Category Archives: Technology

Canada’s science and its 2022 federal budget (+ the online April 21, 2022 symposium: Decoding Budget 2022 for Science and Innovation)

Here’s my more or less annual commentary on the newly announced federal budget. This year the 2022/23 Canadian federal budget was presented by Chrystia Freeland, Minister of Finance, on April 7, 2022.

Sadly the budgets never include a section devoted to science and technology, which makes finding the information a hunting exercise.

I found most of my quarry in the 2022 budget’s Chapter 2: A Strong, Growing, and Resilient Economy (Note: I’m picking and choosing items that interest me),

Key Ongoing Actions

  • $8 billion to transform and decarbonize industry and invest in clean technologies and batteries;
  • $4 billion for the Canada Digital Adoption Program, which launched in March 2022 to help businesses move online, boost their e-commerce presence, and digitalize their businesses;
  • $1.2 billion to support life sciences and bio-manufacturing in Canada, including investments in clinical trials, bio-medical research, and research infrastructure;
  • $1 billion to the Strategic Innovation Fund to support life sciences and bio-manufacturing firms in Canada and develop more resilient supply chains. This builds on investments made throughout the pandemic with manufacturers of vaccines and therapeutics like Sanofi, Medicago, and Moderna;
  • $1 billion for the Universal Broadband Fund (UBF), bringing the total available through the UBF to $2.75 billion, to improve high-speed Internet access and support economic development in rural and remote areas of Canada;
  • $1.2 billion to launch the National Quantum Strategy, Pan-Canadian Genomics Strategy, and the next phase of Canada’s Pan-Canadian Artificial Intelligence Strategy to capitalize on emerging technologies of the future [Please see: the ‘I am confused’ subhead for more about the ‘launches’];
  • Helping small and medium-sized businesses to invest in new technologies and capital projects by allowing for the immediate expensing of up to $1.5 million of eligible investments beginning in 2021;

While there are proposed investments in digital adoption and the Universal Broadband Fund, there’s no mention of 5G but perhaps that’s too granular (or specific) for a national budget. I wonder if we’re catching up yet? There have been concerns about our failure to keep pace with telecommunications developments and infrastructure internationally.

Moving on from ‘Key Ongoing Actions’, there are these propositions from Chapter 2: A Strong, Growing, and Resilient Economy (Note: I have not offset the material from the budget in a ‘quote’ form as I want to retain the formatting.),

Creating a Canadian Innovation and Investment Agency

Canadians are a talented, creative, and inventive people. Our country has never been short on good ideas.

But to grow our economy, invention is not enough. Canadians and Canadian companies need to take their new ideas and new technologies and turn them into new products, services, and growing businesses.

However, Canada currently ranks last in the G7 in R&D spending by businesses. This trend has to change. [Note: We’ve been lagging from at least 10 or more years and we keep talking about catching up.]

Solving Canada’s main innovation challenges—a low rate of private business investment in research, development, and the uptake of new technologies—is key to growing our economy and creating good jobs.

A market-oriented innovation and investment agency—one with private sector leadership and expertise—has helped countries like Finland and Israel transform themselves into global innovation leaders. {Note: The 2021 budget also name checked Israel.]

The Israel Innovation Authority has spurred the growth of R&D-intensive sectors, like the information and communications technology and autonomous vehicle sectors. The Finnish TEKES [Tekes – The Finnish Funding Agency for Technology and Innovation] helped transform low-technology sectors like forestry and mining into high technology, prosperous, and globally competitive industries.

In Canada, a new innovation and investment agency will proactively work with new and established Canadian industries and businesses to help them make the investments they need to innovate, grow, create jobs, and be competitive in the changing global economy.

Budget 2022 announces the government’s intention to create an operationally independent federal innovation and investment agency, and proposes $1 billion over five years, starting in 2022-23, to support its initial operations. Final details on the agency’s operating budget are to be determined following further consultation later this year.

Review of Tax Support to R&D and Intellectual Property

The Scientific Research and Experimental Development (SR&ED) program provides tax incentives to encourage Canadian businesses of all sizes and in all sectors to conduct R&D. The SR&ED program has been a cornerstone of Canada’s innovation strategy. The government intends to undertake a review of the program, first to ensure that it is effective in encouraging R&D that benefits Canada, and second to explore opportunities to modernize and simplify it. Specifically, the review will examine whether changes to eligibility criteria would be warranted to ensure adequacy of support and improve overall program efficiency. 

As part of this review, the government will also consider whether the tax system can play a role in encouraging the development and retention of intellectual property stemming from R&D conducted in Canada. In particular, the government will consider, and seek views on, the suitability of adopting a patent box regime [emphasis mine] in order to meet these objectives.

I am confused

Let’s start with the 2022 budget’s $1.2 billion to launch the National Quantum Strategy, Pan-Canadian Genomics Strategy, and the next phase of Canada’s Pan-Canadian Artificial Intelligence Strategy. Here’s what I had in my May 4, 2021 posting about the 2021 budget,

  • Budget 2021 proposes to provide $360 million over seven years, starting in 2021-22, to launch a National Quantum Strategy [emphasis mine]. The strategy will amplify Canada’s significant strength in quantum research; grow our quantum-ready technologies, companies, and talent; and solidify Canada’s global leadership in this area. This funding will also establish a secretariat at the Department of Innovation, Science and Economic Development to coordinate this work.
  • Budget 2021 proposes to provide $400 million over six years, starting in 2021-22, in support of a Pan-Canadian Genomics Strategy [emphasis mine]. This funding would provide $136.7 million over five years, starting in 2022-23, for mission-driven programming delivered by Genome Canada to kick-start the new Strategy and complement the government’s existing genomics research and innovation programming.
  • Budget 2021 proposes to provide up to $443.8 million over ten years, starting in 2021-22, in support of the Pan-Canadian Artificial Intelligence Strategy [emphasis mine], …

How many times can you ‘launch’ a strategy?

A patent box regime

So the government is “… encouraging the development and retention of intellectual property stemming from R&D conducted in Canada” and is examining a “patent box regime” with an eye as to how that will help achieve those ends. Interesting!

Here’s how the patent box is described on Wikipedia (Note: Links have been removed),

A patent box is a special very low corporate tax regime used by several countries to incentivise research and development by taxing patent revenues differently from other commercial revenues.[1] It is also known as intellectual property box regime, innovation box or IP box. Patent boxes have also been used as base erosion and profit shifting (BEPS) tools, to avoid corporate taxes.

Even if they can find a way to “incentivize” R&D, the government has a problem keeping research in the country (see my September 17, 2021 posting (about the Council of Academies CCA’s ‘Public Safety in the Digital Age’ project) and scroll down about 50% of the way to find this,

There appears to be at least one other major security breach; that involving Canada’s only level four laboratory, the Winnipeg-based National Microbiology Lab (NML). (See a June 10, 2021 article by Karen Pauls for Canadian Broadcasting Corporation news online for more details.)

As far as I’m aware, Ortis [very senior civilian RCMP intelligence official Cameron Ortis] is still being held with a trial date scheduled for September 2022 (see Catherine Tunney’s April 9, 2021 article for CBC news online) and, to date, there have been no charges laid in the Winnipeg lab case.

The “security breach” involved sending information and sample viruses to another country, without proper documentation or approvals.

While I delved into a particular aspect of public safety in my posting, the CCA’s ‘Public Safety in the Digital Age’ project was very loosely defined and no mention was made of intellectual property. (You can check the “Exactly how did the question get framed?” subheading in the September 17, 2021 posting.)

Research security

While it might be described as ‘shutting the barn door after the horse got out’, there is provision in the 2022 budget for security vis-à-vis our research, from Chapter 2: A Strong, Growing, and Resilient Economy,

Securing Canada’s Research from Foreign Threats

Canadian research and intellectual property can be an attractive target for foreign intelligence agencies looking to advance their own economic, military, or strategic interests. The National Security Guidelines for Research Partnerships, developed in collaboration with the Government of Canada– Universities Working Group in July 2021, help to protect federally funded research.

  • To implement these guidelines fully, Budget 2022 proposes to provide $159.6 million, starting in 2022-23, and $33.4 million ongoing, as follows:
    • $125 million over five years, starting in 2022-23, and $25 million ongoing, for the Research Support Fund to build capacity within post- secondary institutions to identify, assess, and mitigate potential risks to research security; and
    • $34.6 million over five years, starting in 2022-23, and $8.4 million ongoing, to enhance Canada’s ability to protect our research, and to establish a Research Security Centre that will provide advice and guidance directly to research institutions.

Mining

There’s a reason I’m mentioning the mining industry, from Chapter 2: A Strong, Growing, and Resilient Economy,

Canada’s Critical Minerals and Clean Industrial Strategies

Critical minerals are central to major global industries like clean technology, health care, aerospace, and computing. They are used in phones, computers, and in our cars. [emphases mine] They are already essential to the global economy and will continue to be in even greater demand in the years to come.

Canada has an abundance of a number of valuable critical minerals, but we need to make significant investments to make the most of these resources.

In Budget 2022, the federal government intends to make significant investments that would focus on priority critical mineral deposits, while working closely with affected Indigenous groups and through established regulatory processes. These investments will contribute to the development of a domestic zero-emissions vehicle value chain, including batteries, permanent magnets, and other electric vehicle components. They will also secure Canada’s place in important supply chains with our allies and implement a just and sustainable Critical Minerals Strategy.

