Category Archives: Mathematics

Drat! ARPICO (Society of Italian Researchers and Professionals in Western Canada) Celebrates Women in STEM: Voices of Innovation on Wednesday, February 26, 2025

(Missed the boat on this one.) I received (via email) a January 18, 2025 notice about an upcoming Society of Italian Researchers and Professionals in Western Canada (ARPICO) event, Note 1: Tickets are free, Note 2: the Eventbrite registration page for the event includes a map showing where the venue is located,

ARPICO is excited to invite you to our first event of 2025, “ARPICO Celebrates Women in STEM [science, technology, engineering, and mathematics]: Voices of Innovation” which will be held on Wednesday, February 26th, 2025 at 7:00 PM at the Museum of Vancouver, History Room, 1100 Chestnut Street, Vancouver, BC.

February 11th marks the celebration of Women and Girls in Science, Technology, Engineering, and Mathematics (STEM), established by the United Nations in 2015 to honor the achievements of women and girls in these fields.

Women’s access to STEM education and careers became a reality in the late 19th and early 20th centuries, with milestones like, for example, Marie Curie breaking barriers in science and Ada Lovelace becoming the first computer programmer. While progress has been made, women are still underrepresented in STEM. Currently, In Canada, women represent approximately 23% of STEM professionals (about 28% in the United States).

At ARPICO, we are proud to celebrate the progress of women in STEM, acknowledging both their contributions and the challenges they continue to face by hosting a special event you won’t want to miss!

This event aims to inspire and empower the next generation of women, as well as people from all walks of life, to take their place at the forefront of innovation, ensuring STEM is an inclusive space for all. Through its initiatives, ARPICO aims to foster an environment where everyone can thrive, share their experiences, and inspire others.

ARPICO is therefore excited to host an event featuring five distinguished women in STEM. These panelists will engage in a dynamic discussion, sharing their journeys, successes, challenges, and sources of inspiration. The event will include a lively Q&A session, encouraging audience participation, reflection on the importance of supporting women in STEM and exploring how diverse talent strengthens STEM fields and society as a whole.

Whether you’re already involved in STEM, want to guide family and friends into these fields, or simply wish to be inspired by the panelists’ stories, this event will be informative, uplifting, and empowering. Reserve your spot!

To read more and to register for FREE admission, please visit EventBrite at https://womenstem.eventbrite.ca

Evening Program

  • 6:30 PM – Doors open for registration
  • 7:00 PM – Event begins. Welcome & Introductions by Nicola Fameli
  • 7:05 PM – Message from Italian Consul General Paolo Miraglia Del Giudice
  • 7:10 PM – ARPICO President’s Address & Moderated Panel Discussion
    • Presentation by Valentina Marchetti, President of ARPICO
    • Panel Discussion: “ARPICO Celebrates Women in STEM: Voices of Innovation”
  • 8:00 PM – Q & A Period
  • 8:15 PM – Refreshments, networking and socializing

We look forward to seeing everyone there.

RSVP: Tickets for this event are required, but FREE; all wishing to attend are requested to obtain “free-admission” tickets on EventBrite

Further details are also available at arpico.ca, arpico facebook, and EventBrite.

If participants wish to donate to ARPICO, this can be done within EventBrite or in person at the event; this would be greatly appreciated in order to help us continue our public lecture program and to build upon our scholarship fund.

Main Event Details

ARPICO Celebrates Women in STEM: Voices of Innovation

February 11th marks the celebration of Women and Girls in Science, Technology, Engineering, and Mathematics (STEM), established by the United Nations in 2015 to honor the achievements of women and girls in these fields.

Women’s access to STEM education and careers became a reality in the late 19th and early 20th centuries, with milestones like, for example, Marie Curie breaking barriers in science and Ada Lovelace becoming the first computer programmer.

At ARPICO, we are proud to celebrate the progress of women in STEM, acknowledging both their contributions and the challenges they continue to face, by hosting this special event featuring five distinguished women in STEM. These panelists will engage in a dynamic discussion, sharing their journeys, successes, challenges, and sources of inspiration.

Their messages hope to inspire and empower the next generation of women to take their place at the forefront of innovation, ensuring STEM is an inclusive space for all.

The event will include a lively Q&A session, encouraging audience participation, reflection on the importance of supporting women in STEM and exploring how diverse talent strengthens STEM fields and society as a whole.

Whether you’re already involved in STEM, want to guide family and friends into these fields, or simply wish to be inspired by the panelists’ stories, this event will be informative, uplifting, and empowering.

ATTRACTING & CELEBRATING THE BEST MINDS

It is essential for nations, universities, and employers to recruit and nurture top talent in STEM fields to ensure continued innovation and progress. However, women remain underrepresented in STEM careers, making up only 23% of STEM professionals in Canada and 28% in the United States.

Promoting gender equity in STEM is about more than fairness—it’s about unlocking a broader talent pool and fostering richer, more innovative solutions. Research shows that when women and men contribute equally, STEM outcomes are more effective and transformative. Empowering women in STEM benefits not only individuals but also entire industries and societies.

THE IMPORTANCE OF STEM FOR THE WORLD, NATIONS & INDIVIDUALS

Science, technology, engineering, and mathematics (STEM) drive the innovations that shape every aspect of modern life. Careers in STEM offer opportunities to collaborate internationally, solve global challenges like climate change and health crises, and make groundbreaking contributions to society.

Nations that invest in STEM not only foster critical research and innovation but also position themselves as global leaders, driving sustained economic growth and securing a competitive edge.

For individuals, STEM careers are highly sought after, often well-compensated, and provide unparalleled flexibility. Beyond technical expertise, STEM education cultivates critical thinking, creativity, and problem-solving skills—qualities essential for navigating and excelling in today’s interdisciplinary and ever-evolving job market. With these skills, STEM professionals can pivot and thrive in diverse career paths, creating limitless opportunities for personal and professional growth.

About The Panelists and Moderators

Dr. Lori Brotto is a leading expert in women’s sexual health, serving as a Professor in UBC’s [University of British Columbia] Department of Obstetrics and Gynaecology and holding a Canada Research Chair. Her research focuses on developing accessible treatments for common sexual concerns in women, with a strong emphasis on equity and digital health technologies. As Executive Director of the Women’s Health Research Institute, she leads nearly 600 members in advancing women’s health research across BCDr. Brotto is a frequent media presence, appearing in documentaries like Netflix’s The Principles of Pleasure and CBC Gem’s The Big Sex Talk. She authored Better Sex Through Mindfulness (2018) and The Better Sex Through Mindfulness Workbook (2022), and her work earned her a UBC Public Education Through Media award in 2023. As a Registered Psychologist in BC, Dr. Brotto works directly with individuals to improve sexual well-being and encourages young women to pursue STEM careers. She engages with the public through social media, empowering women and advancing research in sexual health.

