be the solution. This nature-inspired building material allows light to come through (at about 80%) to fill the room but the material itself is naturally hazy (93%), preventing others from seeing inside.

An August 16, 2020 University of Maryland news release (also on EurekAlert) describes the work in more detail,

Engineers at the A. James Clark School of Engineering at the University of Maryland (UMD) demonstrate in a new study that windows made of transparent wood could provide more even and consistent natural lighting and better energy efficiency than glass

In a paper just published [July 31, 20202] in the peer-reviewed journal Advanced Energy Materials [this seems to be an incorrectly cited journal; I believe it should be Nature Communications as indicated in the phys.org news item], the team, headed by Liangbing Hu of UMD’s Department of Materials Science and Engineering and the Energy Research Center lay out research showing that their transparent wood provides better thermal insulation and lets in nearly as much light as glass, while eliminating glare and providing uniform and consistent indoor lighting. The findings advance earlier published work on their development of transparent wood.

The transparent wood lets through just a little bit less light than glass, but a lot less heat, said Tian Li, the lead author of the new study. “It is very transparent, but still allows for a little bit of privacy because it is not completely see-through. We also learned that the channels in the wood transmit light with wavelengths around the range of the wavelengths of visible light, but that it blocks the wavelengths that carry mostly heat,” said Li.

The team’s findings were derived, in part, from tests on tiny model house with a transparent wood panel in the ceiling that the team built. The tests showed that the light was more evenly distributed around a space with a transparent wood roof than a glass roof.

The channels in the wood direct visible light straight through the material, but the cell structure that still remains bounces the light around just a little bit, a property called haze. This means the light does not shine directly into your eyes, making it more comfortable to look at. The team photographed the transparent wood’s cell structure in the University of Maryland’s Advanced Imaging and Microscopy (AIM) Lab.

Transparent wood still has all the cell structures that comprised the original piece of wood. The wood is cut against the grain, so that the channels that drew water and nutrients up from the roots lie along the shortest dimension of the window. The new transparent wood uses theses natural channels in wood to guide the sunlight through the wood.

As the sun passes over a house with glass windows, the angle at which light shines through the glass changes as the sun moves. With windows or panels made of transparent wood instead of glass, as the sun moves across the sky, the channels in the wood direct the sunlight in the same way every time.

“This means your cat would not have to get up out of its nice patch of sunlight every few minutes and move over,” Li said. “The sunlight would stay in the same place. Also, the room would be more equally lighted at all times.”

Working with transparent wood is similar to working with natural wood, the researchers said. However, their transparent wood is waterproof due to its polymer component. It also is much less breakable than glass because the cell structure inside resists shattering.

The research team has recently patented their process for making transparent wood. The process starts with bleaching from the wood all of the lignin, which is a component in the wood that makes it both brown and strong. The wood is then soaked in epoxy, which adds strength back in and also makes the wood clearer. The team has used tiny squares of linden wood about 2 cm x 2 cm, but the wood can be any size, the researchers said.

Here’s a link to and a citation for the July 31, 2020 paper,

Scalable aesthetic transparent wood for energy efficient buildings by Ruiyu Mi, Chaoji Chen, Tobias Keplinger, Yong Pei, Shuaiming He, Dapeng Liu, Jianguo Li, Jiaqi Dai, Emily Hitz, Bao Yang, Ingo Burgert & Liangbing Hu. Nature Communications volume 11, Article number: 3836 (2020) DOI: https://doi.org/10.1038/s41467-020-17513-w Published 31 July 2020

This paper is open access.

There were two previous posts about this work at the University of Maryland,

University of Maryland looks into transparent wood May 11, 2016 posting

Transparent wood more efficient than glass in windows? Sept, 8, 2016 posting

I also have this posting, which is also from 2016 but features work in Sweden,

Transparent wood instead of glass for window panes? April 1, 2016 posting

I seem to have stumbled across a number of transparent wood stories in 2016. Hmm I think I need to spend more time searching previous titles for my postings so I didn’t end up with too many that sound similar.

CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 in the forest

It seems lignin is a bit of a problem. Its presence in a tree makes processing the wood into various products more difficult. (Of course, some people appreciate trees for other reasons both practical [carbon sequestration?] and/or aesthetic.)

In any event, scientists have been working on ways to reduce the amount of lignin in poplar trees since at least 2014 (see my April 7, 2014 posting titled ‘Good lignin, bad lignin: Florida researchers use plant waste to create lignin nanotubes while researchers in British Columbia develop trees with less lignin’; scroll down about 40% of the way for the ‘less lignin’ story).

(I don’t believe the 2014 research was accomplished with the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 technique as it had only been developed in 2012.)

The latest in the quest to reduce the amount of lignin of poplar trees comes from a Belgian/US team, from an Oct. 6, 2020 news item on ScienceDaily,

Researchers led by prof. Wout Boerjan (VIB-UGent [Ghent University] Center for Plant Systems Biology) have discovered a way to stably finetune the amount of lignin in poplar by applying CRISPR/Cas9 technology. Lignin is one of the main structural substances in plants and it makes processing wood into, for example, paper difficult. This study is an important breakthrough in the development of wood resources for the production of paper with a lower carbon footprint, biofuels, and other bio-based materials. Their work, in collaboration with VIVES University College (Roeselare, Belgium) and University of Wisconsin (USA) appears in Nature Communications.

Picture Tailoring lignin and growth by creating CCR2 allelic variants (From left to right: wild type, CCR2(-/-), CCR2(-/*) line 206, CCR2(-/*) line 12) Courtesy: VIB (Flanders Institute of Biotechnology)

An Oct. 6, 2020 VIB (Vlaams Instituut voor Biotechnologie; Flanders Institute of Biotechnology) press release (also on EurekAlert), which originated the news item, explains the reason for this research and how CRISPR (clustered regularly interspaced short palindromic repeats) technology could help realize it,

Towards a bio-based economy

Today’s fossil-based economy results in a net increase of CO2 in the Earth’s atmosphere and is a major cause of global climate change. To counter this, a shift towards a circular and bio-based economy is essential. Woody biomass can play a crucial role in such a bio-based economy by serving as a renewable and carbon-neutral resource for the production of many chemicals. Unfortunately, the presence of lignin hinders the processing of wood into bio-based products.

Prof. Wout Boerjan (VIB-UGent): “A few years ago, we performed a field trial with poplars that were engineered to make wood containing less lignin. Most plants showed large improvements in processing efficiency for many possible applications. The downside, however, was that the reduction in lignin accomplished with the technology we used then – RNA interference – was unstable and the trees grew less tall.”

New tools

Undeterred, the researchers went looking for a solution. They employed the recent CRISPR/Cas9 technology in poplar to lower the lignin amount in a stable way, without causing a biomass yield penalty. In other words, the trees grew just as well and as tall as those without genetic changes.

Dr. Barbara De Meester (VIB-UGent): “Poplar is a diploid species, meaning every gene is present in two copies. Using CRISPR/Cas9, we introduced specific changes in both copies of a gene that is crucial for the biosynthesis of lignin. We inactivated one copy of the gene, and only partially inactivated the other. The resulting poplar line had a stable 10% reduction in lignin amount while it grew normally in the greenhouse. Wood from the engineered trees had an up to 41% increase in processing efficiency”.

Dr. Ruben Vanholme (VIB-UGent): “The mutations that we have introduced through CRISPR/Cas9 are similar to those that spontaneously arise in nature. The advantage of the CRISPR/Cas9 method is that the beneficial mutations can be directly introduced into the DNA of highly productive tree varieties in only a fraction of the time it would take by a classical breeding strategy.”

The applications of this method are not only restricted to lignin but might also be useful to engineer other traits in crops, providing a versatile new breeding tool to improve agricultural productivity.