In total, Budget 2022 proposes to provide up to $3.8 billion in support over eight years, on a cash basis, starting in 2022-23, to implement Canada’s first Critical Minerals Strategy. This will create thousands of good jobs, grow our economy, and make Canada a vital part of the growing global critical minerals industry.

I don’t recall seeing mining being singled out before and I’m glad to see it now.

A 2022 federal budget commentary from University Affairs

Hannah Liddle’s April 8, 2022 article for University Affairs is focused largely on the budget’s impact on scientific research and she picked up on a few things I missed,

Budget 2022 largely focuses on housing affordability, clean growth and defence, with few targeted investments in scientific research.

The government tabled $1 billion over five years for an innovation and investment agency, designed to boost private sector investments in research and development, and to correct the slow uptake of new technologies across Canadian industries. The new agency represents a “huge evolution” in federal thinking about innovation, according to Higher Education Strategy Associates. The company noted in a budget commentary that Ottawa has shifted to solving the problem of low spending on research and development by working with the private sector, rather than funding universities as an alternative. The budget also indicated that the innovation and investment agency will support the defence sector and boost defence manufacturing, but the promised Canada Advanced Research Projects Agency – which was to be modelled after the famed American DARPA program – was conspicuously missing from the budget. [emphases mine]

However, the superclusters were mentioned and have been rebranded [emphasis mine] and given a funding boost. The five networks are now called “global innovation clusters,” [emphasis mine] and will receive $750 million over six years, which is half of what they had reportedly asked for. Many universities and research institutions are members of the five clusters, which are meant to bring together government, academia, and industry to create new companies, jobs, intellectual property, and boost economic growth.

Other notable innovation-related investments include the launch of a critical minerals strategy, which will give the country’s mining sector $3.8 billion over eight years. The strategy will support the development of a domestic zero-emission vehicle value chain, including for batteries (which are produced using critical minerals). The National Research Council will receive funding through the strategy, shared with Natural Resources Canada, to support new technologies and bolster supply chains of critical minerals such as lithium and cobalt. The government has also targeted investments in the semiconductor industry ($45 million over four years), the CAN Health Network ($40 million over four years), and the Canadian High Arctic Research Station ($14.5 million over five years).

Canada’s higher education institutions did notch a win with a major investment in agriculture research. The government will provide $100 million over six years to support postsecondary research in developing new agricultural technologies and crop varieties, which could push forward net-zero emissions agriculture.

The Canada Excellence Research Chairs program received $38.3 million in funding over four years beginning in 2023-24, with the government stating this could create 12 to 25 new chair positions.

To support Canadian cybersecurity, which is a key priority under the government’s $8 billion defence umbrella, the budget gives $17.7 million over five years and $5.5 million thereafter until 2031-32 for a “unique research chair program to fund academics to conduct research on cutting-edge technologies” relevant to the Communications Security Establishment – the national cryptologic agency. The inaugural chairs will split their time between peer-reviewed and classified research.

The federal granting councils will be given $40.9 million over five years beginning in 2022-23, and $9.7 million ongoing, to support Black “student researchers,” who are among the underrepresented groups in the awarding of scholarships, grants and fellowships. Additionally, the federal government will give $1.5 million to the Jean Augustine Chair in Education, Community and Diaspora, housed at York University, to address systemic barriers and racial inequalities in the Canadian education system and to improve outcomes for Black students.

A pretty comprehensive listing of all the science-related funding in the 2022 budget can be found in an April 7, 2022 posting on the Evidence for Democracy (E4D) blog,

2022 budget symposium

Here’s more about the symposium from the Canadian Science Policy Centre (CSPC), from the Decoding Budget 2022 event page,

Decoding Budget 2022 for Science and Innovation

The CSPC Budget Symposium will be held on Thursday April 21 [2022] at 12:00 pm (EST), and feature numerous speakers from across the country and across different sectors, in two sessions and one keynote presentation by Dave Watters titled: “Decoding Budget 2022 for Science and Innovation”.

Don’t miss this session and all insightful discussions of the Federal Budget 2022.

Register Here

You can see the 2022 symposium poster below,

By the way, David Watters gave the keynote address for the 2021 symposium too. Seeing his name twice now aroused my curiosity. Here’s a little more about David Watters (from a 2013 bio on the Council of Canadian Academies website), Note: He is still president,

David Watters is President of the Global Advantage Consulting Group, a strategic management consulting firm that provides advice to corporate, association, and government clients in Canada and abroad.

Mr. Watters worked for over 30 years in the federal public service in a variety of departments, including Energy Mines and Resources, Consumer and Corporate Affairs, Industry Canada (as Assistant Deputy Minister), Treasury Board Secretariat (in charge of Crown corporations and privatization issues), the Canadian Coast Guard (as its Commissioner) and Finance Canada (as Assistant Deputy Minister for Economic Development and Corporate Finance). He then moved to the Public Policy Forum where he worked on projects dealing with the innovation agenda, particularly in areas such as innovation policy, health reform, transportation, and the telecommunications and information technology sectors. He also developed reports on the impact of the Enron scandal and other corporate and public sector governance problems for Canadian regulators.

Since starting the Global Advantage Consulting Group in 2002, Mr. Watters has assisted a variety of public and private clients. His areas of specialization and talent are in creating visual models for policy development and decision making, and business models for managing research and technology networks. He has also been an adjunct professor at the Telfer School of Management at the University of Ottawa, teaching International Negotiation.

Mr. Watters holds a Bachelor’s degree in Economics from Queen’s University as well as a Law degree in corporate, commercial and tax law from the Faculty of Law at Queen’s University.

So, an economist, lawyer, and government bureaucrat is going to analyze the budget with regard to science and R&D? If I had to guess, I’d say he’s going to focus in ‘innovation’ which I’m decoding as a synonym for ‘business/commercialization’.

Getting back to the budget, it’s pretty medium where science is concerned with more than one -re-announcement’. As the pundits have noted, the focus is on deficit reduction and propping up the economy.

ETA April 20, 2022: There’s been a keynote speaker change, from an April 20, 2022 CSPC announcement (received via email),

… keynote presentation by Omer Kaya, CEO of Global Advantage Consulting Group. Unfortunately, due to unexpected circumstances, Dave Watters will not be presenting at this session as expected before.

Singapore contributes to art/science gallery on the International Space Station (ISS)

A March 15, 2022 Nanyang Technological University press release (also on EurekAlert) announces Singapore’s contribution to an art gallery in space,

Two Singapore-designed artefacts are now orbiting around the Earth on the International Space Station (ISS), as part of Moon Gallery.

These artworks were successfully launched into space recently as part of a test flight by the Moon Gallery and will come back to Earth after 10 months.

Currently consisting of 64 artworks made by artists all around the world, the Moon gallery will eventually consist of 100 artworks, which will then be placed on the moon by 2025. Out of these 64 art pieces on the ISS, only two are Singaporean artworks.

Here’s Singapore’s contribution,

Caption: NTU [Nanyang Technological University] Singapore Assistant Professor Matteo Seita (left), who is holding the Cube of Interaction, and Ms Lakshmi Mohanbabu (right), who designed both cubes. The Structure & Reflectance cube in the foreground was 3D printed at NTU Singapore.. Credit: NTU Singapore

A December 8, 2021 news item on phys.org describes the project,

The Moon Gallery Foundation is developing an art gallery to be sent to the Moon, contributing to the establishment of the first lunar outpost and permanent museum on Earth’s only natural satellite. The international initiative will see one hundred artworks from artists around the world integrated into a 10 cm x 10 cm x 1 cm grid tray, which will fly to the Moon by 2025. The Moon Gallery aims to expand humanity’s cultural dialog beyond Earth. The gallery will meet the cosmos for the first time in low Earth orbit in 2022 in a test flight.

The test flight is in collaboration with Nanoracks, a private in-space service provider. The gallery is set to fly to the International Space Station (ISS) aboard the NG-17 rocket as part of a Northrop Grumman Cygnus resupply mission in February of 2022. The art projects featured in the gallery will reach the final frontier of human habitat in space, and mark the historical meeting point of the Moon Gallery and the cosmos. Reaching low Earth orbit on the way to the Moon is a pivotal first step in extending our cultural dialog to space.

On its return flight, the Moon Gallery will become a part of the NanoLab technical payload, a module for space research experiments. The character of the gallery will offer a diverse range of materials and behaviors for camera observations and performance tests with NanoLab.

In return, Moon Gallery artists will get a chance to learn about the performance of their artworks in space. The result of these observations will serve as a solid basis for the subsequent Moon Gallery missions and a source of a valuable learning experience for future space artists. The test flight to the ISS is a precursor mission, contributing to the understanding of future possibilities for art in space and strengthening collaboration between the art and space sectors.

A December 8, 2021 NYU press release on EurekAlert, which originated the news item, provides more detail about the art from Singapore,

STRUCTURE & REFLECTANCE CUBE

Our every perception, analysis, and thought reflect the influences from our surroundings and the Universe in a world of collaboration, communication and interaction, making it possible to explore the real, the imagined and the unknown. The ‘Structure and Reflectance’ cube, a marriage of Art and Technology, is one of the hundred artworks selected by the Moon Gallery, with a unifying message of an integrated world, making it a quintessential signature of humankind on the Moon.

Ms Lakshmi Mohanbabu, a Singaporean architect and designer, is the first and only local artist to have her artwork selected for the Moon Gallery. Coined the ‘Structure and Reflectance’ cube, Lakshmi’s art is a marriage of Art and Technology and is one of the hundred artworks selected by the Moon Gallery. The cube signifies a unifying message of an integrated world, making it a quintessential signature of humankind on the Moon.