Dr. Cristina Conati is a Professor of Computer Science at the University of British Columbia, Vancouver, Canada. She received an M.Sc. in Computer Science at the University of Milan, as well as a Ph.D. in Intelligent Systems at the University of Pittsburgh. She has been a Faculty Member at UBC since November 1999. Cristina’s research is at the intersection of Artificial Intelligence, Human-Computer Interaction and Cognitive Science, focusing on Human-Centred AI with contributions in the areas of Intelligent Tutoring Systems, User Modeling, Affective Computing, Information Visualization, and Explainable AI. Cristina’s research has received 10 Best Paper Awards from a variety of venues and in 2022 she received a UBC Killam Research Price. She is a Fellow of AAAI (Association for the Advancement of Artificial Intelligence) and of AAIA (Asia-Pacific Artificial Intelligence Association). She is the co-Editor in Chief of the Journal of AI in Education. She served as President of AAAC (Association for the Advancement of Affective Computing), as well as Program or Conference Chair for several international conferences.

Dr. Jaraquemada, Lupe, is a Radiochemist at Alpha9 Oncology in Vancouver, where she develops new radiopharmaceuticals to enhance cancer diagnosis and treatment. She studied in Canada in 2015 during her PhD and later returned to UBC Chemistry for postdoctoral and research associate work with Dr. Chris Orvig. Before joining Alpha9, Lupe worked as a Staff Scientist at BC Cancer’s Molecular Oncology department under Dr. François Bénard. She holds a PhD in Chemical Sciences and Technologies from the University of Cagliari, Italy, and a BSc in Chemistry from the University of Extremadura, Spain. In her free time, Lupe enjoys skiing with family and friends, watching Whitecaps games, and cheering on her two boys at soccer matches at the Italian Cultural Centre.

Camilla Moioli is a Ph.D. candidate at UBC’s ERDE (Energy Resources, Development, and Environment) and Forest Action Labs, focusing on the intersection of land use policy, energy transitions, and climate justice. With a background in Economics and Social Sciences, she uses both micro and macroeconomic methods to explore sustainable development. Camilla has worked with grassroots organizations in Ecuador on local restoration policies and collaborated with research centers in Europe, including EIEE in Milan, IIASA in Vienna, and SDSN in Paris, to incorporate global perspectives. She also teaches Forest and Conservation Economics at UBC and contributes to courses in carbon and energy economics. Camilla holds a BSc in Business from the University of Milano-Bicocca and an MSc in Economics from the Catholic University of Milan.

Dr. Adele Ruosi‘s journey in physics began in Italy, where she earned her Ph.D. and delved into experimental superconductivity while teaching at the University of Naples. Her curiosity then led her to the US, where she conducted research at the University of Illinois at Urbana-Champaign and the University of Wisconsin-Madison. She also taught physics at Temple University and served as the Scientific Administrator of an Energy Frontier Research Center. Since 2019, Adele has been a Science Education Specialist in Physics and Astronomy at the University of British Columbia. When she’s not advancing science education, Adele enjoys exploring the great outdoors of British Columbia

Desiree Fiaccabrino is a BSc Chemistry graduate with First Class Honours from King’s College London, is pursuing a PhD in Chemistry at UBC under Dr. Chris Orvig and Dr. Paul Schaffer at TRIUMF. Her research focuses on developing novel molecules to bind radioactive metals for cancer therapeutics and diagnostics. As President of UBC’s Chemistry Graduate Student Society, Desiree organized professional development initiatives, including career panels with industry and academic leaders. She has mentored undergraduate and MSc students in research and scientific communication. Desiree is passionate about creating tools to bridge scientific discovery with practical applications in nuclear medicine to improve patient care.

Dr. Valentina Marchetti is an expert in endothelial cell dysfunction and progenitor cells in cardiovascular diseases. After completing her PhD at the University of Rome, Italy, she worked as a postdoctoral fellow at The Scripps Research Institute, focusing on stem cells for treating diabetic retinopathies and eye diseases. In 2013, she joined STEMCELL Technologies in Vancouver, where she led the endothelial and eye group and developed products for stem cell research. Currently an Adjunct Professor at Simon Fraser University, Valentina collaborates with the Department of Molecular Biology and Biochemistry. As President of ARPICO, she advances collaboration and public awareness of key research, while promoting Italian-Canadian scientific and cultural exchanges.

FAQ

  • Where can I contact the organizer with any questions?
  • info@arpico.ca
  • Can I update my registration information?
  • Yes. If you have any questions, contact us at info@arpico.ca
  • I am having trouble using EventBrite and cannot reserve my ticket(s). Can someone at ARPICO help me with my ticket reservation?
  • Of course, simply send your ticket request to us at info@arpico.ca so we can help you.

As always, the organizers have been thoughtful about including detailed information.

Merry 2024 Christmas (1 of 2) High school students discovered a new way to prove Pythagoras’ theorem

I was very thankful to stumble across this story: Calcea Johnson and Ne’Kiya Jackson who are now in university, have found more ways to solve the theorem but this October 28, 2024 news item in ScienceDaily starts with their first breakthrough,.

In 2022, U.S. high school students Calcea Johnson and Ne’Kiya Jackson astonished teachers when they discovered a new way to prove Pythagoras’ theorem [Pythatgoran Theorem] using trigonometry after entering a competition at their local high school. As a result, both students were awarded keys to the city of New Orleans, and even received personal praise from Michelle Obama.

Today [October 28, 2024?] they become published authors of a new peer-reviewed paper detailing their discoveries, published in the journal American Mathematical Monthly.

Caption: Ne’Kiya Jackson (left) and Calcea Johnson (right). Photo credit: Calcea Johnson

An October ?, 2024 Taylor & Francis Group press release (also on EurekAlert and published October 28, 2024), which originated the news item, discusses how Jackson and Johnson independently of each other solved the theorem and then worked together to develop more solutions to the theorem,

Pythagoras’ famous 2,000-year-old theorem, summarized neatly as a2+ b2= c2, means that you can work out the length of any side of a right-angled triangle as long as you know the length of the other two sides. Essentially, the square of the longest side (the hypotenuse) is equal to the squares of the two shorter sides added together.

Many mathematicians over the years have proved the theorem using algebra and geometry. Yet proving it using trigonometry was long thought impossible, as the fundamental formulae of trigonometry are based upon the assumption that the Pythagorean Theorem is true – an example of circular reasoning.

