Category Archives: Mathematics

Canadian and Italian researchers go beyond graphene with 2D polymers

According to a May 20,2020 McGill University news release (also on EurkekAltert), a team of Canadian and Italian researchers has broken new ground in materials science (Note: There’s a press release I found a bit more accessible and therefore informative coming up after this one),

A study by a team of researchers from Canada and Italy recently published in Nature Materials could usher in a revolutionary development in materials science, leading to big changes in the way companies create modern electronics.

The goal was to develop two-dimensional materials, which are a single atomic layer thick, with added functionality to extend the revolutionary developments in materials science that started with the discovery of graphene in 2004.

In total, 19 authors worked on this paper from INRS [Institut National de la Recherche Scientifique], McGill {University], Lakehead [University], and Consiglio Nazionale delle Ricerche, the national research council in Italy.

This work opens exciting new directions, both theoretical and experimental. The integration of this system into a device (e.g. transistors) may lead to outstanding performances. In addition, these results will foster more studies on a wide range of two-dimensional conjugated polymers with different lattice symmetries, thereby gaining further insights into the structure vs. properties of these systems.

The Italian/Canadian team demonstrated the synthesis of large-scale two-dimensional conjugated polymers, also thoroughly characterizing their electronic properties. They achieved success by combining the complementary expertise of organic chemists and surface scientists.

“This work represents an exciting development in the realization of functional two-dimensional materials beyond graphene,” said Mark Gallagher, a Physics professor at Lakehead University.

“I found it particularly rewarding to participate in this collaboration, which allowed us to combine our expertise in organic chemistry, condensed matter physics, and materials science to achieve our goals.”

Dmytro Perepichka, a professor and chair of Chemistry at McGill University, said they have been working on this research for a long time.

“Structurally reconfigurable two-dimensional conjugated polymers can give a new breadth to applications of two-dimensional materials in electronics,” Perepichka said.

“We started dreaming of them more than 15 years ago. It’s only through this four-way collaboration, across the country and between the continents, that this dream has become the reality.”

Federico Rosei, a professor at the Énergie Matériaux Télécommunications Research Centre of the Institut National de la Recherche Scientifique (INRS) in Varennes who holds the Canada Research Chair in Nanostructured Materials since 2016, said they are excited about the results of this collaboration.

“These results provide new insights into mechanisms of surface reactions at a fundamental level and simultaneously yield a novel material with outstanding properties, whose existence had only been predicted theoretically until now,” he said.

About this study

Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties” by G. Galeotti et al. was published in Nature Materials.

This research was partially supported by a project Grande Rilevanza Italy-Quebec of the Italian Ministero degli Affari Esteri e della Cooperazione Internazionale, Direzione Generale per la Promozione del Sistema Paese, the Natural Sciences and Engineering Research Council of Canada, the Fonds Québécois de la recherche sur la nature et les technologies and a US Army Research Office. Federico Rosei is also grateful to the Canada Research Chairs program for funding and partial salary support.

About McGill University

Founded in Montreal, Quebec, in 1821, McGill is a leading Canadian post-secondary institution. It has two campuses, 11 faculties, 13 professional schools, 300 programs of study and over 40,000 students, including more than 10,200 graduate students. McGill attracts students from over 150 countries around the world, its 12,800 international students making up 31% per cent of the student body. Over half of McGill students claim a first language other than English, including approximately 19% of our students who say French is their mother tongue.

About the INRS
The Institut National de la Recherche Scientifique (INRS) is the only institution in Québec dedicated exclusively to graduate level university research and training. The impacts of its faculty and students are felt around the world. INRS proudly contributes to societal progress in partnership with industry and community stakeholders, both through its discoveries and by training new researchers and technicians to deliver scientific, social, and technological breakthroughs in the future.

Lakehead University
Lakehead University is a fully comprehensive university with approximately 9,700 full-time equivalent students and over 2,000 faculty and staff at two campuses in Orillia and Thunder Bay, Ontario. Lakehead has 10 faculties, including Business Administration, Education, Engineering, Graduate Studies, Health & Behavioural Sciences, Law, Natural Resources Management, the Northern Ontario School of Medicine, Science & Environmental Studies, and Social Sciences & Humanities. In 2019, Maclean’s 2020 University Rankings, once again, included Lakehead University among Canada’s Top 10 primarily undergraduate universities, while Research Infosource named Lakehead ‘Research University of the Year’ in its category for the fifth consecutive year. Visit www.lakeheadu.ca

I’m a little surprised there wasn’t a quote from one of the Italian researchers in the McGill news release but then there isn’t a quote in this slightly more accessible May 18, 2020 Consiglio Nazionale delle Ricerche press release either,

Graphene’s isolation took the world by surprise and was meant to revolutionize modern electronics. However, it was soon realized that its intrinsic properties limit the utilization in our daily electronic devices. When a concept of Mathematics, namely Topology, met the field of on-surface chemistry, new materials with exotic features were theoretically discovered. Topological materials exhibit technological relevant properties such as quantum hall conductivity that are protected by a concept similar to the comparison of a coffee mug and a donut.  These structures can be synthesized by the versatile molecular engineering toolbox that surface reactions provide. Nevertheless, the realization of such a material yields access to properties that suit the figure of merits for modern electronic application and could eventually for example lead to solve the ever-increasing heat conflict in chip design. However, problems such as low crystallinity and defect rich structures prevented the experimental observation and kept it for more than a decade a playground only investigated theoretically.

An international team of scientists from Institut National de la Recherche Scientifique (Centre Energie, Matériaux et Télécommunications), McGill University and Lakehead University, both located in Canada, and the SAMOS laboratory of the Istituto di Struttura della Materia (Cnr), led by Giorgio Contini, demonstrates, in a recent publication on Nature Materials, that the synthesis of two-dimensional π-conjugated polymers with topological Dirac cone and flats bands became a reality allowing a sneak peek into the world of organic topological materials.

Complementary work of organic chemists and surface scientists lead to two-dimensional polymers on a mesoscopic scale and granted access to their electronic properties. The band structure of the topological polymer reveals both flat bands and a Dirac cone confirming the prediction of theory. The observed coexistence of both structures is of particular interest, since whereas Dirac cones yield massless charge carriers (a band velocity of the same order of magnitude of graphene has been obtained), necessary for technological applications, flat bands quench the kinetic energy of charge carriers and could give rise to intriguing phenomena such as the anomalous Hall effect, surface superconductivity or superfluid transport.

This work paths multiple new roads – both theoretical and experimental nature. The integration of this topological polymer into a device such as transistors possibly reveals immense performance. On the other hand, it will foster many researchers to explore a wide range of two-dimensional polymers with different lattice symmetries, obtaining insight into the relationship between geometrical and electrical topology, which would in return be beneficial to fine tune a-priori theoretical studies. These materials – beyond graphene – could be then used for both their intrinsic properties as well as their interplay in new heterostructure designs.