The early-stage prototyping and design iterations of the ‘Structure and Reflectance’ cube were performed with Additive Manufacturing, otherwise known as 3D printing, at Nanyang Technological University, Singapore’s (NTU Singapore)Singapore Centre for 3D Printing (SC3DP). This was part of a collaborative project supported by the National Additive Manufacturing Innovation Cluster (NAMIC), a national programme office which accelerates the adoption and commercialisation of additive manufacturing technologies. Previously, the NTU Singapore team at SC3DP produced a few iterations of Moon-Cube using metal 3D printing in various materials such as Inconel and Stainless Steel to evaluate the best suited material.

The newest iteration of the cube comprises crystals—ingrained in the cube via additive manufacturing technology— revealed to the naked eye by the microscopic differences in their surface roughness, which reflect light along different directions.

“Additive Manufacturing is suitable for enabling this level of control over the crystal structure of solids. More specifically, the work was created using ‘laser powder bed fusion technology’ a metal additive manufacturing process which allows us to control the surface roughness through varying the laser parameter,” said Dr Matteo Seita, Nanyang Assistant Professor, NTU Singapore, is the Principal Investigator overseeing the project for the current cube design.  

Dr Seita shared the meaning behind the materials used, “Like people, materials have a complex ‘structure’ resulting from their history—the sequence of processes that have shaped their constituent parts—which underpins their differences. Masked by an exterior façade, this structure often reveals little of the underlying quality in materials or people. The cube is a material representation of a human’s complex structure embodied in a block of metal consisting of two crystals with distinct reflectivity and complementary shape.”

Ms Lakshmi added, “The optical contrast on the cube surface from the crystals generates an intricate geometry which signifies the duality of man: the complexity of hidden thought and expressed emotion. This duality is reflected by the surface of the Moon where one side remains in plain sight, while the other has remained hidden to humankind for centuries; until space travel finally allowed humanity to gaze upon it. The bright portion of the visible side of the Moon is dependent on the Moon’s position relative to the Earth and the Sun. Thus, what we see is a function of our viewpoint.”

The hidden structure of materials, people, and the Moon are visualized as reflections of light through art and science in this cube. Expressed in the Structure & Reflectance cube is the concept of human’s duality—represented by two crystals with different reflectance—which appears to the observer as a function of their perspective.

Dr Ho Chaw Sing, Co-Founder and Managing Director of NAMIC said, “Space is humanity’s next frontier. Being the only Singaporean – among a selected few from the global community – Lakshmi’s 3D printed cube presents a unique perspective through the fusion of art and technology. We are proud to have played a small role supporting her in this ‘moon-shot’ initiative.”

Lakshmi views each artwork as a portrayal of humanity’s quests to discover the secrets of the Universe and—fused into a single cube—embody the unity of humankind, which transcends our differences in culture, religion, and social status.

The first cube face, the Primary, is divided into two triangles and depicts the two faces of the Moon, one visible to us from the earth and the other hidden from our view.

The second cube face, the Windmill, has two spiralling windmill forms, one clockwise and the other counter-clockwise, representing our existence, energy, and time.

The third cube face, the Dromenon, is a labyrinth form of nested squares, which represents the layers that we—as space explorers—are unravelling to discover the enigma of the Universe. 

The fourth cube face, the Nautilus, reflects the spiralling form of our DNA that makes each of us unique, a shape reflected in the form of our galaxy.

Not having heard of the Moon Gallery or the Moon Gallery Foundation, I did a little research. There’s a LinkedIn profile for the Moon Gallery Foundation (both the foundation and the gallery are located in Holland [Netherlands]),

Moon Gallery is where art and space meet. We aim to set up the first permanent museum on the Moon and develop a culture for future interplanetary society.

Moon Gallery will launch 100 artefacts to the Moon within the compact format of 10 x 10 x 1cm plate on a lunar lander exterior panelling no later than 2025. We suggest bringing this collection of ideas as the seeds of a new culture. We believe that culture makes a distinction between mere survival and life. Moon Gallery is a symbolic gesture that has a real influence – a way to reboot culture, rethink our values for better living on Earth planet.

The Moon Gallery has its own website, where I found more information about events, artists, and partners such as Nanoracks,

Nanoracks is dedicated to using our unique expertise to solve key problems both in space and on the Earth – all while lowering the barriers to entry of space exploration. Nanoracks’s main office is in Houston, Texas. The business development office is in Washington, D.C., and additional offices are located in Abu Dhabi, United Arab Emirates (UAE) and Turin, Italy. Nanoracks provides tools, hardware and services that allow other companies, organizations and governments to conduct research and other projects in space. Some of Nanoracks customers include Student Spaceflight Experiments Program (SSEP), the European Space Agency (ESA), the German Space Agency (DLR), NASA, Planet Labs, Space Florida, Virgin Galactic, Adidas, Aerospace Corporation, National Reconnaissance Office (NRO), UAE Space Agency, Mohammed bin Rashid Space Centre (MBRSC), and the Beijing Institute of Technology.

You can find the Nanoracks website here.

Orca-shaped puzzle pieces in puzzle for orca conservation

H/t to Rebecca Bollwitt’s Miss604.com’s January 26, 2022 posting about a puzzle being used to help raise funds for the Raincoast Conservation Foundation. ($20 from each puzzle sold will be donated to the foundation.)

[puzzle image downloaded from https://www.puzzle-lab.com/collections/new-puzzles/products/rise-wood-jigsaw-puzzle]

I am fascinated by the orca-shaped pieces. Here’s more about the puzzle from the January 26, 2022 Miss604 posting (Note: A link has been removed),

The Rise puzzle is unique in its design, even for the innovative Puzzle Lab. It features 206 identical orca-shaped pieces in an Escher-style tessellation pattern. The technology in Puzzle Lab draws from cofounder Andrew Robev’s knowledge of parametric, computational, and generative design, involving writing custom computer algorithms to generate highly complex geometry and digital fabrication (using robotic tools such as a laser cutter, 3D printer, or CNC router). 

The January 26, 2022 Miss604 posting features an image of the whole puzzle along with a succinct description of the project and the people behind it.

Puzzle Lab?

According to Puzzle Lab’s About Us page, they make puzzles you can feel good about,

Puzzle Lab was founded by Tinka Robev and Andrew Azzopardi, who met studying architecture at the University of Waterloo in 2012.

The couple moved to Victoria, BC in 2014 where they started Studio Robazzo, a multidisciplinary design & branding agency.

During the coronavirus pandemic, they came up with the idea to launch a puzzle company to encourage more people to get off their devices and into the real world. Sharon Parker joined them and Puzzle Lab was born in the fall of 2020.

Since its founding, Puzzle Lab has been dedicated to fabricating heirloom-quality puzzles as well as providing a platform for talented Canadian artists.

a next-level puzzling experience

Our heirloom-quality wood puzzles merge technology, art, and nature.

We start by curating stunning graphics and local art. Next, the wacky puzzle pieces are created in our digital laboratory with custom computer algorithms. Then, they’re laser cut at our studio in the heart of Victoria, BC.

Each puzzle design has a unique cut pattern, so you won’t find the same piece twice!

You won’t find the same shape twice? it seems an exception has been made for Rise.

Artwork

The company solicits artwork for its puzzles (from the Artist Submission page),

Winter 2021-2022

Please fill out the form below to submit your artwork, and/or share this page with artists in your community to help us spread the word!This is a paid opportunity: all selected artists receive ongoing royalties on the puzzles sold using their licensed artwork(s).

The Rise artwork is by Art by Di,

Beauty of nature is the key inspiration behind Di’s contemporary west coast acrylic paintings. With a focus on light, color and movement Di seeks to reduce the endless detail of life into simple form and palette, allowing viewers’ imaginations to fill in details of time and place. …

… The artist lives and works on Bowen Island, Canada.

Filling in the last pieces

You can find more of Puzzle Lab’s work on their Instagram account. Should you be interested in purchasing a Rise wood jigsaw puzzle,

Strength. Resilience. Recovery. ‘Rise’ is a celebration of life – a celebration of Howe Sound. It is a celebration of cleaner air, cleaner water, cleaner land. Lose yourself in this enchanting west coast scene as you take on a uniquely challenging wood jigsaw puzzle composed of just over 200 identical orca-shaped pieces seamlessly tiled in an Escher-style tessellation pattern.

This exciting Puzzle with a Purpose supports the wildlife conservation efforts of the Raincoast Conservation Foundation.

It is $100.

Again, the organization receiving the $20 donation from the purchase price is the Raincoast Conservation Foundation.

East/West collaboration on scholarship and imagination about humanity’s long-term future— six new fellows at Berggruen Research Center at Peking University

According to a January 4, 2022 Berggruen Institute (also received via email), they have appointed a new crop of fellows for their research center at Peking University,

The Berggruen Institute has announced six scientists and philosophers to serve as Fellows at the Berggruen Research Center at Peking University in Beijing, China. These eminent scholars will work together across disciplines to explore how the great transformations of our time may shift human experience and self-understanding in the decades and centuries to come.

The new Fellows are Chenjian Li, University Chair Professor at Peking University; Xianglong Zhang, professor of philosophy at Peking University; Xiaoli Liu, professor of philosophy at Renmin University of China; Jianqiao Ge, lecturer at the Academy for Advanced Interdisciplinary Studies (AAIS) at Peking University; Xiaoping Chen, Director of the Robotics Laboratory at the University of Science and Technology of China; and Haidan Chen, associate professor of medical ethics and law at the School of Health Humanities at Peking University.