Nevertheless, both Johnson and Jackson managed to solve the math problem independently of each other and prove Pythagoras’ theory without resorting to circular reasoning — a feat that has only been managed twice previously by professional mathematicians.

Johnson and Jackson then collaborated to share their work at a regional meeting of the American Mathematical Society in Atlanta in March 2023. Encouraged by their reception, Jackson and Johnson then decided to submit their discoveries for final peer review and publication. Their study outlines five new ways of proving the theorem using trigonometry, and a method that reveals five more proofs, totaling ten proofs altogether. Only one of these proofs was previously presented at the conference, meaning that nine are totally new.

“I was pretty surprised to be published” says Ne’Kiya Jackson. “I didn’t think it would go this far”.

“To have a paper published at such a young age — it’s really mind blowing,” agrees Calcea Johnson.

“It’s very exciting for me, because I know when I was growing up, STEM [science, technology, engineering, and math] wasn’t really a cool thing. So the fact that all these people actually are interested in STEM and mathematics really warms my heart and makes me really excited for how far STEM has come.”

In the paper, the authors argue that one of the reasons that trigonometry causes such confusion and anxiety for high school students is that two completely different versions of trigonometry exist and are defined using the same terms. This means that trying to make sense of trigonometry can be like trying to make sense of a picture where two different images have been printed on top of each other.

Jackson and Johnson argue that by separating the two versions, and focusing on just one of them, a large collection of new proofs of the Pythagorean Theorem can be found.

Jackson currently studies at Xavier University of Louisiana and is pursuing a doctoral degree in pharmacy, while Johnson is studying environmental engineering at Louisiana State University’s Roger Hadfield Ogden Honors College.

I am very proud that we are both able to be such a positive influence in showing that young women and women of color can do these things, and to let other young women know that they are able to do whatever they want to do. So that makes me very proud to be able to be in that position,” says Johnson.

Commenting on Johnson and Jackson’s achievements, Della Dumbaugh, editor-in-chief of American Mathematical Monthly, says, “The Monthly is honored and delighted to publish the work of these two students on its pages.

“Their results call attention to the promise of the fresh perspective of students on the field. They also highlight the important role of teachers and schools in advancing the next generation of mathematicians.

“Even more, this work echoes the spirit of Benjamin Finkel when he founded the Monthly in 1894 to feature mathematics within reach of teachers and students of mathematics.”

Here’s a link to and a citation for the paper,

Five or Ten New Proofs of the Pythagorean Theorem by Ne’Kiya Jackson & Calcea Johnson. The American Mathematical Monthly Volume 131, 2024 – Issue 9 Pages 739-752 DOI: https://doi.org/10.1080/00029890.2024.2370240 Published online: 27 Oct 2024

This paper is open access.

van Gogh’s sky is alive with real-world physics

Caption: The authors measured the relative scale and spacing of the whirling brush strokes in van Gogh’s “The Starry Night,” along with variances in luminance of the paint, to see if the laws that apply in the physics of real skies apply in the artist’s depiction. The results suggest van Gogh had an innate understanding of atmospheric dynamics. He captured multiple dimensions of atmospheric physics with surprising accuracy. Credit: Yinxiang Ma

A September 17, 2024 American Institute of Physics news release (also on EurekAlert) reveals how researchers in the fields of marine sciences and fluid dynamics have revealed the ‘hidden turbulence’ in van Gogh’s The Starry Night,

Vincent van Gogh’s painting “The Starry Night” depicts a swirling blue sky with yellow moon and stars. The sky is an explosion of colors and shapes, each star encapsulated in ripples of yellow, gleaming with light like reflections on water. 

Van Gogh’s brushstrokes create an illusion of sky movement so convincing it led atmospheric scientists to wonder how closely it aligns with the physics of real skies. While the atmospheric motion in the painting cannot be measured, the brushstrokes can.

In an article published this week in Physics of Fluids, by AIP Publishing, researchers specializing in marine sciences and fluid dynamics in China and France analyzed van Gogh’s painting to uncover what they call the hidden turbulence in the painter’s depiction of the sky.

“The scale of the paint strokes played a crucial role,” author Yongxiang Huang said. “With a high-resolution digital picture, we were able to measure precisely the typical size of the brushstrokes and compare these to the scales expected from turbulence theories.”

To reveal hidden turbulence, the authors used brushstrokes in the painting like leaves swirling in a funnel of wind to examine the shape, energy, and scaling of atmospheric characteristics of the otherwise invisible atmosphere. They used the relative brightness, or luminance, of the varying paint colors as a stand-in for the kinetic energy of physical movement.

“It reveals a deep and intuitive understanding of natural phenomena,” Huang said. “Van Gogh’s precise representation of turbulence might be from studying the movement of clouds and the atmosphere or an innate sense of how to capture the dynamism of the sky.”

Their study examined the spatial scale of the painting’s 14 main whirling shapes to find out if they align with the cascading energy theory that describes the kinetic energy transfer from large- to small-scale turbulent flows in the atmosphere.

They discovered the overall picture aligns with Kolmogorov’s law, which predicts atmospheric movement and scale according to measured inertial energy. Drilling down to the microcosm within the paint strokes themselves, where relative brightness is diffused throughout the canvas, the researchers discovered an alignment with Batchelor’s scaling, which describes energy laws in small-scale, passive scalar turbulence following atmospheric movement.

Finding both scalings in one atmospheric system is rare, and it was a big driver for their research.

“Turbulence is believed to be one of the intrinsic properties of high Reynolds flows dominated by inertia, but recently, turbulence-like phenomena have been reported for different types of flow systems at a wide range of spatial scales, with low Reynolds numbers where viscosity is more dominant,” Huang said.

“It seems it is time to propose a new definition of turbulence to embrace more situations.”

Matthew Rozsa provides a more accessible description of the research in a September 20, 2024 article for Salon.com, Note: Links have been removed,

… one can look at “The Starry Night” and see a scientifically accurate representation of turbulent, cascading waters — a visual that may have directly inspired van Gogh before he transposed those dynamics into his iconic starry sky while painting in his mental asylum room in the French town of Saint-Rémy-de-Provence.

“Imagine you are standing on a bridge, and you watch the river flow. You will see swirls on the surface, and these swirls are not random.” Yongxiang Huang, lead author of the study, told CNN. “They arrange themselves in specific patterns, and these kinds of patterns can be predicted by physical laws.”

Scientists fascinated by van Gogh’s art are not limited to physicists. When researchers discovered a gecko that reminded them of the paintings of van Gogh, they gave it the scientific name Cnemaspis vangoghi. As a common terms, the authors suggested “van Gogh’s starry dwarf gecko.”