The authors are currently exploring the practical use of the realized material trying to integrate it into transistors, pushing toward a complete designing of artificial topological lattices.

This work was partially supported by a project Grande Rilevanza Italy-Quebec of the Italian Ministero degli Affari Esteri e della Cooperazione Internazionale (MAECI), Direzione Generale per la Promozione del Sistema Paese.

The Italians also included an image to accompany their press release,

Image of the synthesized material and its band structure Courtesy: Consiglio Nazionale delle Ricerche

My heart sank when I saw the number of authors for this paper (WordPress no longer [since their Christmas 2018 update] makes it easy to add the author’s names quickly to the ‘tags field’). Regardless and in keeping with my practice, here’s a link to and a citation for the paper,

Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties by G. Galeotti, F. De Marchi, E. Hamzehpoor, O. MacLean, M. Rajeswara Rao, Y. Chen, L. V. Besteiro, D. Dettmann, L. Ferrari, F. Frezza, P. M. Sheverdyaeva, R. Liu, A. K. Kundu, P. Moras, M. Ebrahimi, M. C. Gallagher, F. Rosei, D. F. Perepichka & G. Contini. Nature Materials (2020) DOI: https://doi.org/10.1038/s41563-020-0682-z Published 18 May 2020

This paper is behind a paywall.

A mathematical sculptor, a live webcast (May 6, 2020) with theoretical cosmologist and author Katie Mack, & uniting quantum theory with Einstein’s Theory of General Relativity in a drawing

I’ve bookended information about the talk with physicist Katie Mack at Canada’s Perimeter Institute on May 6, 2020 with two items on visual art and mathematics and the sciences.

Mathematical sculpting

Robert Fathauer’s Three-Fold Hyperbolic Form exhibits negative curvature, a concept in geometry and topology that describes a surface curving in two directions at every point. Hemp crochet by Marla Peterson. Image courtesy of Robert Fathauer. [downloaded from https://www.pnas.org/content/114/26/6643.full]

You’ll find this image and a few more in a fascinating 2017 paper (see link and citation below) about mathematical sculpture,

Ferguson [Helaman Ferguson], who holds a doctorate in mathematics, never chose between art and science: now nearly 77 years old, he’s a mathematical sculptor. Working in stone and bronze, Ferguson creates sculptures, often placed on college campuses, that turn deep mathematical ideas into solid objects that anyone—seasoned professors, curious children, wayward mathophobes—can experience for themselves.

Mathematics has an intrinsic aesthetic—proofs are often described as “beautiful” or “elegant”—that can be difficult for mathematicians to communicate to outsiders, says Ferguson. “It isn’t something you can tell somebody about on the street,” he says. “But if I hand them a sculpture, they’re immediately relating to it.” Sculpture, he says, can tell a story about math in an accessible language.

Here’s a link to and a citation for the paper,

Science and Culture: Armed with a knack for patterns and symmetry, mathematical sculptors create compelling forms by Stephen Ornes. PNAS [Proceedings of the National Academy of Sciences] June 27, 2017 114 (26) 6643-6645; https://doi.org/10.1073/pnas.1706987114

This paper appears to be open access.

Live webcast: theoretical cosmologist & science communicator Katie Mack

The live webcast will take place at 4 pm PT (1600 hours) on Wednesday, May 6, 2020. Here’s more about Katie Mack and the webcast from the event webpage (click through to the event page to get to the webcast) on the Perimeter Institute of Theoretical Physics (PI) website,

In a special live webcast on May 6 [2020] at 7 pm ET [4 pm PT], theoretical cosmologist and science communicator Katie Mack — known to her many Twitter followers as @astrokatie — will answer questions about her favourite subject: the end of the universe.

Mack, who holds a Simons Emmy Noether Visiting Fellowship at Perimeter, will give viewers a sneak peek at her upcoming book, The End of Everything (Astrophysically Speaking). She will then participate in a live “ask me anything” session, answering questions submitted via social media using the hashtag #piLIVE.

Mack is an Assistant Professor at North Carolina State University whose research investigates dark matter, vacuum decay, and the epoch of reionization. Mack is a popular science communicator on social media, and has contributed to Scientific American, Slate, Sky & Telescope, Time, and Cosmos.

PI is located in Waterloo, Ontario, Canada.

Uniting quantum theory with Einstein’s Theory of General Relativity with a drawing about light

The article by Stephon Alexander was originally published March 16, 2017 for Nautilus. My excerpts are from a getpocket.com selection,

LIGHT IN THE GARDEN: This drawing by the Oakes brothers, Irwin Gardens at the Getty in Winter, inspired the author to think anew about quantum mechanics and general relativity. The meticulous drawing, done on curved paper, allows viewers to reflect on the act of perception. Credit: Ryan and Trevor Oakes [downloaded from http://nautil.us/issue/46/balance/what-this-drawing-taught-me-about-four_dimensional-spacetime]

My aim as a theoretical physicist is to unite quantum theory with Einstein’s Theory of General Relativity. While there are a few proposals for this unification, such as string theory and loop quantum gravity, many roadblocks to a complete unification remain.

Einstein’s theory tells us the gravitational force is a direct manifestation of space and time bending. The sun bends the fabric of space, much like a sleeping person bends a mattress. Planetary orbits, including Earth’s, are motion along the contours of the bent space created by the sun. This theory provides some critical insights into the nature of light.

… one summer, I had the most unexpected breakthrough. Beth Jacobs, a member of the New York Academy of Sciences’ Board of Governors, invited me and some friends to her New York City apartment to meet the Oakes twins, artists who have gained attention in recent years for their drawings as well as the innovative technique and inventions they deploy to create them. An Oakes work, Irwin Gardens at the Getty in Winter (2011), an intricate drawing of the famous gardens designed by Robert Irwin at The Getty Museum in Los Angeles, was displayed on the balcony of Jacobs’ apartment overlooking Central Park, with the backdrop of the New York City skyline lit with a warm orange sky moments before sunset.

As I gazed at the drawing, I could feel the artists challenging me to reconsider the nature of light. I began to realize I should consider not only the physics of light, but also how light information is perceived by observers, when theorizing and conceiving new principles to unify quantum mechanics and general relativity. …

Ryan and Trevor Oakes, 35, have been exploring the impact and intersection of visual perception and the physics of light since they were kids. After attending The Cooper Union for the Advancement of Science and Art in New York City, and years of experimentation and inventing new techniques, the twins exploited the notion that light information is better described when originating from a spherical surface.

Fascinating stuff. BTW, you can find the original article here on Nautilus.