Here’s a link to and a citation for the paper,

Tailoring poplar lignin without yield penalty by combining a null and haploinsufficient CINNAMOYL-CoA REDUCTASE2 allele by Barbara De Meester, Barbara Madariaga Calderón, Lisanne de Vries, Jacob Pollier, Geert Goeminne, Jan Van Doorsselaere, Mingjie Chen, John Ralph, Ruben Vanholme & Wout Boerjan. Nature Communications volume 11, Article number: 5020 (2020) DOI: https://doi.org/10.1038/s41467-020-18822-w Published 06 October 2020

This paper is open access.

“Eat up your ceramic nanoparticles” says the European Space Agency

A Sept. 4, 2020 news item on phys.org showcases some intriguing research from the European Space Agency (ESA),

“Eat your vitamins” might be replaced with “ingest your ceramic nano-particles” in the future as space research is giving more weight to the idea that nanoscopic particles could help protect cells from common causes of damage.

A Sept, 4, 2020 ESA press release, which originated the news item, fills in some of the details and raises a question,

Oxidative stress occurs in our bodies when cells lose the natural balance of electrons in the molecules that we are made of. This is a common and constant occurrence that is part of our metabolism but also plays a role in the aging process and several pathological conditions, such as heart failure, muscle atrophy and Parkinson’s disease.

The best advice for keeping your body in balance and avoiding oxidative stress is still to have a healthy diet and eat enough vitamins, but nanoparticles are showing promising results in keeping cells in shape.

When in space, astronauts have been shown to suffer from more oxidative stress due to the extra radiation they receive and as a by-product of floating in weightlessness, so researchers in Italy were keen to see if nanoparticles would have the same protective effect on cells on the International Space Station as on Earth.

They prepared muscle cells that flew to the International Space Station and were cultured in ESA’s Kubik incubator before being frozen for storage.

A year ago [emphasis mine] our frozen samples splashed down in the Pacific Ocean on the Dragon spacecraft, and after comparing the samples we saw a marked effect in the cells treated with ceramic nanoparticles,” says Gianni Ciofani from the Istituto Italiano di Tecnologia in Italy. “The effect we observed seems to imply that nanoparticles work better and longer than traditional antioxidants such as vitamins.”

“The experiment setup resulted in excellent samples to analyze using state-of-the art RNA sequencing,” continues Gianni. “Conducting space research is nothing like traditional lab work, as we have less samples, we cannot do the work ourselves and we have to work around deadlines such as launch days, landing and storing the samples, it is challenging but thrilling research!” The team even found ways to improve and simplify the process for future studies.

Baby astronauts hypothesis

The research adds weight to the baby-astronaut hypothesis of weightlessness. The changes in muscle tissue observed are similar to how babies’ tissues develop in the womb.

“Some researchers see similarities to how human bodies adapt to living in space with pre-natal conditions: there are similarities with floating in a warm environment with different oxygen intake and we consider it a possibility of return to the state,” says Giada Genchi, also of the Istituto Italiano di Tecnologia’s Smart Bio-Interfaces department.

The team’s high-quality muscle tissue samples are being further analyzed and compared to samples from similar experiments that flew earlier. There is still much more to learn, such as what is the best way to administer nano-ceramics and how long do their protective effects last as well as possible unwanted side effects.

I highlighted a “A year ago” because that should mean 2019 but the research the ESA press release linked to was published in 2018. I cannot find anything more recent. So, for the curious, here’s a link to and a citation for the 2018 research paper,

Modulation of gene expression in rat muscle cells following treatment with nanoceria in different gravity regimes by Giada Graziana Genchi, Andrea Degl’Innocenti, Alice Rita Salgarella, Ilaria Pezzini, Attilio Marino, Arianna Menciassi, Sara Piccirillo, Michele Balsamo & Gianni Ciofani. Nanomedicine Vol. 13, No. 22 Preliminary Communication DOI: https://doi.org/10.2217/nnm-2018-0316 Published Online: 18 Oct 2018 Print Version: 2018 Nov;13 (22): 2821-2833. DOI: 10.2217/nnm-2018-0316.

The paper is behind a paywall.

This image was used to illustrate the work,

Courtesy Nanomedicine (journal)

Regardless of when the research was published, it’s still pretty interesting work and I hope to hear more about it in the future.