Here’s a link to and a citation for the paper,

Hidden turbulence in van Gogh’s The Starry Night by Yinxiang Ma (马寅翔), Wanting Cheng (程婉婷), Shidi Huang (黄仕迪), François G. Schmitt, Xin Lin (林昕), Yongxiang Huang (黄永祥). Physics of Fluids Volume 36, Issue 9 September 2024 DOI: https://doi.org/10.1063/5.0213627

This article is behind a paywall.

Neuromorphic wires (inspired by nerve cells) amplify their own signals—no amplifiers needed

Katherine Bourzac’s September 16, 2024 article for the IEEE (Institute for Electrical and Electronics Engineers) Spectrum magazine provides an accessible (relatively speaking) description of a possible breakthrough for neuromorphic computing, Note: Links have been removed,

In electrical engineering, “we just take it for granted that the signal decays” as it travels, says Timothy Brown, a postdoc in materials physics at Sandia National Lab who was part of the group of researchers who made the self-amplifying device. Even the best wires and chip interconnects put up resistance to the flow of electrons, degrading signal quality over even relatively small distances. This constrains chip designs—lossy interconnects are broken up into ever smaller lengths, and signals are bolstered by buffers and drivers. A 1-square-centimeter chip has about 10,000 repeaters to drive signals, estimates R. Stanley Williams, a professor of computer engineering at Texas A&M University.

Williams is one of the pioneers of neuromorphic computing, which takes inspiration from the nervous system. Axons, the electrical cables that carry signals from the body of a nerve cell to synapses where they connect with projections from other cells, are made up of electrically resistant materials. Yet they can carry high fidelity signals over long distances. The longest axons in the human body are about 1 meter, running from the base of the spine to the feet. Blue whales are thought to have 30 m long axons stretching to the tips of their tails. If something bites the whale’s tail, it will react rapidly. Even from 30 meters away, “the pulses arrive perfectly,” says Williams. “That’s something that doesn’t exist in electrical engineering.”

That’s because axons are active transmission lines: they provide gain to the signal along their length. Williams says he started pondering how to mimic this in an inorganic system 12 years ago. A grant from the US Department of Energy enabled him to build a team with the necessary resources to make it happen. The team included Williams, Brown, and Suhas Kumar, a materials physicist at Sandia.

Axons are coated with an insulating layer called the myelin sheath. Where there are gaps in the sheath, negatively charged sodium ions and positively charged potassium ions can move in and out of the axon, changing the voltage across the cell membrane and pumping in energy in the process. Some of that energy gets taken up by the electrical signal, amplifying it.

Williams and his team wanted to mimic this in a simple structure. They didn’t try to mimic all the physical structures in axons—instead, they sought guidance in a mathematical description of how they amplify signals. Axons operate in a mode called the “edge of chaos,” which combines stable and unstable qualities. This may seem inherently contradictory. Brown likens this kind of system to a saddle that’s curved with two dips. The saddle curves up towards the front and the back, keeping you stable as you rock back and forth. But if you get jostled from side to side, you’re more likely to fall off. When you’re riding in the saddle, you’re operating at the edge of chaos, in a semistable state. In the abstract space of electrical engineering, that jostling is equivalent to wiggles in current and voltage.

There’s a long way to go from this first experimental demonstration to a reimagining of computer chip interconnects. The team is providing samples for other researchers [emphasis mine] who want to verify their measurements. And they’re trying other materials to see how well they do—LaCoO3 [lanthanum colbalt oxide] is only the first one they’ve tested.

Williams hopes this research will show electrical engineers new ideas about how to move forward. “The dream is to redesign chips,” he says. Electrical engineers have long known about nonlinear dynamics, but have hardly ever taken advantage of them, Williams says. “This requires thinking about things and doing measurements differently than they have been done for 50 years,” he says.

If you have the time, please read Bourzac’s September 16, 2024 article in its entirety. For those who want the technical nitty gritty, here’s a link to and a citation for the paper,

Axon-like active signal transmission by Timothy D. Brown, Alan Zhang, Frederick U. Nitta, Elliot D. Grant, Jenny L. Chong, Jacklyn Zhu, Sritharini Radhakrishnan, Mahnaz Islam, Elliot J. Fuller, A. Alec Talin, Patrick J. Shamberger, Eric Pop, R. Stanley Williams & Suhas Kumar. Nature volume 633, pages 804–810 (2024) DOI: https://doi.org/10.1038/s41586-024-07921 Published online: 11 September 2024 Issue Date: 26 September 2024

This paper is open access.

Using a new computer program to ‘paint’ the structure of molecules in the style of a famous Dutch artist

Figure 2: a) “Neoplastic” diagram of the porphyrin core of the classic nonplanar 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraphenylporphyrin (CCDC: RONROB), alongside two representations of this same molecule—b) the crystal structure thermal ellipsoid plot and (c) skeletal model.28 This porphyrin shape is primarily saddled and a little ruffled, resulting in S4 symmetry … [downloaded from https://onlinelibrary.wiley.com/doi/10.1002/ange.202403754]

A July 12, 2024 news item on ScienceDaily describes a fascinating computer program developed by scientists at Trinity College Dublin,

Scientists from Trinity College Dublin have created a computer program that “paints” the structure of molecules in the style of famous Dutch artist, Piet Mondrian, whose beautiful artworks will be instantly recognizable to many.

Mondrian’s style, whereby he used blocks of primary colors separated by lines of various widths on a white background, has been extensively copied or used as an inspiration in modern culture. But his deceptively simple artworks have also fascinated scientists for decades, finding niche applications in mathematics and statistics.

And now, researchers from the School of Chemistry are opening eyes and minds to the beauty of molecular structure, as well as posing new questions about the form and function of the molecules themselves.

A July 15, 2024 Trinity College Dublin press release (also on EurekAlert but published July 12, 2024), which originated the news item, provides more details about the work,

Their computer program, which can be accessed at http://www.sengegroup.eu/nsd, produces a Mondrianesque plot of any molecule. It does so by following an artistic algorithm that marries the laws of chemistry that describe the 3D structure of a molecule based on its components with the 2D style of one of the most influential painters of the Modern era.

For the scientist, it helps to rapidly assess and demonstrate molecular symmetry, allowing for deeper insights than would emerge from traditional representations. And for the artist, it provides a visually pleasing image of contrasting interpretations of symmetry, hopefully providing inspiration for the incorporation of scientific ideas into work. 