The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (5 of 5)

At long last, the end is in sight! This last part is mostly a collection of items that don’t fit elsewhere or could have fit elsewhere but that particular part was already overstuffed.

Podcasting science for the people

March 2009 was the birth date for a podcast, then called Skeptically Speaking and now known as Science for the People (Wikipedia entry). Here’s more from the Science for the People About webpage,

Science for the People is a long-format interview podcast that explores the connections between science, popular culture, history, and public policy, to help listeners understand the evidence and arguments behind what’s in the news and on the shelves.

Every week, our hosts sit down with science researchers, writers, authors, journalists, and experts to discuss science from the past, the science that affects our lives today, and how science might change our future.

THE TEAM

Rachelle Saunders: Producer & Host

I love to learn new things, and say the word “fascinating” way too much. I like to talk about intersections and how science and critical thinking intersect with everyday life, politics, history, and culture. By day I’m a web developer, and I definitely listen to way too many podcasts.

….

H/t to GeekWrapped’s 20 Best Science Podcasts.

Science: human contexts and cosmopolitanism

situating science: Science in Human Contexts was a seven-year project ending in 2014 and funded by the Social Sciences and Humanities Research Council of Canada (SSHRC). Here’s more from their Project Summary webpage,

Created in 2007 with the generous funding of the Social Sciences and Humanities Research Council of Canada Strategic Knowledge Cluster grant, Situating Science is a seven-year project promoting communication and collaboration among humanists and social scientists that are engaged in the study of science and technology.

You can find out more about Situating Science’s final days in my August 16, 2013 posting where I included a lot of information about one of their last events titled, “Science and Society 2013 Symposium; Emerging Agendas for Citizens and the Sciences.”

The “think-tank” will dovetail nicely with a special symposium in Ottawa on Science and Society Oct. 21-23. For this symposium, the Cluster is partnering with the Institute for Science, Society and Policy to bring together scholars from various disciplines, public servants and policy workers to discuss key issues at the intersection of science and society. [emphasis mine]  The discussions will be compiled in a document to be shared with stakeholders and the wider public.

The team will continue to seek support and partnerships for projects within the scope of its objectives. Among our top priorities are a partnership to explore sciences, technologies and their publics as well as new partnerships to build upon exchanges between scholars and institutions in India, Singapore and Canada.

The Situating Science folks did attempt to carry on the organization’s work by rebranding the organization to call it the Canadian Consortium for Situating Science and Technology (CCSST). It seems to have been a short-lived volunteer effort.

Meanwhile, the special symposium held in October 2013 appears to have been the springboard for another SSHRC funded multi-year initiative, this time focused on science collaborations between Canada, India, and Singapore, Cosmopolitanism and the Local in Science and Nature from 2014 – 2017. Despite their sunset year having been in 2017, their homepage boasts news about a 2020 Congress and their Twitter feed is still active. Harking back, here’s what the project was designed to do, from the About Us page,

Welcome to our three year project that will establish a research network on “Cosmopolitanism” in science. It closely examines the actual types of negotiations that go into the making of science and its culture within an increasingly globalized landscape. This partnership is both about “cosmopolitanism and the local” and is, at the same time, cosmopolitan and local.

Anyone who reads this blog with any frequency will know that I often comment on the fact that when organizations such as the Council of Canadian Academies bring in experts from other parts of the world, they are almost always from the US or Europe. So, I was delighted to discover the Cosmopolitanism project and featured it in a February 19, 2015 posting.

Here’s more from Cosmopolitanism’s About Us page

Specifically, the project will:

  1. Expose a hitherto largely Eurocentric scholarly community in Canada to widening international perspectives and methods,
  2. Build on past successes at border-crossings and exchanges between the participants,
  3. Facilitate a much needed nation-wide organization and exchange amongst Indian and South East Asian scholars, in concert with their Canadian counterparts, by integrating into an international network,
  4. Open up new perspectives on the genesis and place of globalized science, and thereby
  5. Offer alternative ways to conceptualize and engage globalization itself, and especially the globalization of knowledge and science.
  6. Bring the managerial team together for joint discussion, research exchange, leveraging and planning – all in the aid of laying the grounds of a sustainable partnership

Eco Art (also known as ecological art or environmental art)

I’m of two minds as to whether I should have tried to stuff this into the art/sci subsection in part 2. On balance, I decided that this merited its own section and that part 2 was already overstuffed.

Let’s start in Newfoundland and Labrador with Marlene Creates (pronounced Kreets), here’s more about her from her website’s bio webpage,

Marlene Creates (pronounced “Kreets”) is an environmental artist and poet who works with photography, video, scientific and vernacular knowledge, walking and collaborative site-specific performance in the six-acre patch of boreal forest in Portugal Cove, Newfoundland and Labrador, Canada, where she lives.

For almost 40 years her work has been an exploration of the relationship between human experience, memory, language and the land, and the impact they have on each other. …

Currently her work is focused on the six acres of boreal forest where she lives in a ‘relational aesthetic’ to the land. This oeuvre includes Water Flowing to the Sea Captured at the Speed of Light, Blast Hole Pond River, Newfoundland 2002–2003, and several ongoing projects:

Marlene Creates received a Governor General’s Award in Visual and Media Arts for “Lifetime Artistic Achievement” in 2019. …

As mentioned in her bio, Creates has a ‘forest’ project. The Boreal Poetry Garden,
Portugal Cove, Newfoundland 2005– (ongoing)
. If you are interested in exploring it, she has created a virtual walk here. Just click on one of the index items on the right side of the screen to activate a video.

An October 1, 2018 article by Yasmin Nurming-Por for Canadian Art magazine features 10 artists who focus on environmental and/or land art themes,

As part of her 2016 master’s thesis exhibition, Fredericton [New Brunswick] artist Gillian Dykeman presented the video Dispatches from the Feminist Utopian Future within a larger installation that imagined various canonical earthworks from the perspective of the future. It’s a project that addresses the inherent sense of timelessness in these massive interventions on the natural landscape from the perspective of contemporary land politics. … she proposes a kind of interaction with the invasive and often colonial gestures of modernist Land art, one that imagines a different future for these earthworks, where they are treated as alien in a landscape and as beacons from a feminist future.

A video trailer featuring “DISPATCHES FROM THE FEMINIST UTOPIAN FUTURE” (from Dykeman’s website archive page featuring the show,

If you have the time, I recommend reading the article in its entirety.

Oddly, I did not expect Vancouver to have such an active eco arts focus. The City of Vancouver Parks Board maintains an Environmental Art webpage on its site listing a number of current and past projects.