“Amid the pandemic, climate change, and the rest of the severe challenges of today, our Fellows are surmounting linguistic and cultural barriers to imagine positive futures for all people,” said Bing Song, Director of the China Center and Vice President of the Berggruen Institute. “Dialogue and shared understanding are crucial if we are to understand what today’s breakthroughs in science and technology really mean for the human community and the planet we all share.”

The Fellows will investigate deep questions raised by new understandings and capabilities in science and technology, exploring their implications for philosophy and other areas of study.  Chenjian Li is considering the philosophical and ethical considerations of gene editing technology. Meanwhile, Haidan Chen is exploring the social implications of brain/computer interface technologies in China, while Xiaoli Liu is studying philosophical issues arising from the intersections among psychology, neuroscience, artificial intelligence, and art.

Jianqiao Ge’s project considers the impact of artificial intelligence on the human brain, given the relative recency of its evolution into current form. Xianglong Zhang’s work explores the interplay between literary culture and the development of technology. Finally, Xiaoping Chen is developing a new concept for describing innovation that draws from Daoist, Confucianist, and ancient Greek philosophical traditions.

Fellows at the China Center meet monthly with the Institute’s Los Angeles-based Fellows. These fora provide an opportunity for all Fellows to share and discuss their work. Through this cross-cultural dialogue, the Institute is helping to ensure continued high-level of ideas among China, the United States, and the rest of the world about some of the deepest and most fundamental questions humanity faces today.

“Changes in our capability and understanding of the physical world affect all of humanity, and questions about their implications must be pondered at a cross-cultural level,” said Bing. “Through multidisciplinary dialogue that crosses the gulf between East and West, our Fellows are pioneering new thought about what it means to be human.”

Haidan Chen is associate professor of medical ethics and law at the School of Health Humanities at Peking University. She was a visiting postgraduate researcher at the Institute for the Study of Science Technology and Innovation (ISSTI), the University of Edinburgh; a visiting scholar at the Brocher Foundation, Switzerland; and a Fulbright visiting scholar at the Center for Biomedical Ethics, Stanford University. Her research interests embrace the ethical, legal, and social implications (ELSI) of genetics and genomics, and the governance of emerging technologies, in particular stem cells, biobanks, precision medicine, and brain science. Her publications appear at Social Science & MedicineBioethics and other journals.

Xiaoping Chen is the director of the Robotics Laboratory at University of Science and Technology of China. He also currently serves as the director of the Robot Technical Standard Innovation Base, an executive member of the Global AI Council, Chair of the Chinese RoboCup Committee, and a member of the International RoboCup Federation’s Board of Trustees. He has received the USTC’s Distinguished Research Presidential Award and won Best Paper at IEEE ROBIO 2016. His projects have won the IJCAI’s Best Autonomous Robot and Best General-Purpose Robot awards as well as twelve world champions at RoboCup. He proposed an intelligent technology pathway for robots based on Open Knowledge and the Rong-Cha principle, which have been implemented and tested in the long-term research on KeJia and JiaJia intelligent robot systems.

Jianqiao Ge is a lecturer at the Academy for Advanced Interdisciplinary Studies (AAIS) at Peking University. Before, she was a postdoctoral fellow at the University of Chicago and the Principal Investigator / Co-Investigator of more than 10 research grants supported by the Ministry of Science and Technology of China, the National Natural Science Foundation of China, and Beijing Municipal Science & Technology Commission. She has published more than 20 peer-reviewed articles on leading academic journals such as PNAS, the Journal of Neuroscience, and has been awarded two national patents. In 2008, by scanning the human brain with functional MRI, Ge and her collaborator were among the first to confirm that the human brain engages distinct neurocognitive strategies to comprehend human intelligence and artificial intelligence. Ge received her Ph.D. in psychology, B.S in physics, a double B.S in mathematics and applied mathematics, and a double B.S in economics from Peking University.

Chenjian Li is the University Chair Professor of Peking University. He also serves on the China Advisory Board of Eli Lilly and Company, the China Advisory Board of Cornell University, and the Rhodes Scholar Selection Committee. He is an alumnus of Peking University’s Biology Department, Peking Union Medical College, and Purdue University. He was the former Vice Provost of Peking University, Executive Dean of Yuanpei College, and Associate Dean of the School of Life Sciences at Peking University. Prior to his return to China, he was an associate professor at Weill Medical College of Cornell University and the Aidekman Endowed Chair of Neurology at Mount Sinai School of Medicine. Dr. Li’s academic research focuses on the molecular and cellular mechanisms of neurological diseases, cancer drug development, and gene-editing and its philosophical and ethical considerations. Li also writes as a public intellectual on science and humanity, and his Chinese translation of Richard Feynman’s book What Do You Care What Other People Think? received the 2001 National Publisher’s Book Award.

Xiaoli Liu is professor of philosophy at Renmin University. She is also Director of the Chinese Society of Philosophy of Science Leader. Her primary research interests are philosophy of mathematics, philosophy of science and philosophy of cognitive science. Her main works are “Life of Reason: A Study of Gödel’s Thought,” “Challenges of Cognitive Science to Contemporary Philosophy,” “Philosophical Issues in the Frontiers of Cognitive Science.” She edited “Symphony of Mind and Machine” and series of books “Mind and Cognition.” In 2003, she co-founded the “Mind and Machine workshop” with interdisciplinary scholars, which has held 18 consecutive annual meetings. Liu received her Ph.D. from Peking University and was a senior visiting scholar in Harvard University.

Xianglong Zhang is a professor of philosophy at Peking University. His research areas include Confucian philosophy, phenomenology, Western and Eastern comparative philosophy. His major works (in Chinese except where noted) include: Heidegger’s Thought and Chinese Tao of HeavenBiography of HeideggerFrom Phenomenology to ConfuciusThe Exposition and Comments of Contemporary Western Philosophy; The Exposition and Comments of Classic Western PhilosophyThinking to Take Refuge: The Chinese Ancient Philosophies in the GlobalizationLectures on the History of Confucian Philosophy (four volumes); German Philosophy, German Culture and Chinese Philosophical ThinkingHome and Filial Piety: From the View between the Chinese and the Western.

About the Berggruen China Center
Breakthroughs in artificial intelligence and life science have led to the fourth scientific and technological revolution. The Berggruen China Center is a hub for East-West research and dialogue dedicated to the cross-cultural and interdisciplinary study of the transformations affecting humanity. Intellectual themes for research programs are focused on frontier sciences, technologies, and philosophy, as well as issues involving digital governance and globalization.

About the Berggruen Institute:
The Berggruen Institute’s mission is to develop foundational ideas and shape political, economic, and social institutions for the 21st century. Providing critical analysis using an outwardly expansive and purposeful network, we bring together some of the best minds and most authoritative voices from across cultural and political boundaries to explore fundamental questions of our time. Our objective is enduring impact on the progress and direction of societies around the world. To date, projects inaugurated at the Berggruen Institute have helped develop a youth jobs plan for Europe, fostered a more open and constructive dialogue between Chinese leadership and the West, strengthened the ballot initiative process in California, and launched Noema, a new publication that brings thought leaders from around the world together to share ideas. In addition, the Berggruen Prize, a $1 million award, is conferred annually by an independent jury to a thinker whose ideas are shaping human self-understanding to advance humankind.

You can find out more about the Berggruen China Center here and you can access a list along with biographies of all the Berggruen Institute fellows here.

Getting ready

I look forward to hearing about the projects from these thinkers.

Gene editing and ethics

I may have to reread some books in anticipation of Chenjian Li’s philosophical work and ethical considerations of gene editing technology. I wonder if there’ll be any reference to the He Jiankui affair.

(Briefly for those who may not be familiar with the situation, He claimed to be the first to gene edit babies. In November 2018, news about the twins, Lulu and Nana, was a sensation and He was roundly criticized for his work. I have not seen any information about how many babies were gene edited for He’s research; there could be as many as six. My July 28, 2020 posting provided an update. I haven’t stumbled across anything substantive since then.)

There are two books I recommend should you be interested in gene editing, as told through the lens of the He Jiankui affair. If you can, read both as that will give you a more complete picture.

In no particular order: This book provides an extensive and accessible look at the science, the politics of scientific research, and some of the pressures on scientists of all countries. Kevin Davies’ 2020 book, “Editing Humanity; the CRISPR Revolution and the New Era of Genome Editing” provides an excellent introduction from an insider. Here’s more from Davies’ biographical sketch,

Kevin Davies is the executive editor of The CRISPR Journal and the founding editor of Nature Genetics . He holds an MA in biochemistry from the University of Oxford and a PhD in molecular genetics from the University of London. He is the author of Cracking the Genome, The $1,000 Genome, and co-authored a new edition of DNA: The Story of the Genetic Revolution with Nobel Laureate James D. Watson and Andrew Berry. …

The other book is “The Mutant Project; Inside the Global Race to Genetically Modify Humans” (2020) by Eben Kirksey, an anthropologist who has an undergraduate degree in one of the sciences. He too provides scientific underpinning but his focus is on the cultural and personal underpinnings of the He Jiankui affair, on the culture of science research, irrespective of where it’s practiced, and the culture associated with the DIY (do-it-yourself) Biology community. Here’s more from Kirksey’s biographical sketch,

EBEN KIRKSEY is an American anthropologist and Member of the Institute for Advanced Study in Princeton, New Jersey. He has been published in Wired, The Atlantic, The Guardian and The Sunday Times . He is sought out as an expert on science in society by the Associated Press, The Wall Street Journal, The New York Times, Democracy Now, Time and the BBC, among other media outlets. He speaks widely at the world’s leading academic institutions including Oxford, Yale, Columbia, UCLA, and the International Summit of Human Genome Editing, plus music festivals, art exhibits, and community events. Professor Kirksey holds a long-term position at Deakin University in Melbourne, Australia.