Mathias O Senge, Professor of Organic Chemistry in Trinity and Hans Fischer Senior Fellow at the Institute for Advanced Study of TU Munich [Technische Universität München or Technical University of Munich] is the senior author of a just-published article in the leading international journal, Angewandte Chemie, in which this creation is shared with the world. He said:

“For some years we have been working on this project, initially for fun, to output the structure of a molecule in an artistically pleasing manner as a painting in the style of Mondrian. The ‘paintings’ obtained are unique for each molecule and juxtapose what Mondrian and others aimed to do with the De Stijl artistic movement.

“Symmetry and shape are essential aspects of molecular structure and how we interpret molecules and their properties, but very often relationships between chemical structure and derived values are obscured. Taking our inspiration from Mondrian’s Compositions, we have depicted the symmetry information encoded within 3D data as blocks of colour, to show clearly how chemical arguments may contribute to symmetry.” 

Christopher Kingsbury, postdoctoral researcher in TBSI, who conceived the project, is first author of the journal article. He said: “In chemistry, it is useful to have a universal way of displaying molecular structure, so as to help ‘blueprint’ how a molecule is likely to behave in different environments and how it may react and change shape when in the presence of other molecules. But a certain amount of nuance is inevitably lost.

“This concept of increasing abstraction by removing minor details and trying to present a general form is mimicked by the early work of Mondrian and in some senses this is what scientists intuitively do when reducing complex phenomena to a ‘simpler truth’. Thanks to our new approach very complex science is fed through an artistic lens, which might make it more accessible to a wider range of people.”  

In recent years Professor Senge and his team have greatly enhanced our understanding of porphyrins, a unique class of intensely coloured pigments – also known as the “colours of life”. In one piece of work they created a suite of new biological sensors by chemically re-engineering these pigments to act like tiny Venus flytraps and grab specific molecules, such as pollutants. And now the new direction, in which science and art collide, may further develop our understanding of how porphyrins work.

“Great art gives us a new perspective on the world,” added Prof. Senge. “As a pastiche, this art may allow us to look at familiar molecules, such as porphyrins, in a new light, and help us to better understand how their shape and properties are intertwined. More generally, we believe that contemporary initiatives in ‘Art and Science’ require a transformative break of discipline boundaries and merger to ‘ArtScience’. There is a subtle interplay between science and art and mixing of both aspects in our respective fields of endeavour and this should be a focus for future developments in both areas.”

Here’s a link to and a citation for the paper,

Molecular Symmetry and Art: Visualizing the Near-Symmetry of Molecules in Piet Mondrian’s De Stijl by Dr. Christopher J. Kingsbury, Prof. Dr. Mathias O. Senge. Angewandte Chemie DOI: https://doi.org/10.1002/ange.202403754 Volume 136, Issue 25 June 17, 2024 e202403754 First published: 15 April 2024

This paper is open access.

11th century Arab-Muslim optical scientist laid groundwork for modern-day physics

An April 15, 2024 news item on phys.org announces research into how an Arab scientist’s studies into optics established the basis for modern day physics,

Scientists from the University of Sharjah [United Arab Emirates] and the Warburg Institute [University of London, UK] are poring over the writings of an 11th-century Arab-Muslim polymath to demonstrate their impact on the development of optical sciences and how they have fundamentally transformed the history of physics from the Middle Ages up to modern times in Europe.

Caption: Ibn al-Haytham (“Alhasen”) on the left pedestal of reason [while Galileo is on the right pedestal of the senses] as shown on the frontispiece of the Selenographia (Science of the Moon; 1647) of Johannes HeveliusIbn al-Haytham (“Alhasen”) on the left pedestal of reason [while Galileo is on the right pedestal of the senses] as shown on the frontispiece of the Selenographia (Science of the Moon; 1647) of Johannes Hevelius Credit: Public domain provided by the author

A May 6, 2024 University of Sharjah press release on EurekAlert, which originated the news item, delves further into the topic, Note 1: Why there’s such a large discrepancy in the publication dates for the press release is a mystery to me; Note 2: Links have been removed,

Their research focuses on the legacy of al-Ḥasan Ibn al-Haytham known in Latin as “Alhazen” and particularly his most influential work titled Book of Optics, reputed in Arabic as Kitab al-Manazir and first circulated in Europe via its Latin translation dubbed ‘Perspectiva’. Ibn al-Haytham was born in the southern Iraqi city of Basra in 965 during the Abbasid Caliphate.

The divisions IV-V of this authoritative book have been recently translated into English from Arabic and published by the Warburg Institute under the title “The Optics of Ibn al-Haytham, Books IV–V: On Reflection and Images Seen by Reflection”. Having already rendered divisions I-III into English, the Warburg Institute is bringing together a wide-ranging network of scientists “for a collaborative humanities-science investigation of [Ibn] al-Haytham and the questions his work provokes.“

The role of Alhazen [Ibn al-Haytham] in these processes is simultaneously well-known, but limited; only half of his scientific works have English translation and a quarter are not yet edited.”

Introducing the new translation, the Warburg Institute describes Ibn al-Haytham as “perhaps the greatest mathematician and physicist of the medieval Arabic/Islamic world. His reputation is based not only on the vast amount of material he was able to process, but also on his rigorous scientific methodology.

“He (Ibn al-Haytham) deals with both the mathematics of rays of light and the physical aspects of the eye in seven comprehensive books. His reinstatement of the entire science of optics sets the scene for the whole of the subsequent development of the subject … influencing figures such as William of Ockham, [Johannes] Kepler, [René] Descartes, and Christaan Huygens.”

Professor Nader El-Bizri of Sharjah University’s College of Arts, Humanities, and Social Sciences has just published an academic review of the Warburg Institute’s translation of Ibn al-Haytham. The article, printed in the International Journal of the Classical Tradition, highlights the strong influence the Arab-Muslim optical scientist has exerted over the ages up to the present day.

Ibn al-Haytham’s Book of Optics, Prof. El-Bizri writes, “constituted a monumental foundational opus in the history of science and the visual arts from the Middle Ages to the early modern period in the European milieu and the Islamicate context … The reception of Ibn al-Haytham’s Optics in the European milieu took place from the High Middle Ages via Gerard of Cremona’s Toledo circle in terms of its Latinate translations, and subsequent influence on Franciscan, Dominican, and Jesuit opticians across Europe.“

It influenced François d’Aguilon’s Opticorum libri sex within the Antwerp Jesuit mathematical school and had a direct impact on Johannes Hevelius’s Selenographia. The Optics was also consulted by Girard Desargues, René Descartes, Johannes Kepler and Christaan Huygens.”