I cannot find the date for when this Parks Board initiative started but I did find a document produced prior to a Spring 2006 Arts & Ecology think tank held in Vancouver under the auspices of the Canada Council for the Arts, the Canadian Commission for UNESCO, the Vancouver Foundation, and the Royal Society for the Encouragement of the Arts, Manufactures and Commerce (London UK).

In all likelihood, Vancouver Park Board’s Environmental Art webpage was produced after 2006.

I imagine the document and the think tank session helped to anchor any then current eco art projects and encouraged more projects.

The document (MAPPING THE TERRAIN OF CONTEMPORARY ECOART PRACTICE AND COLLABORATION) while almost 14 years old offers a fascinating overview of what was happening internationally and in Canada.

While its early days were in 2008, EartHand Gleaners (Vancouver-based) wasn’t formally founded as an arts non-for-profit organization until 2013. You can find out more about them and their projects here.

Eco Art has been around for decades according to the eco art think tank document but it does seemed to have gained momentum here in Canada over the last decade.

Photography and the Natural Sciences and Engineering Research Council of Canada (NSERC)

Exploring the jack pine tight knit family tree. Credit: Dana Harris Brock University (2018)

Pictured are developing phloem, cambial, and xylem cells (blue), and mature xylem cells (red), in the outermost portion of a jack pine tree. This research aims to identify the influences of climate on the cellular development of the species at its northern limit in Yellowknife, NT. The differences in these cell formations is what creates the annual tree ring boundary.

Science Exposed is a photography contest for scientists which has been run since 2016 (assuming the Past Winners archive is a good indicator for the programme’s starting year).

The 2020 competition recently closed but public voting should start soon. It’s nice to see that NSERC is now making efforts to engage members of the general public rather than focusing its efforts solely on children. The UK’s ASPIRES project seems to support the idea that adults need to be more fully engaged with STEM (science, technology, engineering, and mathematics) efforts as it found that children’s attitudes toward science are strongly influenced by their parents’ and relatives’ attitudes.(See my January 31, 2012 posting.)

Ingenious, the book and Ingenium, the science museums

To celebrate Canada’s 150th anniversary in 2017, then Governor General David Johnston and Tom Jenkins (Chair of the board for Open Text and former Chair of the federal committee overseeing the ‘Review of Federal Support to R&’D [see my October 21, 2011 posting about the resulting report]) wrote a boo about Canada’s inventors and inventions.

Johnston and Jenkins jaunted around the country launching their book (I have more about their June 1, 2017 Vancouver visit in a May 30, 2017 posting; scroll down about 60% of the way]).

The book’s full title, “Ingenious: How Canadian Innovators Made the World Smarter, Smaller, Kinder, Safer, Healthier, Wealthier and Happier ” outlines their thesis neatly.

Not all that long after the book was launched, there was a name change (thankfully) for the Canada Science and Technology Museums Corporation (CSTMC). It is now known as Ingenium (covered in my August 10, 2017 posting).

The reason that name change was such a relief (for those who don’t know) is that the corporation included three national science museums: Canada Aviation and Space Museum, Canada Agriculture and Food Museum, and (wait for it) Canada Science and Technology Museum. On the list of confusing names, this ranks very high for me. Again, I give thanks for the change from CSTMC to Ingenium, leaving the name for the museum alone.

2017 was also the year that the newly refurbished Canada Science and Technology Museum was reopened after more than three years (see my June 23, 2017 posting about the November 2017 reopening and my June 12, 2015 posting for more information about the situation that led to the closure).

A Saskatchewan lab, Convergence, Order of Canada, Year of Science, Animated Mathematics, a graphic novel, and new media

Since this section is jampacked, I’m using subheads.

Saskatchewan

Dr. Brian Eames hosts an artist-in-residence, Jean-Sebastien (JS) Gauthier at the University of Saskatchewan’s College of Medicine Eames Lab. A February 16, 2018 posting here featured their first collaboration together. It covered evolutionary biology, the synchrotron (Canadian Light Source [CLS]) in Saskatoon, and the ‘ins and outs’ of a collaboration between a scientist an artist. Presumably the art-in-residence position indicates that first collaboration went very well.

In January 2020, Brian kindly gave me an update on their current projects. Jean-Sebastin successfully coded an interactive piece for an exhibit at the 2019 Nuit Blanche Saskatoon event using Connect (Xbox). More recently, he got a VR [virtual reality] helmet for an upcoming project or two.

After much clicking on the Nuit Blanche Saskatoon 2019 interactive map, I found this,

Our Glass is a work of interactive SciArt co-created by artist JS Gauthier and biologist Dr Brian F. Eames. It uses cutting-edge 3D microscopic images produced for artistic purposes at the Canadian Light Source, Canada’s only synchrotron facility. Our Glass engages viewers of all ages to peer within an hourglass showing how embryonic development compares among animals with whom we share a close genetic heritage.

Eames also mentioned they were hoping to hold an international SciArt Symposium at the University of Saskatchewan in 2021.

Convergence

Dr. Cristian Zaelzer-Perez, an instructor at Concordia University (Montreal; read this November 20, 2019 Concordia news release by Kelsey Rolfe for more about his work and awards), in 2016 founded the Convergence Initiative, a not-for-profit organization that encourages interdisciplinary neuroscience and art collaborations.

Cat Lau’s December 23, 2019 posting for the Science Borealis blog provides insight into Zaelzer-Perez’s relationship to science and art,

Cristian: I have had a relationship with art and science ever since I have had memory. As a child, I loved to do classifications, from grouping different flowers to collecting leaves by their shapes. At the same time, I really loved to draw them and for me, both things never looked different; they (art and science) have always worked together.

I started as a graphic designer, but the pursuit to learn about nature was never dead. At some point, I knew I wanted to go back to school to do research, to explore and learn new things. I started studying medical technologies, then molecular biology and then jumped into a PhD. At that point, my life as a graphic designer slipped down, because of the focus you have to give to the discipline. It seemed like every time I tried to dedicate myself to one thing, I would find myself doing the other thing a couple years later.

I came to Montreal to do my post-doc, but I had trouble publishing, which became problematic in getting a career. I was still loving what I was doing, but not seeing a future in that. Once again, art came back into my life and at the same time I saw that science was becoming really hard to understand and scientists were not doing much to bridge the gap.

The Convergence Initiative has an impressive array of programmes. Do check it out.

Order of Canada and ‘The Science Lady’

For a writer of children’s science books, an appointment to the Order of Canada is a singular honour. I cannot recall a children’s science book writer previous to Shar Levine being appointed as a Member of the Order of Canada. Known as ‘The Science Lady‘, Levine was appointed in 2016. Here’s more from her Wikipedia entry, Note: Links have been removed,

Shar Levine (born 1953) is an award-winning, best selling Canadian children’s author, and designer.