Brain/computer interfaces (BCI)

I’m happy to see that Haidan Chen will be exploring the social implications of brain/computer interface technologies in China. I haven’t seen much being done here in Canada but my December 23, 2021 posting, Your cyborg future (brain-computer interface) is closer than you think, highlights work being done at the Imperial College London (ICL),

“For some of these patients, these devices become such an integrated part of themselves that they refuse to have them removed at the end of the clinical trial,” said Rylie Green, one of the authors. “It has become increasingly evident that neurotechnologies have the potential to profoundly shape our own human experience and sense of self.”

You might also find my September 17, 2020 posting has some useful information. Check under the “Brain-computer interfaces, symbiosis, and ethical issues” subhead for another story about attachment to one’s brain implant and also the “Finally” subhead for more reading suggestions.

Artificial intelligence (AI), art, and the brain

I’ve lumped together three of the thinkers, Xiaoli Liu, Jianqiao Ge and Xianglong Zhang, as there is some overlap (in my mind, if nowhere else),

  • Liu’s work on philosophical issues as seen in the intersections of psychology, neuroscience, artificial intelligence, and art
  • Ge’s work on the evolution of the brain and the impact that artificial intelligence may have on it
  • Zhang’s work on the relationship between literary culture and the development of technology

A December 3, 2021 posting, True love with AI (artificial intelligence): The Nature of Things explores emotional and creative AI (long read), is both a review of a recent episode of the Canadian Broadcasting Corporation’s (CBC) science television series,The Nature of Things, and a dive into a number of issues as can be seen under subheads such as “AI and Creativity,” “Kazuo Ishiguro?” and “Evolution.”

You may also want to check out my December 27, 2021 posting, Ai-Da (robot artist) writes and performs poem honouring Dante’s 700th anniversary, for an eye opening experience. If nothing else, just watch the embedded video.

This suggestion relates most closely to Ge’s and Zhang’s work. If you haven’t already come across it, there’s Walter J. Ong’s 1982 book, “Orality and Literacy: The Technologizing of the Word.” From the introductory page of the 2002 edition (PDF),

This classic work explores the vast differences between oral and
literate cultures and offers a brilliantly lucid account of the
intellectual, literary and social effects of writing, print and
electronic technology. In the course of his study, Walter J.Ong
offers fascinating insights into oral genres across the globe and
through time and examines the rise of abstract philosophical and
scientific thinking. He considers the impact of orality-literacy
studies not only on literary criticism and theory but on our very
understanding of what it is to be a human being, conscious of self
and other.

In 2013, a 30th anniversary edition of the book was released and is still in print.

Philosophical traditions

I’m very excited to learn more about Xiaoping Chen’s work describing innovation that draws from Daoist, Confucianist, and ancient Greek philosophical traditions.

Should any of my readers have suggestions for introductory readings on these philosophical traditions, please do use the Comments option for this blog. In fact, if you have suggestions for other readings on these topics, I would be very happy to learn of them.

Congratulations to the six Fellows at the Berggruen Research Center at Peking University in Beijing, China. I look forward to reading articles about your work in the Berggruen Institute’s Noema magazine and, possibly, attending your online events.

SFU’s Philippe Pasquier speaks at “The rise of Creative AI and its ethics” online event on Tuesday, January 11, 2022 at 6 am PST

Simon Fraser University’s (SFU) Metacreation Lab for Creative AI (artificial intelligence) in Vancouver, Canada, has just sent me (via email) a January 2022 newsletter, which you can find here. There are a two items I found of special interest.

Max Planck Centre for Humans and Machines Seminars

From the January 2022 newsletter,

Max Planck Institute Seminar – The rise of Creative AI & its ethics
January 11, 2022 at 15:00 pm [sic] CET | 6:00 am PST

Next Monday [sic], Philippe Pasquier, director of the Metacreation Labn will
be providing a seminar titled “The rise of Creative AI & its ethics”
[Tuesday, January 11, 2022] at the Max Planck Institute’s Centre for Humans and
Machine [sic].

The Centre for Humans and Machines invites interested attendees to
our public seminars, which feature scientists from our institute and
experts from all over the world. Their seminars usually take 1 hour and
provide an opportunity to meet the speaker afterwards.

The seminar is openly accessible to the public via Webex Access, and
will be a great opportunity to connect with colleagues and friends of
the Lab on European and East Coast time. For more information and the
link, head to the Centre for Humans and Machines’ Seminars page linked
below.

Max Planck Institute – Upcoming Events

The Centre’s seminar description offers an abstract for the talk and a profile of Philippe Pasquier,

Creative AI is the subfield of artificial intelligence concerned with the partial or complete automation of creative tasks. In turn, creative tasks are those for which the notion of optimality is ill-defined. Unlike car driving, chess moves, jeopardy answers or literal translations, creative tasks are more subjective in nature. Creative AI approaches have been proposed and evaluated in virtually every creative domain: design, visual art, music, poetry, cooking, … These algorithms most often perform at human-competitive or superhuman levels for their precise task. Two main use of these algorithms have emerged that have implications on workflows reminiscent of the industrial revolution:

– Augmentation (a.k.a, computer-assisted creativity or co-creativity): a human operator interacts with the algorithm, often in the context of already existing creative software.

– Automation (computational creativity): the creative task is performed entirely by the algorithms without human intervention in the generation process.

Both usages will have deep implications for education and work in creative fields. Away from the fear of strong – sentient – AI, taking over the world: What are the implications of these ongoing developments for students, educators and professionals? How will Creative AI transform the way we create, as well as what we create?

Philippe Pasquier is a professor at Simon Fraser University’s School for Interactive Arts and Technology, where he directs the Metacreation Lab for Creative AI since 2008. Philippe leads a research-creation program centred around generative systems for creative tasks. As such, he is a scientist specialized in artificial intelligence, a multidisciplinary media artist, an educator, and a community builder. His contributions range from theoretical research on generative systems, computational creativity, multi-agent systems, machine learning, affective computing, and evaluation methodologies. This work is applied in the creative software industry as well as through artistic practice in computer music, interactive and generative art.

Interpreting soundscapes

Folks at the Metacreation Lab have made available an interactive search engine for sounds, from the January 2022 newsletter,

Audio Metaphor is an interactive search engine that transforms users’ queries into soundscapes interpreting them.  Using state of the art algorithms for sound retrieval, segmentation, background and foreground classification, AuMe offers a way to explore the vast open source library of sounds available on the  freesound.org online community through natural language and its semantic, symbolic, and metaphorical expressions. 

We’re excited to see Audio Metaphor included  among many other innovative projects on Freesound Labs, a directory of projects, hacks, apps, research and other initiatives that use content from Freesound or use the Freesound API. Take a minute to check out the variety of projects applying creative coding, machine learning, and many other techniques towards the exploration of sound and music creation, generative music, and soundscape composition in diverse forms an interfaces.

Explore AuMe and other FreeSound Labs projects    

The Audio Metaphor (AuMe) webpage on the Metacreation Lab website has a few more details about the search engine,

Audio Metaphor (AuMe) is a research project aimed at designing new methodologies and tools for sound design and composition practices in film, games, and sound art. Through this project, we have identified the processes involved in working with audio recordings in creative environments, addressing these in our research by implementing computational systems that can assist human operations.

We have successfully developed Audio Metaphor for the retrieval of audio file recommendations from natural language texts, and even used phrases generated automatically from Twitter to sonify the current state of Web 2.0. Another significant achievement of the project has been in the segmentation and classification of environmental audio with composition-specific categories, which were then applied in a generative system approach. This allows users to generate sound design simply by entering textual prompts.

As we direct Audio Metaphor further toward perception and cognition, we will continue to contribute to the music information retrieval field through environmental audio classification and segmentation. The project will continue to be instrumental in the design and implementation of new tools for sound designers and artists.

See more information on the website audiometaphor.ca.

As for Freesound Labs, you can find them here.

Futures exhibition/festival with fish skin fashion and more at the Smithsonian (Washington, DC), Nov. 20, 2021 to July 6, 2022

Fish leather

Before getting to Futures, here’s a brief excerpt from a June 11, 2021 Smithsonian Magazine exhibition preview article by Gia Yetikyel about one of the contributors, Elisa Palomino-Perez (Note: A link has been removed),

Elisa Palomino-Perez sheepishly admits to believing she was a mermaid as a child. Growing up in Cuenca, Spain in the 1970s and ‘80s, she practiced synchronized swimming and was deeply fascinated with fish. Now, the designer’s love for shiny fish scales and majestic oceans has evolved into an empowering mission, to challenge today’s fashion industry to be more sustainable, by using fish skin as a material.

Luxury fashion is no stranger to the artist, who has worked with designers like Christian Dior, John Galliano and Moschino in her 30-year career. For five seasons in the early 2000s, Palomino-Perez had her own fashion brand, inspired by Asian culture and full of color and embroidery. It was while heading a studio for Galliano in 2002 that she first encountered fish leather: a material made when the skin of tuna, cod, carp, catfish, salmon, sturgeon, tilapia or pirarucu gets stretched, dried and tanned.