Prof. El-Bizri works closely with the Warburg Institute assisting its attempts to reintroduce Ibn al-Haytham to the west. “A remarkable thinker, not only did Ibn al-Haytham revolutionize optical thought by mathematising its study, [but] his thinking also went on to have similar revolutionary effects in medieval Europe.”

The Warburg Institute is investing in rendering the writings of Ibn al-Haytham on optics into English, which Prof. El-Bizri describes as “voluminous”. “Ibn al-Haytham’s Book of Optics indicates with evidence the impact of Arabic sciences and philosophy on the history of science and the architectural and visual arts in Europe, as well as demonstrating how science and the arts influence each other in the manner the studies of optics in their mathematized physics inspired the invention of projective geometric constructions of perspective as a novel Renaissance method of painting and architectural design.”

Prof. El-Bizri adds “The impact of this book is fundamental not only in the history of science from the High Middle Ages till the early-modern period in Europe, but it was also foundational for architecture and the visual arts in the Italian Renaissance and up till the late Baroque era. Moreover, it has further significance in modern conceptions of the mathematization of physics, the reliance on experimentation in science, and the philosophical analysis of perception.”

Asked about the importance of translating Ibn al-Haytham into English despite the lapse of nearly 1000 years, Prof. El-Bizri says the Arab-Muslim scientist’s theories and methodologies, specifically those dealing with optics are still considered “seminal” in the literature. Ibn al-Haytham has had a “foundational impact on the history of science and the arts in Europe.”

The influence of Ibn al-Haytham’s writings in the European milieu, according to Prof. El-Bizri, cannot be overlooked. The Arab-Muslim scientist had “a notable effect on Biagio Pelacani da Parma’s Questiones super perspectiva communi, Leon Battista Alberti’s De pictura, Lorenzo Ghiberti’s Commentarii, culminating in the first printed Latin version in the publication of Friedrich Risner’s Opticae thesaurus in the sixteenth century.“

Then, in the seventeenth century, it influenced François d’Aguilon’s Opticorum libri sex within the Antwerp Jesuit mathematical school and had a direct impact on Johannes Hevelius’s Selenographia.”.

In the Book of Optics, notes Prof. El-Bizri, Ibn al-Haytham establishes an “inventive and precise scientific experimental method (al-iʿtibār al-muḥarrar) with its controlled verificative repeated testing, as framed by isomorphic compositions between physics and mathematics.”

He adds that Ibn al-Haytham in his Optics “aims at elucidating the nature of visual perception through studies on the anatomy and physiology of the eyes, the optic nerves and the frontal part of the brain, along with cognitive psychology and the analysis of psychosomatic ocular motor kinaesthetic acts”

Here’s a link to and a citation for the paper, Note: This is one of the more unusual citation I have hrere,

The Optics of Ibn al-Haytham, Books IV–V: On Reflection and Image by N. El-Bizri. Seen by Reflection, translated from the Arabic by Abdelhamid I. Sabra and prepared for publication by Jan P. Hogendijk (Warburg Institute Studies and Texts, 8), London: University of London Press in association with the Warburg Institute, 2023, pp. xiv+343, ISBN 978-1908590589, £90. Int class trad 31, 116–119 (2024). https://doi.org/10.1007/s12138-024-00654-4 Published: 20 February 2024 Issue Date: March 2024

This paper is behind a paywall.

I was a little curious about the Warburg Institute and found out more on their About Us webpage,

The Warburg Institute is one of the world’s leading centres for the study of art and culture. Its collections, courses and programmes are dedicated to the study of global cultural history and the role of images in society. Founded in Hamburg at the turn of the twentieth century by historian Aby Warburg (1866-1929), the Institute was established to trace the roots of the Renaissance in ancient civilisations and ended up changing the way we see the world around us.

The Warburg Institute owes its mission—and its very existence—to the open movement of people, collections and ideas. Sent into exile when the Nazis came to power, the Institute was transferred to England in 1933 and became part of the University of London in 1944. It has served, during a turbulent century, as a creative crucible for scholars, curators, artists and all those whose work sits outside traditional academic structures.

The Warburg’s unique Library, Archive and Photographic Collection form a holistic, associative engine for exploring the histories of the arts and sciences—linking the textual and the visual, the intellectual and the social, the scientific and the magical. Following an extensive renovation of the Institute’s building in Bloomsbury, new spaces for exhibitions and events have restored the Institute’s original emphasis on discovery, display and debate and are bringing its holdings and programmes to new audiences.

Building on Aby Warburg’s belief that the memory of the past activates the present, the Warburg examines the movement of culture across barriers – of time, space and discipline -to inspire, inform and connect.

There you have it.

Latest Canadian students’ math and reading scores drop, the 2022 PISA (Programme for International Student Assessment]) scorecard

It took a while (until December 2023) for the OECD’s (Organization for Economic Cooperation Development) to release its latest (2022) PISA (Programme for International Student Assessment) scores.

Where Canada is concerned the scores seem to be a case of ‘the same old same old as per my October 9, 2013 posting about Canada’s then latest PISA scores, “What happened? 2009 report says Canadian students are leaders in reading, math, and science; 2013 report says Canadian students are dropping out of maths and sciences.”

Onto the 2022 results: you can find the OECD’s November 5, 2023 press release, “Decline in educational performance only partly attributable to the COVID-19 pandemic,” announcing the latest PISA result and there’s this December 5, 2023 CBC (Canadian Broadcasting Corporation) online news item, which contrasts the 2022 results with the 2018 results, Note: A link has been removed,

Math and reading scores of Canadian students continue to decline steeply, matching a global trend, according to a new study.

The state of global education was given a bleak appraisal in the Program for International Student Assessment (PISA), which is the first study to examine the academic progress of 15-year-old students in dozens of countries during the pandemic.

Released Tuesday [December 5, 2023], it finds the average international math score fell by the equivalent of 15 points compared to 2018 scores, while reading scores fell 10 points.

The study found Canada’s overall math scores declined 15 points between 2018 and 2022. According to PISA, which defines a drop of 20 points as losing out on a fully year of learning, that means Canada’s math score dropped by an equivalent of three-quarters of a year of learning.

During that same time period, reading scores of Canadian students dropped by 13 points and science by three.

Only 12 per cent of Canadian students were high math achievers, scoring at Level 5 or 6. That’s fewer than some of the top Asian countries and economies: In Singapore, 41 per cent of students performed at the top level; in Hong Kong, 27 per cent; and in Japan and Korea, 23 per cent.

Louis Volante, a professor of education governance at Brock University in St. Catharines, Ont., believes the pandemic had more of a negative effect on math learning than reading and science.