Shar has written over 70 books and book/kits, primarily on hands-on science for children. For her work in Science literacy and Science promotion, Shar has been appointed to the 2016 Order of Canada. In 2015, she was recognized by the University of Alberta and received their Alumni Honour Award. Levine, and her co-author, Leslie Johnstone, were co-recipients of the Eve Savory Award for Science Communication from the BC Innovation Council (2006) and their book, Backyard Science, was a finalist for the Subaru Award, (hands on activity) from the American Association for the Advancement of Science, Science Books and Films (2005). The Ultimate Guide to Your Microscope was a finalist-2008 American Association for the Advancement of Science/Subaru Science Books and Films Prize Hands -On Science/Activity Books.

To get a sense of what an appointment to the Order of Canada means, here’s a description from the government of Canada website,

The Order of Canada is how our country honours people who make extraordinary contributions to the nation.

Since its creation in 1967—Canada’s centennial year—more than 7 000 people from all sectors of society have been invested into the Order. The contributions of these trailblazers are varied, yet they have all enriched the lives of others and made a difference to this country. Their grit and passion inspire us, teach us and show us the way forward. They exemplify the Order’s motto: DESIDERANTES MELIOREM PATRIAM (“They desire a better country”).

Year of Science in British Columbia

In the Fall of 2010, the British Columbia provincial government announced a Year of Science (coinciding with the school year) . Originally, it was supposed to be a provincial government-wide initiative but the idea percolated through any number of processes and emerged as a year dedicated to science education for youth (according to the idea’s originator, Moira Stilwell who was then a Member of the Legislative Assembly [MLA]’ I spoke with her sometime in 2010 or 2011).

As the ‘year’ drew to a close, there was a finale ($1.1M in funding), which was featured here in a July 6, 2011 posting.

The larger portion of the money ($1M) was awarded to Science World while $100,000 ($0.1 M) was given to the Pacific Institute of Mathematical Sciences To my knowledge there have been no followup announcements about how the money was used.

Animation and mathematics

In Toronto, mathematician Dr. Karan Singh enjoyed a flurry of interest due to his association with animator Chris Landreth and their Academy Award (Oscar) Winning 2004 animated film, Ryan. They have continued to work together as members of the Dynamic Graphics Project (DGP) Lab at the University of Toronto. Theirs is not the only Oscar winning work to emerge from one or more of the members of the lab. Jos Stam, DGP graduate and adjunct professor won his third in 2019.

A graphic novel and medical promise

An academic at Simon Fraser University since 2015, Coleman Nye worked with three other women to produce a graphic novel about medical dilemmas in a genre described as’ ethno-fiction’.

Lissa: A Story about Medical Promise, Friendship, and Revolution (2017) by Sherine Hamdy and Coleman Nye, two anthropologists and Art by Sarula Bao and Caroline Brewer, two artists.

Here’s a description of the book from the University of Toronto Press website,

As young girls in Cairo, Anna and Layla strike up an unlikely friendship that crosses class, cultural, and religious divides. Years later, Anna learns that she may carry the hereditary cancer gene responsible for her mother’s death. Meanwhile, Layla’s family is faced with a difficult decision about kidney transplantation. Their friendship is put to the test when these medical crises reveal stark differences in their perspectives…until revolutionary unrest in Egypt changes their lives forever.

The first book in a new series [ethnoGRAPIC; a series of graphic novels from the University of Toronto Press], Lissa brings anthropological research to life in comic form, combining scholarly insights and accessible, visually-rich storytelling to foster greater understanding of global politics, inequalities, and solidarity.

I hope to write more about this graphic novel in a future posting.

New Media

I don’t know if this could be described as a movement yet but it’s certainly an interesting minor development. Two new media centres have hosted, in the last four years, art/sci projects and/or workshops. It’s unexpected given this definition from the Wikipedia entry for New Media (Note: Links have been removed),

New media are forms of media that are computational and rely on computers for redistribution. Some examples of new media are computer animations, computer games, human-computer interfaces, interactive computer installations, websites, and virtual worlds.[1][2]

In Manitoba, the Video Pool Media Arts Centre hosted a February 2016 workshop Biology as a New Art Medium: Workshop with Marta De Menezes. De Menezes, an artist from Portugal, gave workshops and talks in both Winnipeg (Manitoba) and Toronto (Ontario). Here’s a description for the one in Winnipeg,

This workshop aims to explore the multiple possibilities of artistic approaches that can be developed in relation to Art and Microbiology in a DIY situation. A special emphasis will be placed on the development of collaborative art and microbiology projects where the artist has to learn some biological research skills in order to create the artwork. The course will consist of a series of intense experimental sessions that will give raise to discussions on the artistic, aesthetic and ethical issues raised by the art and the science involved. Handling these materials and organisms will provoke a reflection on the theoretical issues involved and the course will provide background information on the current diversity of artistic discourses centred on biological sciences, as well a forum for debate.

VIVO Media Arts Centre in Vancouver hosted the Invasive Systems in 2019. From the exhibition page,

Picture this – a world where AI invades human creativity, bacteria invade our brains, and invisible technological signals penetrate all natural environments. Where invasive species from plants to humans transform spaces where they don’t belong, technology infiltrates every aspect of our daily lives, and the waste of human inventions ravages our natural environments.

This weekend festival includes an art-science exhibition [emphasis mine], a hands-on workshop (Sat, separate registration required), and guided discussions and tours by the curator (Sat/Sun). It will showcase collaborative works by three artist/scientist pairs, and independent works by six artists. Opening reception will be on Friday, November 8 starting at 7pm; curator’s remarks and performance by Edzi’u at 7:30pm and 9pm. 

New Westminster’s (British Columbia) New Media Gallery recently hosted an exhibition, ‘winds‘ from June 20 – September 29, 2019 that could be described as an art/sci exhibition,

Landscape and weather have long shared an intimate connection with the arts.  Each of the works here is a landscape: captured, interpreted and presented through a range of technologies. The four artists in this exhibition have taken, as their material process, the movement of wind through physical space & time. They explore how our perception and understanding of landscape can be interpreted through technology. 

These works have been created by what might be understood as a sort of scientific method or process that involves collecting data, acute observation, controlled experiments and the incorporation of measurements and technologies that control or collect motion, pressure, sound, pattern and the like. …

Council of Canadian Academies, Publishing, and Open Access

Established in 2005, the Council of Canadian Academies (CCA) (Wikipedia entry) is tasked by various departments and agencies to answer their queries about science issues that could affect the populace and/or the government. In 2014, the CCA published a report titled, Science Culture: Where Canada Stands. It was in response to the Canada Science and Technology Museums Corporation (now called Ingenium), Industry Canada, and Natural Resources Canada and their joint request that the CCA conduct an in-depth, independent assessment to investigate the state of Canada’s science culture.