The history of using fish leather in fashion is a bit murky. The material does not preserve well in the archeological record, and it’s been often overlooked as a “poor person’s” material due to the abundance of fish as a resource. But Indigenous groups living on coasts and rivers from Alaska to Scandinavia to Asia have used fish leather for centuries. Icelandic fishing traditions can even be traced back to the ninth century. While assimilation policies, like banning native fishing rights, forced Indigenous groups to change their lifestyle, the use of fish skin is seeing a resurgence. Its rise in popularity in the world of sustainable fashion has led to an overdue reclamation of tradition for Indigenous peoples.

In 2017, Palomino-Perez embarked on a PhD in Indigenous Arctic fish skin heritage at London College of Fashion, which is a part of the University of the Arts in London (UAL), where she received her Masters of Arts in 1992. She now teaches at Central Saint Martins at UAL, while researching different ways of crafting with fish skin and working with Indigenous communities to carry on the honored tradition.

Yetikyel’s article is fascinating (apparently Nike has used fish leather in one of its sports shoes) and I encourage you to read her June 11, 2021 article, which also covers the history of fish leather use amongst indigenous peoples of the world.

I did some digging and found a few more stories about fish leather. The earlier one is a Canadian Broadcasting Corporation (CBC) November 16, 2017 online news article by Jane Adey,

Designer Arndis Johannsdottir holds up a stunning purse, decorated with shiny strips of gold and silver leather at Kirsuberjatred, an art and design store in downtown Reykjavik, Iceland.

The purse is one of many in a colourful window display that’s drawing in buyers.

Johannsdottir says customers’ eyes often widen when they discover the metallic material is fish skin. 

Johannsdottir, a fish-skin designing pioneer, first came across the product 35 years ago.

She was working as a saddle smith when a woman came into her shop with samples of fish skin her husband had tanned after the war. Hundreds of pieces had been lying in a warehouse for 40 years.

“Nobody wanted it because plastic came on the market and everybody was fond of plastic,” she said.

“After 40 years, it was still very, very strong and the colours were beautiful and … I fell in love with it immediately.”

Johannsdottir bought all the skins the woman had to offer, gave up saddle making and concentrated on fashionable fish skin.

Adey’s November 16, 2017 article goes on to mention another Icelandic fish leather business looking to make fish leather a fashion staple.

Chloe Williams’s April 28, 2020 article for Hakkai Magazine explores the process of making fish leather and the new interest in making it,

Tracy Williams slaps a plastic cutting board onto the dining room table in her home in North Vancouver, British Columbia. Her friend, Janey Chang, has already laid out the materials we will need: spoons, seashells, a stone, and snack-sized ziplock bags filled with semi-frozen fish. Williams says something in Squamish and then translates for me: “You are ready to make fish skin.”

Chang peels a folded salmon skin from one of the bags and flattens it on the table. “You can really have at her,” she says, demonstrating how to use the edge of the stone to rub away every fiber of flesh. The scales on the other side of the skin will have to go, too. On a sockeye skin, they come off easily if scraped from tail to head, she adds, “like rubbing a cat backwards.” The skin must be clean, otherwise it will rot or fail to absorb tannins that will help transform it into leather.

Williams and Chang are two of a scant but growing number of people who are rediscovering the craft of making fish skin leather, and they’ve agreed to teach me their methods. The two artists have spent the past five or six years learning about the craft and tying it back to their distinct cultural perspectives. Williams, a member of the Squamish Nation—her ancestral name is Sesemiya—is exploring the craft through her Indigenous heritage. Chang, an ancestral skills teacher at a Squamish Nation school, who has also begun teaching fish skin tanning in other BC communities, is linking the craft to her Chinese ancestry.

Before the rise of manufactured fabrics, Indigenous peoples from coastal and riverine regions around the world tanned or dried fish skins and sewed them into clothing. The material is strong and water-resistant, and it was essential to survival. In Japan, the Ainu crafted salmon skin into boots, which they strapped to their feet with rope. Along the Amur River in northeastern China and Siberia, Hezhen and Nivkh peoples turned the material into coats and thread. In northern Canada, the Inuit made clothing, and in Alaska, several peoples including the Alutiiq, Athabascan, and Yup’ik used fish skins to fashion boots, mittens, containers, and parkas. In the winter, Yup’ik men never left home without qasperrluk—loose-fitting, hooded fish skin parkas—which could double as shelter in an emergency. The men would prop up the hood with an ice pick and pin down the edges to make a tent-like structure.

On a Saturday morning, I visit Aurora Skala in Saanich on Vancouver Island, British Columbia, to learn about the step after scraping and tanning: softening. Skala, an anthropologist working in language revitalization, has taken an interest in making fish skin leather in her spare time. When I arrive at her house, a salmon skin that she has tanned in an acorn infusion—a cloudy, brown liquid now resting in a jar—is stretched out on the kitchen counter, ready to be worked.

Skala dips her fingers in a jar of sunflower oil and rubs it on her hands before massaging it into the skin. The skin smells only faintly of fish; the scent reminds me of salt and smoke, though the skin has been neither salted nor smoked. “Once you start this process, you can’t stop,” she says. If the skin isn’t worked consistently, it will stiffen as it dries.

Softening the leather with oil takes about four hours, Skala says. She stretches the skin between clenched hands, pulling it in every direction to loosen the fibers while working in small amounts of oil at a time. She’ll also work her skins across other surfaces for extra softening; later, she’ll take this piece outside and rub it back and forth along a metal cable attached to a telephone pole. Her pace is steady, unhurried, soothing. Back in the day, people likely made fish skin leather alongside other chores related to gathering and processing food or fibers, she says. The skin will be done when it’s soft and no longer absorbs oil.

Onto the exhibition.

Futures (November 20, 2021 to July 6, 2022 at the Smithsonian)

A February 24, 2021 Smithsonian Magazine article by Meilan Solly serves as an announcement for the Futures exhibition/festival (Note: Links have been removed),

When the Smithsonian’s Arts and Industries Building (AIB) opened to the public in 1881, observers were quick to dub the venue—then known as the National Museum—America’s “Palace of Wonders.” It was a fitting nickname: Over the next century, the site would go on to showcase such pioneering innovations as the incandescent light bulb, the steam locomotive, Charles Lindbergh’s Spirit of St. Louis and space-age rockets.

“Futures,” an ambitious, immersive experience set to open at AIB this November, will act as a “continuation of what the [space] has been meant to do” from its earliest days, says consulting curator Glenn Adamson. “It’s always been this launchpad for the Smithsonian itself,” he adds, paving the way for later museums as “a nexus between all of the different branches of the [Institution].” …

Part exhibition and part festival, “Futures”—timed to coincide with the Smithsonian’s 175th anniversary—takes its cue from the world’s fairs of the 19th and 20th centuries, which introduced attendees to the latest technological and scientific developments in awe-inspiring celebrations of human ingenuity. Sweeping in scale (the building-wide exploration spans a total of 32,000 square feet) and scope, the show is set to feature historic artifacts loaned from numerous Smithsonian museums and other institutions, large-scale installations, artworks, interactive displays and speculative designs. It will “invite all visitors to discover, debate and delight in the many possibilities for our shared future,” explains AIB director Rachel Goslins in a statement.

“Futures” is split into four thematic halls, each with its own unique approach to the coming centuries. “Futures Past” presents visions of the future imagined by prior generations, as told through objects including Alexander Graham Bell’s experimental telephone, an early android and a full-scale Buckminster Fuller geodesic dome. “In hindsight, sometimes [a prediction is] amazing,” says Adamson, who curated the history-centric section. “Sometimes it’s sort of funny. Sometimes it’s a little dismaying.”

Futures That Work” continues to explore the theme of technological advancement, but with a focus on problem-solving rather than the lessons of the past. Climate change is at the fore of this section, with highlighted solutions ranging from Capsula Mundi’s biodegradable burial urns to sustainable bricks made out of mushrooms and purely molecular artificial spices that cut down on food waste while preserving natural resources.

Futures That Inspire,” meanwhile, mimics AIB’s original role as a place of wonder and imagination. “If I were bringing a 7-year-old, this is probably where I would take them first,” says Adamson. “This is where you’re going to be encountering things that maybe look a bit more like science fiction”—for instance, flying cars, self-sustaining floating cities and Afrofuturist artworks.

The final exhibition hall, “Futures That Unite,” emphasizes human relationships, discussing how connections between people can produce a more equitable society. Among others, the list of featured projects includes (Im)possible Baby, a speculative design endeavor that imagines what same-sex couples’ children might look like if they shared both parents’ DNA, and Not The Only One (N’TOO), an A.I.-assisted oral history project. [all emphases mine]

I haven’t done justice to Solly’s February 24, 2021 article, which features embedded images and offers a more hopeful view of the future than is currently the fashion.

Futures asks: Would you like to plan the future?

Nate Berg’s November 22, 2021 article for Fast Company features an interactive urban planning game that’s part of the Futures exhibition/festival,

The Smithsonian Institution wants you to imagine the almost ideal city block of the future. Not the perfect block, not utopia, but the kind of urban place where you get most of what you want, and so does everybody else.

Call it urban design by compromise. With a new interactive multiplayer game, the museum is hoping to show that the urban spaces of the future can achieve mutual goals only by being flexible and open to the needs of other stakeholders.