‘Some provinces declining more than others’

Anna Stokke, a math professor at the University of Winnipeg, notes that math scores in Canada have been trending in the wrong direction since 2003, “with some provinces declining more than others.”

According to the study, the provinces with the largest drop in math scores since 2018 were Newfoundland Labrador with 29, Nova Scotia with 24, New Brunswick with 23 and Manitoba with 22. Meanwhile, Alberta’s score only dropped by seven and B.C.’s just eight.

“I do think part of the problem is the philosophy of how to teach math,” Stokke told CBC News.

“First of all, we’re not spending enough time on math in schools. And second of all, kids just aren’t getting good instruction in a lot of cases. They’re not getting explicit instruction. They’re not getting enough practice. And that really needs to change.”

A survey of students found about half faced closures of more than three months, but it didn’t always lead to lower scores. There was “no clear difference” in performance trends between countries that had limited closures, including Iceland and Sweden, and those with longer closures, including Brazil and Ireland, according to the report.

Canada still in top 10

Singapore, long seen as an education powerhouse, had the highest scores by far in every subject. It was joined in the upper echelons by other East Asian countries, including Japan and China.

Despite the declines across the subjects, Canada did well compared to the other countries in the report, placing ninth in math, sixth in reading and seventh in science.

Usually given every three years, the latest test was delayed a year because of the pandemic. It was administered in 2022 to a sample of 15-year-olds in 37 countries that are OECD members, plus 44 other partner countries. The test has been conducted since 2000.

In 2022, 81 countries participated, with 23,000 Canadian high school students writing the test.

If you don’t have time to read all of the December 5, 2023 CBC online news item, there’s Quinn Henderson’s succinct December 6, 2023 article for the Daily Hive,

Wendy Hughes (then PhD student) and Sarfaroz Niyozov (then associate professor) both associated with the University of Toronto, presented a critique of PISA in their June 4, 2019 essay on The Conversation,

The Program for International Student Assessment (PISA) — the Organization for Economic Co-operation and Development’s (OECD) global standardized test of student achievement — is frequently used by commentators to compare and rank national or provincial education systems.

PISA, which has now spread into 80 countries as a best education practice, presents itself as a tool to help countries make their systems more inclusive leading to equitable outcomes. But PISA is far more ambiguous and controversial.

Many academics and educators critique PISA as an economic measurement, not an educational one. The media generally use PISA results to blame and shame school systems. And the way that some politicians, policy-makers and researchers have used PISA is more closely aligned to a political process than an educational one.

You can find the PISA 2022 results here.

Dendritic painting: a physics story

A March 4, 2024 news item on phys.org announces research into the physics of using paints and inks in visual art, Note: A link has been removed,

Falling from the tip of a brush suspended in mid-air, an ink droplet touches a painted surface and blossoms into a masterpiece of ever-changing beauty. It weaves a tapestry of intricate, evolving patterns. Some of them resemble branching snowflakes, thunderbolts or neurons, whispering the unique expression of the artist’s vision.

Okinawa Institute of Science and Technology (OIST) researchers set out to analyze the physical principles of this fascinating technique, known as dendritic painting. They took inspiration from the artwork of Japanese media artist, Akiko Nakayama. The work is published in the journal PNAS Nexus.

Caption: Japanese artist Akiko Nakayama manipulates alcohol and inks to create tree-like dendritic patterns during a live painting session. Credit: Photo Credit: Akiko Nakayama

Yes, the ends definitely look tree-like (maybe cedar). A February 29, 2024 Okinawa Institute of Science and Technology (OIST) press release (also on EurekAlert but published March 1, 2024), which originated the news item, goes on to describe the forces at work and provides instructions for creating your own dendritic paintings, Note: Links have been removed,

During her [Akiko Nakayama] live painting performances, she applies colourful droplets of acrylic ink mixed with alcohol atop a flat surface coated with a layer of acrylic paint. Beautiful fractals – tree-like geometrical shapes that repeat at different scales and are often found in nature – appear before the eyes of the audience. This is a captivating art form driven by creativity, but also by the physics of fluid dynamics.

“I have a deep admiration for scientists, such as Ukichiro Nakaya and Torahiko Terada, who made remarkable contributions to both science and art. I was very happy to be contacted by OIST physicist Chan San To. I am envious of his ability ‘to dialogue’ with the dendritic patterns, observing how they change shape in response to different approaches. Hearing this secret conversation was delightful,” explains Nakayama.

“Painters have often employed fluid mechanics to craft unique compositions. We have seen it with David Alfaro Siqueiros, Jackson Pollock, and Naoko Tosa, just to name a few. In our laboratory, we reproduce and study artistic techniques, to understand how the characteristics of the fluids influence the final outcome,” says OIST Professor Eliot Fried of OIST’s Mechanics and Materials Unit, who likes looking at dendritic paintings from artistic and scientific angles.

In dendritic painting, the droplets made of ink and alcohol experience various forces. One of them is surface tension – the force that makes rain droplets spherical in shape, and allows leaves to float on the surface of a pond. In particular, as alcohol evaporates faster than water, it alters the surface tension of the droplet. Fluid molecules tend to be pulled towards the droplet rim, which has higher surface tension compared to its centre. This is called the Marangoni effect and is the same phenomenon responsible for the formation of wine tears – the droplets or streaks of wine that form on the inside of a wine glass after swirling or tilting.

Secondly, the underlying paint layer also plays an important part in this artistic technique. Dr. Chan tested various types of liquids. For fractals to emerge, the liquid must be a fluid that decreases in viscosity under shear strain, meaning it has to behave somewhat like ketchup. It’s common knowledge that it’s hard to get ketchup out of the bottle unless you shake it. This happens because ketchup’s viscosity changes depending on shear strain. When you shake the bottle, the ketchup becomes less viscous, making it easier to pour it onto your dish. How is this applied to dendritic painting?

“In dendritic painting, the expanding ink droplet shears the underlying acrylic paint layer. It is not as strong as the shaking of a ketchup bottle, but it is still a form of shear strain. As with ketchup, the more stress there is, the easier it is for the ink droplets to flow,” explains Dr. Chan.

“We also showed that the physics behind this dendritic painting technique is similar to how liquid travels in a porous medium, such as soil. If you were to look at the mix of acrylic paint under the microscope, you would see a network of microscopic structures made of polymer molecules and pigments. The ink droplet tends to find its way through this underlying network, travelling through paths of least resistance, that leads to the dendritic pattern,” adds Prof. Fried.