I gave a pretty extensive analysis of the report, which I delivered in four parts: Part 1, Part 2 (a), Part 2 (b), and Part 3. In brief, the term ‘science culture’ seems to be specifically, i.e., it’s not used elsewhere in the world (that we know of), Canadian. We have lots to be proud of. I was a little disappointed by the lack of culture (arts) producers on the expert panel and, as usual, I bemoaned the fact that the international community included as reviewers, members of the panel, and as points for comparison were drawn from the usual suspects (US, UK, or somewhere in northern Europe).

Science publishing in Canada took a bit of a turn in 2010, when the country’s largest science publisher, NRC (National Research Council) Research Publisher was cut loose from the government and spun out into the private, *not-for-profit publisher*, Canadian Science Publishing (CSP). From the CSP Wikipedia entry,

Since 2010, Canadian Science Publishing has acquired five new journals:

Since 2010, Canadian Science Publishing has also launched four new journals

Canadian Science Publishing offers researchers options to make their published papers freely available (open access) in their standard journals and in their open access journal, (from the CSP Wikipedia entry)

Arctic Science aims to provide a collaborative approach to Arctic research for a diverse group of users including government, policy makers, the general public, and researchers across all scientific fields

FACETS is Canada’s first open access multidisciplinary science journal, aiming to advance science by publishing research that the multi-faceted global community of research. FACETS is the official journal of the Royal Society of Canada’s Academy of Science.

Anthropocene Coasts aims to understand and predict the effects of human activity, including climate change, on coastal regions.

In addition, Canadian Science Publishing strives to make their content accessible through the CSP blog that includes plain language summaries of featured research. The open-access journal FACETS similarly publishes plain language summaries.

*comment removed*

CSP announced (on Twitter) a new annual contest in 2016,

Canadian Science Publishing@cdnsciencepub

New CONTEST! Announcing Visualizing Science! Share your science images & win great prizes! Full details on the blog http://cdnsciencepub.com/blog/2016-csp-image-contest-visualizing-science.aspx1:45 PM · Sep 19, 2016·TweetDeck

The 2016 blog posting is no longer accessible. Oddly for a contest of this type, I can’t find an image archive for previous contests. Regardless, a 2020 competition has been announced for Summer 2020. There are some details on the VISUALIZING SCIENCE 2020 webpage but some are missing, e.g., no opening date, no deadline. They are encouraging you to sign up for notices.

Back to open access, in a January 22, 2016 posting I featured news about Montreal Neuro (Montreal Neurological Institute [MNI] in Québec, Canada) and its then new policy giving researchers world wide access to its research and made a pledge that it would not seek patents for its work.

Fish, Newfoundland & Labrador, and Prince Edward Island

AquAdvantage’s genetically modified salmon was approved for consumption in Canada according to my May 20, 2016 posting. The salmon are produced/farmed by a US company (AquaBounty) but the the work of genetically modifying Atlantic salmon with genetic material from the Chinook (a Pacific ocean salmon) was mostly undertaken at Memorial University in Newfoundland & Labrador.

The process by which work done in Newfoundland & Labrador becomes the property of a US company is one that’s well known here in Canada. The preliminary work and technology is developed here and then purchased by a US company, which files patents, markets, and profits from it. Interestingly, the fish farms for the AquAdvantage salmon are mostly (two out of three) located on Prince Edward Island.

Intriguingly, 4.5 tonnes of the modified fish were sold for consumption in Canada without consumers being informed (see my Sept. 13, 2017 posting, scroll down about 45% of the way).

It’s not all sunshine and roses where science culture in Canada is concerned. Incidents where Canadians are not informed let alone consulted about major changes in the food supply and other areas are not unusual. Too many times, scientists, politicians, and government policy experts want to spread news about science without any response from the recipients who are in effect viewed as a ‘tabula rasa’ or a blank page.

Tying it all up

This series has been my best attempt to document in some fashion or another the extraordinary range of science culture in Canada from roughly 2010-19. Thank you! This series represents a huge amount of work and effort to develop science culture in Canada and I am deeply thankful that people give so much to this effort.

I have inevitably missed people and organizations and events. For that I am very sorry. (There is an addendum to the series as it’s been hard to stop but I don’t expect to add anything or anyone more.)

I want to mention but can’t expand upon,the Pan-Canadian Artificial Intelligence Strategy, which was established in the 2017 federal budget (see a March 31, 2017 posting about the Vector Institute and Canada’s artificial intelligence sector).

Science Borealis, the Canadian science blog aggregator, owes its existence to Canadian Science Publishing for the support (programming and financial) needed to establish itself and, I believe, that support is still ongoing. I think thanks are also due to Jenny Ryan who was working for CSP and championed the initiative. Jenny now works for Canadian Blood Services. Interestingly, that agency added a new programme, a ‘Lay Science Writing Competition’ in 2018. It’s offered n partnership with two other groups, the Centre for Blood Research at the University of British Columbia and Science Borealis

While the Royal Astronomical Society of Canada does not fit into my time frame as it lists as its founding date December 1, 1868 (18 months after confederation), the organization did celebrate its 150th anniversary in 2018.

Vancouver’s Electric Company often produces theatrical experiences that cover science topics such as the one featured in my June 7, 2013 posting, You are very star—an immersive transmedia experience.

Let’s Talk Science (Wikipedia entry) has been heavily involved with offering STEM (science, technology, engineering, and mathematics) programming both as part of curricular and extra-curricular across Canada since 1993.

This organization predates confederation having been founded in 1849 by Sir Sandford Fleming and Kivas Tully in Toronto. for surveyors, civil engineers, and architects. It is the Royal Canadian Institute of Science (Wikipedia entry)_. With almost no interruption, they have been delivering a regular series of lectures on the University of Toronto campus since 1913.

The Perimeter Institute for Theoretical Physics is a more recent beast. In 1999 Mike Lazirides, founder of Research In Motion (now known as Blackberry Limited), acted as both founder and major benefactor for this institute in Waterloo, Ontario. They offer a substantive and imaginative outreach programmes such as Arts and Culture: “Event Horizons is a series of unique and extraordinary events that aim to stimulate and enthral. It is a showcase of innovative work of the highest international standard, an emotional, intellectual, and creative experience. And perhaps most importantly, it is a social space, where ideas collide and curious minds meet.”

While gene-editing hasn’t seemed to be top-of-mind for anyone other than those in the art/sci community that may change. My April 26, 2019 posting focused on what appears to be a campaign to reverse Canada’s criminal ban on human gene-editing of inheritable cells (germline). With less potential for controversy, there is a discussion about somatic gene therapies and engineered cell therapies. A report from the Council of Canadian is due in the Fall of 2020. (The therapies being discussed do not involve germline editing.)