The game is designed for three players, each in the role of either the city’s mayor, a real estate developer or an ecologist. The roles each have their own primary goals – the mayor wants a well-served populace, the developer wants to build successful projects, and the ecologist wants the urban environment to coexist with the natural environment. Each role takes turns adding to the block, either in discrete projects or by amending what another player has contributed. Options are varied, but include everything from traditional office buildings and parks to community centers and algae farms. The players each try to achieve their own goals on the block, while facing the reality that other players may push the design in unexpected directions. These tradeoffs and their impact on the block are explained by scores on four basic metrics: daylight, carbon footprint, urban density, and access to services. How each player builds onto the block can bring scores up or down.

To create the game, the Smithsonian teamed up with Autodesk, the maker of architectural design tools like AutoCAD, an industry standard. Autodesk developed a tool for AI-based generative design that offers up options for a city block’s design, using computing power to make suggestions on what could go where and how aiming to achieve one goal, like boosting residential density, might detract from or improve another set of goals, like creating open space. “Sometimes you’ll do something that you think is good but it doesn’t really help the overall score,” says Brian Pene, director of emerging technology at Autodesk. “So that’s really showing people to take these tradeoffs and try attributes other than what achieves their own goals.” The tool is meant to show not how AI can generate the perfect design, but how the differing needs of various stakeholders inevitably require some tradeoffs and compromises.

Futures online and in person

Here are links to Futures online and information about visiting in person,

For its 175th anniversary, the Smithsonian is looking forward.

What do you think of when you think of the future? FUTURES is the first building-wide exploration of the future on the National Mall. Designed by the award-winning Rockwell Group, FUTURES spans 32,000 square feet inside the Arts + Industries Building. Now on view until July 6, 2022, FUTURES is your guide to a vast array of interactives, artworks, technologies, and ideas that are glimpses into humanity’s next chapter. You are, after all, only the latest in a long line of future makers.

Smell a molecule. Clean your clothes in a wetland. Meditate with an AI robot. Travel through space and time. Watch water being harvested from air. Become an emoji. The FUTURES is yours to decide, debate, delight. We invite you to dream big, and imagine not just one future, but many possible futures on the horizon—playful, sustainable, inclusive. In moments of great change, we dare to be hopeful. How will you create the future you want to live in?

Happy New Year!

An algorithm for modern quilting

Caption: Each of the blocks in this quilt were designed using an algorithm-based tool developed by Stanford researchers. Credit: Mackenzie Leake

I love the colours. This research into quilting and artificial intelligence (AI) was presented at SIGGRAPH 2021 in August. (SIGGRAPH is, also known as, ACM SIGGRAPH or ‘Association for Computing Machinery’s Special Interest Group on Computer Graphics and Interactive Techniques’.)

A June 3, 2021 news item on ScienceDaily announced the presentation,

Stanford University computer science graduate student Mackenzie Leake has been quilting since age 10, but she never imagined the craft would be the focus of her doctoral dissertation. Included in that work is new prototype software that can facilitate pattern-making for a form of quilting called foundation paper piecing, which involves using a backing made of foundation paper to lay out and sew a quilted design.

Developing a foundation paper piece quilt pattern — which looks similar to a paint-by-numbers outline — is often non-intuitive. There are few formal guidelines for patterning and those that do exist are insufficient to assure a successful result.

“Quilting has this rich tradition and people make these very personal, cherished heirlooms but paper piece quilting often requires that people work from patterns that other people designed,” said Leake, who is a member of the lab of Maneesh Agrawala, the Forest Baskett Professor of Computer Science and director of the Brown Institute for Media Innovation at Stanford. “So, we wanted to produce a digital tool that lets people design the patterns that they want to design without having to think through all of the geometry, ordering and constraints.”

A paper describing this work is published and will be presented at the computer graphics conference SIGGRAPH 2021 in August.

A June 2, 2021 Stanford University news release (also on EurekAlert), which originated the news item, provides more detail,

Respecting the craft

In describing the allure of paper piece quilts, Leake cites the modern aesthetic and high level of control and precision. The seams of the quilt are sewn through the paper pattern and, as the seaming process proceeds, the individual pieces of fabric are flipped over to form the final design. All of this “sew and flip” action means the pattern must be produced in a careful order.

Poorly executed patterns can lead to loose pieces, holes, misplaced seams and designs that are simply impossible to complete. When quilters create their own paper piecing designs, figuring out the order of the seams can take considerable time – and still lead to unsatisfactory results.

“The biggest challenge that we’re tackling is letting people focus on the creative part and offload the mental energy of figuring out whether they can use this technique or not,” said Leake, who is lead author of the SIGGRAPH paper. “It’s important to me that we’re really aware and respectful of the way that people like to create and that we aren’t over-automating that process.”

This isn’t Leake’s first foray into computer-aided quilting. She previously designed a tool for improvisational quilting, which she presented [PatchProv: Supporting Improvistiional Design Practices for Modern Quilting by Mackenzie Leake, Frances Lai, Tovi Grossman, Daniel Wigdor, and Ben Lafreniere] at the human-computer interaction conference CHI in May [2021]. [Note: Links to the May 2021 conference and paper added by me.]

Quilting theory

Developing the algorithm at the heart of this latest quilting software required a substantial theoretical foundation. With few existing guidelines to go on, the researchers had to first gain a more formal understanding of what makes a quilt paper piece-able, and then represent that mathematically.

They eventually found what they needed in a particular graph structure, called a hypergraph. While so-called “simple” graphs can only connect data points by lines, a hypergraph can accommodate overlapping relationships between many data points. (A Venn diagram is a type of hypergraph.) The researchers found that a pattern will be paper piece-able if it can be depicted by a hypergraph whose edges can be removed one at a time in a specific order – which would correspond to how the seams are sewn in the pattern.

The prototype software allows users to sketch out a design and the underlying hypergraph-based algorithm determines what paper foundation patterns could make it possible – if any. Many designs result in multiple pattern options and users can adjust their sketch until they get a pattern they like. The researchers hope to make a version of their software publicly available this summer.

“I didn’t expect to be writing my computer science dissertation on quilting when I started,” said Leake. “But I found this really rich space of problems involving design and computation and traditional crafts, so there have been lots of different pieces we’ve been able to pull off and examine in that space.”

###

Researchers from University of California, Berkeley and Cornell University are co-authors of this paper. Agrawala is also an affiliate of the Institute for Human-Centered Artificial Intelligence (HAI).

An abstract for the paper “A Mathematical Foundation for Foundation Paper Pieceable Quilts” by Mackenzie Leake, Gilbert Bernstein, Abe Davis and Maneesh Agrawala can be found here along with links to a PDF of the full paper and video on YouTube.

Afterthought: I noticed that all of the co-authors for the May 2021 paper are from the University of Toronto and most of them including Mackenzie Leake are associated with that university’s Chatham Labs.

Speed up your reading with an interactive typeface

A May 12, 2021 news item on ScienceDaily brings news of a technology that makes reading easier,

AdaptiFont has recently been presented at CHI, the leading Conference on Human Factors in Computing.

Language is without doubt the most pervasive medium for exchanging knowledge between humans. However, spoken language or abstract text need to be made visible in order to be read, be it in print or on screen.

How does the way a text looks affect its readability, that is, how it is being read, processed, and understood? A team at TU Darmstadt’s Centre for Cognitive Science investigated this question at the intersection of perceptual science, cognitive science, and linguistics. Electronic text is even more complex. Texts are read on different devices under different external conditions. And although any digital text is formatted initially, users might resize it on screen, change brightness and contrast of the display, or even select a different font when reading text on the web.

A May 12, 2021 Technische Universitat Darmstadt (Technical University of Damstadt; Germany) press release (also on EurekAlert) provides more detail,

The team of researchers from TU Darmstadt now developed a system that leaves font design to the user’s visual system. First, they needed to come up with a way of synthesizing new fonts. This was achieved by using a machine learning algorithm, which learned the structure of fonts analysing 25 popular and classic typefaces. The system is capable of creating an infinite number of new fonts that are any intermediate form of others – for example, visually halfway between Helvetica and Times New Roman.

Since some fonts may make it more difficult to read the text, they may slow the reader down. Other fonts may help the user read more fluently. Measuring reading speed, a second algorithm can now generate more typefaces that increase the reading speed.

In a laboratory experiment, in which users read texts over one hour, the research team showed that their algorithm indeed generates new fonts that increase individual user’s reading speed. Interestingly all readers had their own personalized font that made reading especially easy for them. However: This individual favorite typeface does not necessarily fit in all situations. “AdaptiFont therefore can be understood as a system which creates fonts for an individual dynamically and continuously while reading, which maximizes the reading speed at the time of use. This may depend on the content of the text, whether you are tired, or perhaps are using different display devices,” explains Professor Constantin A. Rothkopf, Centre for Cognitive Science und head of the institute of Psychology of Information Processing at TU Darmstadt.

The AdaptiFont system was recently presented to the scientific community at the Conference on Human Factors in Computing Systems (CHI). A patent application has been filed. Future possible applications are with all electronic devices on which text is read.

There’s a 5 minute video featuring the work and narration for a researcher who speaks very quickly,

Here’s a link to and a citation for the paper,

AdaptiFont: Increasing Individuals’ Reading Sp0eed with a Generative Font Model and Bayesian Optimization by Florian Kadner, Yannik Keller, Constantin Rothkopf. CHI ’21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems May 2021 Article No.: 585 Pages 1-11 DOI: https://doi.org/10.1145/3411764.3445140 Published: 06 May 2021

This paper is open access.