Each dendritic print is one-of-a-kind, but there are at least two key aspects that artists can take into consideration to control the outcome of dendritic painting. The first and most important factor is the thickness of the paint layer spread on the surface. Dr. Chan observed that well-refined fractals appear with paint layer thinner than a half millimetre.

The second factor to experiment with is the concentration of diluting medium and paint in this paint layer. Dr. Chan obtained the most detailed fractals using three parts diluting medium and one part paint, or two parts diluting medium and one part paint. If the concentration of paint is higher, the droplet cannot spread well. Conversely, if the concentration of paint is lower, fuzzy edges will form. 

This is not the first science-meets-art project that members of the Mechanics and Materials Unit have embarked on. For example, they designed and installed a mobile sculpture on the OIST campus. The sculpture exemplifies a family of mechanical devices, called Möbius kaleidocycles, invented in the Unit, which may offer guidelines for designing chemical compounds with novel electronic properties.

Currently, Dr. Chan is also developing novel methods of analysing how the complexity of a sketch or painting evolves during its creation. He and Prof. Fried are optimistic that these methods might be applied to uncover hidden structures in experimentally captured or numerically generated images of flowing fluids.

“Why should we confine science to just technological progress?” wonders Dr. Chan. “I like exploring its potential to drive artistic innovation as well. I do digital art, but I really admire traditional artists. I sincerely invite them to experiment with various materials and reach out to us if they’re interested in collaborating and exploring the physics hidden within their artwork.”

Instructions to create dendritic painting at home

Everybody can have fun creating dendritic paintings. The materials needed include a non-absorbent surface (glass, synthetic paper, ceramics, etc.), a brush, a hairbrush, rubbing alcohol (iso-propyl alcohol), acrylic ink, acrylic paint and pouring medium.

  1. Dilute one part of acrylic paint to two or three parts of  pouring medium, or test other ratios to see how the result changes
  2. Apply this to the non-absorbent surface uniformly using a hairbrush. OIST physicists have found out that the thickness of the paint affects the result. For the best fractals, a layer of paint thinner than half millimetre is recommended.
  3. Mix rubbing alcohol with acrylic ink. The density of the ink may differ for different brands: have a try mixing alcohol and ink in different ratios
  4. When the white paint is still wet (hasn’t dried yet), apply a droplet of the ink with alcohol mix using a brush or another tool, such as a bamboo stick or a toothpick.
  5. Enjoy your masterpiece as it develops before your eyes. 

Here’s a link to and a citation for the paper,

Marangoni spreading on liquid substrates in new media art by San To Chan and Eliot Fried. PNAS Nexus, Volume 3, Issue 2, February 2024, pgae059 DOI: https://doi.org/10.1093/pnasnexus/pgae059 Published: 08 February 2024

This paper is open access.

Simon Fraser University’s (SFU; Vancouver, Canada) Café Scientifique Winter/Spring 2024 events + a 2023 Nobel-themed lecture

There are three upcoming Simon Fraser University (SFU) Café Scientifique events (Zoom) and one upcoming Nobel=themed lecture (in person) according to a January 15, 2024 notice (received via email), Note: All the events are free,

Hello SFU Cafe Scientifique friends!

We are back with a brand new line up for our Cafe Scientifique discussion series.  Zoom invites will be sent closer to the event dates [emphasis mine].  We hope you can join us.

All event information and registration links on this page: https://www.sfu.ca/science/community.html

Café Scientifique: Why Do Babies Get Sick? A Systems Biology Approach to Developing Diagnostics and Therapeutics for Neonatal Sepsis. 

Tuesday, January 30, 5:00-6:30pm over Zoom 

Around the world five newborn babies die each second from life-threatening infections. Unfortunately there is no fast or easy way to tell which microbes are involved. Molecular Biology and Biochemistry assistant professor Amy Lee will share how we can use genomics and machine learning approaches to tackle this challenge.
Register here. https://events.sfu.ca/event/38235-cafe-scientifique-january-why-do-babies-get-sick?

Cafe Scientifique: From data to dollars: A journey through financial modelling
Tuesday, February 27, 5:00-6:30 pm over Zoom 

Financial modelling involves using mathematical and statistical techniques to understand future financial scenarios, helping individuals and businesses make informed decisions about their investments. Join Dr. Jean-François Bégin as he explores how these models can empower us to navigate the complexities of financial markets.

Register here: https://www.eventbrite.ca/e/763521010897

Cafe Scientifique: Overtraining and the Everyday Athlete
Tuesday, April 30, 5:00-6:30 pm over Zoom 

What happens when we train too hard, don’t take enough time to recover, or underfuel while exercising, and how that applies to both elite athletes and just your “everyday athlete.” Join Dr. Alexandra Coates from our Biomedical Physiology and Kinesiology Department in this interesting discussion.

Register here: https://www.eventbrite.ca/e/763521010897

Missed our last Café Scientifique talk [Decoding how life senses and responds to carbon dioxide gas] with Dustin King? [SFU Molecular Biology and Biochemistry Assistant Professor Dustin King’s Indigenous background is central to his work and relationship with the biochemical research he conducts. He brings Indigenous ways of knowing and a two-eye seeing approach to critical questions about humanity’s impact upon the natural world …] Watch it on YouTube: https://www.youtube.com/watch?v=xCHTSbF3RVs&list=PLTMt9gbqLurAMfSHQqVAHu7YbyOFq81Ix&index=10

The ‘2023 Nobel Prize Lectures’ being presented by SFU do not feature the 2023 winners but rather, SFU experts in the relevant field, from the January 15, 2024 SFU Café Scientifique notice (received via email),

BACK IN-PERSON AT THE SCIENCE WORLD THEATRE!

Location: Science World Theatre 1455 Quebec Street Vancouver, BC V6A 3Z7

NOBEL PRIZE LECTURES  

Wednesday, March 6, 2024 

6:30-7:30 pm Refreshments, 7:30-9:30 pm Lectures 

Celebrate the 2023 Nobel awardees in Chemistry, Physics, Physiology or Medicine!

SFU experts will explain Nobel laureates’ award-winning research and its significance to our everyday lives. 

Featured presenters are

*Mark Brockman from Molecular Biology and Biochemistry for the Nobel Prize in Medicine and Physiology;

*Byron Gates from Chemistry for the Nobel Prize in Chemistry; and

*Shawn Sederberg from the School of Engineering Science for the Nobel Prize in Physics.

Register here: https://www.eventbrite.ca/e/nobel-prize-lectures-tickets-773387301237

For anyone who has trouble remembering who and why the winners were awarded a 2023 Nobel Prize, here’s a nobleprize.org webpage devoted to the 2023 winners.