French language science media and podcasting

Agence Science-Presse is unique as it is the only press agency in Canada devoted to science news. Founded in 1978, it has been active in print, radio, television, online blogs, and podcasts (Baladodiffusion). You can find their Twitter feed here.

I recently stumbled across ‘un balados’ (podcast), titled, 20%. Started in January 2019 by the magazine, Québec Science, the podcast is devoted to women in science and technology. 20%, the podcast’s name, is the statistic representing the number of women in those fields. “Dans les domaines de la science et de la technologie, les femmes ne forment que 20% de la main-d’oeuvre.” (from the podcast webpage) The podcast is a co-production between “Québec Science [founded in 1962] et l’Acfas [formerly, l’Association Canadienne-Française pour l’Avancement des Sciences, now, Association francophone pour le savoir], en collaboration avec la Commission canadienne pour l’UNESCO, L’Oréal Canada et la radio Choq.ca.” (also from the podcast webpage)

Does it mean anything?

There have been many developments since I started writing this series in late December 2019. In January 2020, Iran shot down one of its own planes. That error killed some 176 people , many of them (136 Canadians and students) bound for Canada. The number of people who were involved in the sciences, technology, and medicine was striking.

It was a shocking loss and will reverberate for quite some time. There is a memorial posting here (January 13, 2020), which includes links to another memorial posting and an essay.

As I write this we are dealing with a pandemic, COVID-19, which has us all practicing physical and social distancing. Congregations of large numbers are expressly forbidden. All of this is being done in a bid to lessen the passage of the virus, SARS-CoV-2 which causes COVID-19.

In the short term at least, it seems that much of what I’ve described in these five parts (and the addendum) will undergo significant changes or simply fade away.

As for the long term, with this last 10 years having hosted the most lively science culture scene I can ever recall, I’m hopeful that science culture in Canada will do more than survive but thrive.

For anyone who missed them:

Part 1 covers science communication, science media (mainstream and others such as blogging) and arts as exemplified by music and dance: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (1 of 5).

Part 2 covers art/science (or art/sci or sciart) efforts, science festivals both national and local, international art and technology conferences held in Canada, and various bar/pub/café events: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (2 of 5).

Part 3 covers comedy, do-it-yourself (DIY) biology, chief science advisor, science policy, mathematicians, and more: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (3 of 5)

Part 4 covers citizen science, birds, climate change, indigenous knowledge (science), and the IISD Experimental Lakes Area: The decade that was (2010-19) and the decade to come (2020-29): Science culture in Canada (4 of 5)

*”for-profit publisher, Canadian Science Publishing (CSP)” corrected to “not-for-profit publisher, Canadian Science Publishing (CSP)” and this comment “Not bad for a for-profit business, eh?” removed on April 29, 2020 as per Twitter comments,

Canadian Science Publishing @cdnsciencepub

Hi Maryse, thank you for alerting us to your blog. To clarify, Canadian Science Publishing is a not-for-profit publisher. Thank you as well for sharing our image contest. We’ve updated the contest page to indicate that the contest opens July 2020!

10:01am · 29 Apr 2020 · Twitter Web App

Geometry and art, an exhibition in Toronto (Canada)

I received this notice from ArtSci Salon mailing (on February 7, 2020 via email),

Geometry is Life

Robin Kingsburgh

February 5 — 16, 2020
Opening Reception: Saturday, February 8, 2 — 5 pm​

Cicada (detail), Robin Kingsburgh (Acrylic on MDF board, 36″ x 38″, 2018)

My work takes inspiration from geometry. For me the square and the circle are starting points. And ending points. The square, defined by the horizontal and the vertical: it’s all you need. The circle: a snake biting its tail; the beginning and end; the still point. Geometric archetypes. But there is no perfect circle; there is no perfect square. The beauty of Pythagoras is within our minds. Rendered by the human hand, the square becomes imperfect, and becomes a part of the human world – where imperfection reigns. The rhythm of imperfection is beauty, where order and chaos dance, and sometimes balance.

Robin Kingsburgh is a trained astronomer (Ph.D. in Astronomy, 1992, University College London). Her artistic education comes from studies at University of Toronto, as well as in the U.K. and France, and has paralleled her scientific development. She currently teaches various Natural Science courses at York University, Toronto. Her scientific background influences her artwork in an indirect, subconscious way, where she employs geometric motifs as a frequent theme. She is a member of Propeller Gallery, where she shows her artwork on a regular basis. She has recently been elected to the Ontario Society of Artists.

There you have it. Have a nice weekend!

ETA February 10, 2020: I’m sorry I forgot to include the address: Propeller Gallery, 30 Abell St Toronto. Wed-Sat 12-6pm, Sun 12-5pm

The latest math stars: honeybees!

Understanding the concept of zero—I still remember climbing that mountain, so to speak. It took the teacher quite a while to convince me that representing ‘nothing’ as a zero was worthwhile. In fact, it took the combined efforts of both my parents and the teacher to convince me to use zeroes as I was prepared to go without. The battle is long since over and I have learned to embrace zero.

I don’t think bees have to be convinced but they too may have a concept of zero. More about that later, here’s the latest abut bees and math from an October 10, 2019 news item on phys.org,

Start thinking about numbers and they can become large very quickly. The diameter of the universe is about 8.8×1023 km and the largest known number—googolplex, 1010100—outranks it enormously. Although that colossal concept was dreamt up by brilliant mathematicians, we’re still pretty limited when it comes to assessing quantities at a glance. ‘Humans have a threshold limit for instantly processing one to four elements accurately’, says Adrian Dyer from RMIT University, Australia; and it seems that we are not alone. Scarlett Howard from RMIT and the Université de Toulouse, France, explains that guppies, angelfish and even honeybees are capable of distinguishing between quantities of three and four, although the trusty insects come unstuck at finer differences; they fail to differentiate between four and five, which made her wonder. According to Howard, honeybees are quite accomplished mathematicians. ‘Recently, honeybees were shown to learn the rules of “less than” and “greater than” and apply these rules to evaluate numbers from zero to six’, she says. Maybe numeracy wasn’t the bees’ problem; was it how the question was posed? The duo publishes their discovery that bees can discriminate between four and five if the training procedure is correct in Journal of Experimental Biology.

An October 10, 2019 The Company of Biologists’ press release on EurekAlert, which originated the news item, refines the information with more detail,

Dyer explains that when animals are trained to distinguish between colours and objects, some training procedures simply reward the animals when they make the correct decision. In the case of the honeybees that could distinguish three from four, they received a sip of super-sweet sugar water when they made the correct selection but just a taste of plain water when they got it wrong. However, Dyer, Howard and colleagues Aurore Avarguès-Weber, Jair Garcia and Andrew Greentree knew there was an alternative strategy. This time, the bees would be given a bitter-tasting sip of quinine-flavoured water when they got the answer wrong. Would the unpleasant flavour help the honeybees to focus better and improve their maths?