Artificial intelligence is not mentioned but it’s hard to believe that adaptive learning by the software is anything other than a form of AI.

Proximal Fields from September 8 – 12, 2021 and a peek into the international art/sci/tech scene

Toronto’s (Canada) Art/Sci Salon (also known as, Art Science Salon) sent me an August 26, 2021 announcement (received via email) of an online show with a limited viewing period (BTW, nice play on words with the title echoing the name of the institution mentioned in the first sentence),

PROXIMAL FIELDS

The Fields Institute was closed to the public for a long time. Yet, it
has not been empty. Peculiar sounds and intriguing silences, the flows
of the few individuals and the janitors occasional visiting the building
made it surprisingly alive. Microorganisms, dust specs and other
invisible guests populated undisturbed the space while the humans were
away. The building is alive. We created site specific installations
reflecting this condition: Elaine Whittaker and her poet collaborators
take us to a journey of the microbes living in our proximal spaces. Joel
Ong and his collaborators have recorded space data in the building: the
result is an emergent digital organism. Roberta Buiani and Kavi
interpret the venue as an organism which can be taken outside on a
mobile gallery.

PROXIMAL FIELDS will be visible  September 8-12 2021 at

https://ars.electronica.art/newdigitaldeal/en/proximal-fields/

it [sic] is part of Ars Electronica Garden LEONARDO LASER [Anti]disciplinary Topographies

https://ars.electronica.art/newdigitaldeal/en/antidisciplinary-topographies/

see [sic] a teaser here:

https://youtu.be/AYxlvLnYSdE

With: Elaine Whittaker, Joel Ong, Nina Czegledy, Roberta Buiani, Sachin
Karghie, Ryan Martin, Racelar Ho, Kavi.
Poetry: Maureen Hynes, Sheila Stewart

Video: Natalie Plociennik

This event is one of many such events being held for Ars Electronica 2021 festival.

For anyone who remembers back to my May 3, 2021 posting (scroll down to the relevant subhead; a number of events were mentioned), I featured a show from the ArtSci Salon community called ‘Proximal Spaces’, a combined poetry reading and bioart experience.

Many of the same artists and poets seem to have continued working together to develop more work based on the ‘proximal’ for a larger international audience.

International and local scene details (e.g., same show? what is Ars Electronica? etc.)

As you may have noticed from the announcement, there are a lot of different institutions involved.

Local: Fields Institute and ArtSci Salon

The Fields Institute is properly known as The Fields Institute for Research in Mathematical Sciences and is located at the University of Toronto. Here’s more from their About Us webpage,

Founded in 1992, the Fields Institute was initially located at the University of Waterloo. Since 1995, it has occupied a purpose-built building on the St. George Campus of the University of Toronto.

The Institute is internationally renowned for strengthening collaboration, innovation, and learning in mathematics and across a broad range of disciplines. …

The Fields Institute is named after the Canadian mathematician John Charles Fields (1863-1932). Fields was a pioneer and visionary who recognized the scientific, educational, and economic value of research in the mathematical sciences. Fields spent many of his early years in Berlin and, to a lesser extent, in Paris and Göttingen, the principal mathematical centres of Europe of that time. These experiences led him, after his return to Canada, to work for the public support of university research, which he did very successfully. He also organized and presided over the 1924 meeting of the International Congress of Mathematicians in Toronto. This quadrennial meeting was, and still is, the major meeting of the mathematics world.

There is no Nobel Prize in mathematics, and Fields felt strongly that there should be a comparable award to recognize the most outstanding current research in mathematics. With this in mind, he established the International Medal for Outstanding Discoveries in Mathematics, which, contrary to his personal directive, is now known as the Fields Medal. Information on Fields Medal winners can be found through the International Mathematical Union, which chooses the quadrennial recipients of the prize.

Fields’ name was given to the Institute in recognition of his seminal contributions to world mathematics and his work on behalf of high level mathematical scholarship in Canada. The Institute aims to carry on the work of Fields and to promote the wider use and understanding of mathematics in Canada.

The relationship between the Fields Institute and the ArtSci Salon is unclear to me. This can be found under Programs and Activities on the Fields Institute website,

2020-2021 ArtSci Salon

Description

ArtSci Salon consists of a series of semi-informal gatherings facilitating discussion and cross-pollination between science, technology, and the arts. ArtSci Salon started in 2010 as a spin-off of Subtle Technologies Festival to satisfy increasing demands by the audience attending the Festival to have a more frequent (monthly or bi-monthly) outlet for debate and information sharing across disciplines. In addition, it responds to the recent expansion in the GTA [Greater Toronto Area] area of a community of scientists and artists increasingly seeking collaborations across disciplines to successfully accomplish their research projects and questions.

For more details, visit our blog.

Sign up to our mailing list here.

For more information please contact:

Stephen Morris: smorris@physics.utoronto.ca

Roberta Buiani: rbuiani@gmail.com

We are pleased to announce our upcoming March 2021 events (more details are in the schedule below):

Ars Electronica

It started life as a Festival for Art, Technology and Society in 1979 in Linz, Austria. Here’s a little more from their About webpage,

… Since September 18, 1979, our world has changed radically, and digitization has covered almost all areas of our lives. Ars Electronica’s philosophy has remained the same over the years. Our activities are always guided by the question of what new technologies mean for our lives. Together with artists, scientists, developers, designers, entrepreneurs and activists, we shed light on current developments in our digital society and speculate about their manifestations in the future. We never ask what technology can or will be able to do, but always what it should do for us. And we don’t try to adapt to technology, but we want the development of technology to be oriented towards us. Therefore, our artistic research always focuses on ourselves, our needs, our desires, our feelings.

They have a number of initiatives in addition to the festival. The next festival, A New Digital Deal, runs from September 8 – 12, 2021 (Ars Electronica 2021). Here’s a little more from the festival webpage,

Ars Electronica 2021, the festival for art, technology and society, will take place from September 8 to 12. For the second time since 1979, it will be a hybrid event that includes exhibitions, concerts, talks, conferences, workshops and guided tours in Linz, Austria, and more than 80 other locations around the globe.

Leonardo; The International Society for Arts, Sciences and Technology

Ars Electronica and Leonardo; The International Society for Arts, Sciences and Technology (ISAST) cooperate on projects but they are two different entities. Here’s more from the About LEONARDO webpage,

Fearlessly pioneering since 1968, Leonardo serves as THE community forging a transdisciplinary network to convene, research, collaborate, and disseminate best practices at the nexus of arts, science and technology worldwide. Leonardo’ serves a network of transdisciplinary scholars, artists, scientists, technologists and thinkers, who experiment with cutting-edge, new approaches, practices, systems and solutions to tackle the most complex challenges facing humanity today.

As a not-for-profit 501(c)3 enterprising think tank, Leonardo offers a global platform for creative exploration and collaboration reaching tens of thousands of people across 135 countries. Our flagship publication, Leonardo, the world’s leading scholarly journal on transdisciplinary art, anchors a robust publishing partnership with MIT Press; our partnership with ASU [Arizona State University] infuses educational innovation with digital art and media for lifelong learning; our creative programs span thought-provoking events, exhibits, residencies and fellowships, scholarship and social enterprise ventures.

I have a description of Leonardo’s LASER (Leonardo Art Science Evening Rendezvous), from my March 22, 2021 posting (the Garden comes up next),

Here’s a description of the LASER talks from the Leonardo/ISAST LASER Talks event page,

“… a program of international gatherings that bring artists, scientists, humanists and technologists together for informal presentations, performances and conversations with the wider public. The mission of LASER is to encourage contribution to the cultural environment of a region by fostering interdisciplinary dialogue and opportunities for community building.”

To be specific it’s Ars Electronica Garden LEONARDO LASER and this is one of the series being held as part of the festival (A Digital New Deal). Here’s more from the [Anti]disciplinary Topographies ‘garden’ webpage,

Culturing transnational dialogue for creative hybridity

Leonardo LASER Garden gathers our global network of artists, scientists, humanists and technologists together in a series of hybrid formats addressing the world’s most pressing issues. Animated by the theme of a “new digital deal” and grounded in the UN Sustainability Goals, Leonardo LASER Garden cultivates our values of equity and inclusion by elevating underrepresented voices in a wide-ranging exploration of global challenges, digital communities and placemaking, space, networks and systems, the digital divide – and the impact of interdisciplinary art, science and technology discourse and collaboration.

Dovetailing with the launch of LASER Linz, this asynchronous multi-platform garden will highlight the best of the Leonardo Network (spanning 47 cities worldwide) and our transdisciplinary community. In “Extraordinary Times Call for Extraordinary Vision: Humanizing Digital Culture with the New Creativity Agenda & the UNSDGs [United Nations Sustainable Development Goals],” Leonardo/ISAST CEO Diana Ayton-Shenker presents our vision for shaping our global future. This will be followed by a Leonardo Community Lounge open to the general public, with the goal of encouraging contributions to the cultural environments of different regions through transnational exchange and community building.

Getting back to the beginning you can view Proximal Fields from September 8 – 12, 2021 as part of the Ars Electonica 2021 festival, specifically, the ‘garden’ series.

ETA September 8, 2021: There’s a newly posted (on the Fields Institute webspace) and undated notice/article “ArtSci Salon’s Proximal Fields debuts at the Ars Electronica Festival,” which includes an interview with members of the Proximal Fields team.