‘[The] honeybees were very cooperative, especially when I was providing sugar rewards’, says Howard, who moved to France each April to take advantage the northern summer during the Australian winter, when bees are dormant. Training the bees to enter a Y-shaped maze, Howard presented the insects with a choice; a card featuring four shapes in one arm and a card featuring a different number of shapes (ranging from one to 10) in the other. During the first series of training sessions, Howard rewarded the bees with a sugary sip when they alighted correctly before the card with four shapes, in contrast to a sip of water when they selected the wrong card. However, when Howard trained a second set of bees she reproved them with a bitter-tasting sip of quinine when they chose incorrectly, rewarding the insects with sugar when they selected the card with four shapes. Once the bees had learned to pick out the card with four shapes, Howard tested whether they could distinguish the card with four shapes when offered a choice between it and cards with eight, seven, six or – the most challenging comparison – five shapes.

Not surprisingly, the bees that had only been rewarded during training struggled; they couldn’t even differentiate between four and eight shapes. However, when Howard tested the honeybees that had been trained more rigorously – receiving a quinine reprimand – their performance was considerably better, consistently picking the card with four shapes when offered a choice between it and cards with seven or eight shapes. Even more impressively, the bees succeeded when offered the more subtle choice between four and five shapes.

So, it seems that honeybees are better mathematicians than had been credited. Unlocking their ability was simply a matter of asking the question in the right way and Howard is now keen to find out just how far counting bees can go.

I’ll get to the link to and citation for the paper in a minute but first, I found more about bees and math (including zero) in this February 7, 2019 article by Jason Daley for The Smithsonian (Note: Links have been removed),

Bees are impressive creatures, powering entire ecosystems via pollination and making sweet honey at the same time, one of the most incredible substances in nature. But it turns out the little striped insects are also quite clever. A new study suggests that, despite having tiny brains, bees understand the mathematical concepts of addition and subtraction.

To test the numeracy of the arthropods, researchers set up unique Y-shaped math mazes for the bees to navigate, according to Nicola Davis at the The Guardian. Because the insects can’t read, and schooling them to recognize abstract symbols like plus and minus signs would be incredibly difficult, the researchers used color to indicate addition or subtraction. …

Fourteen bees spent between four and seven hours completing 100 trips through the mazes during training exercises with the shapes and numbers chosen at random. All of the bees appeared to learn the concept. Then, the bees were tested 10 times each using two addition and two subtraction scenarios that had not been part of the training runs. The little buzzers got the correct answer between 64 and 72 percent of the time, better than would be expected by chance.

Last year, the same team of researchers published a paper suggesting that bees could understand the concept of zero, which puts them in an elite club of mathematically-minded animals that, at a minimum, have the ability to perceive higher and lower numbers in different groups. Animals with this ability include frogs, lions, spiders, crows, chicken chicks, some fish and other species. And these are not the only higher-level skills that bees appear to possess. A 2010 study that Dyer [Adrian Dyer of RMIT University in Australia] also participated in suggests that bees can remember human faces using the same mechanisms as people. Bees also use a complex type of movement called the waggle dance to communicate geographical information to one other, another sophisticated ability packed into a brain the size of a sesame seed.

If researchers could figure out how bees perform so many complicated tasks with such a limited number of neurons, the research could have implications for both biology and technology, such as machine learning. …

Then again, maybe the honey makers are getting more credit than they deserve. Clint Perry, who studies invertebrate intelligence at the Bee Sensory and Behavioral Ecology Lab at Queen Mary University of London tells George Dvorsky at Gizmodo that he’s not convinced by the research, and he had similar qualms about the study that suggested bees can understand the concept of zero. He says the bees may not be adding and subtracting, but rather are simply looking for an image that most closely matches the initial one they see, associating it with the sugar reward. …

If you have the time and the interest, definitely check out Daley’s article.

Here’s a link to and a citation for the latest paper about honeybees and math,

Surpassing the subitizing threshold: appetitive–aversive conditioning improves discrimination of numerosities in honeybees by Scarlett R. Howard, Aurore Avarguès-Weber, Jair E. Garcia, Andrew D. Greentree, Adrian G. Dyer. Journal of Experimental Biology 2019 222: jeb205658 doi: 10.1242/jeb.205658 Published 10 October 2019

This paper is behind a paywall.

Infinity, time, physics, math, and a play at the Vancouver (Canada) East Cultural Centre, January 7 – 19, 2020

Time seems to be having a moment. (I couldn’t resist. 🙂 If Carlo Rovelli’s 2018 book, The Order of Time, is any indication the topic has attained a new level of interest. The only other evidence I have is that I stumble across essays about time in unlikely places.

Infinity, a play about time and more, has been produced and toured on and off since 2015 when it won the Dora Mavor Moore Award for best new play.

Here’s a clip from one of the productions,

Here’s what the publicists at the Cultch (Vancouver East Cultural Centre) have posted about the play on the Events webpage,

A surprising, funny, and revelatory new play about love, sex, and math.

The cynical, skeptical daughter of a theoretical physicist and a composer, Sarah Jean’s clinical approach to love meets with little success. In this absorbing drama infused with science and classical music, three exceptional minds collide like charged particles in an accelerator. Sarah Jean’s hugely talented, yet severely dysfunctional, family will learn that love and time itself are connected in unimaginable ways.

From award-winning playwright Hannah Moscovitch; featuring two of our country’s most esteemed actors, Jonathon Young and Amy Rutherford, up-and-comer Emily Jane King, and violinist Andréa Tyniec; with original music by visionary composer Njo Kong Kie.

“The play makes you feel as much as it makes you think.”—NOW Toronto

There is a December 23, 2019 preview article by Janet Smith for the Georgia Straight which gives you some insight into the playwright and her work (Note: There is some profanity in the second paragraph),

Albert Einstein once called time a “stubbornly persistent illusion”, but tell that to a busy playwright who’s juggling deadlines for TV scripts and stage openings with parenting a four-year-old-boy.

“I’m in an insane relationship with time as a mother—this agonized relationship with time,” writer Hannah Moscovitch laments with a laugh, speaking to the Straight from her Halifax home before her show Infinity opens here after the holidays. “This work-life balance: I was like, ‘What the fuck is everybody complaining about?’ Until I had to do it.

“I mean, if I don’t work less I will wreck his childhood. So it’s not like a theoretical ideal that I should have work-life balance,” she continues, sounding as self-effacing, funny, and candidly introspective as some of her best-known female stage characters. And then she reflects more seriously, “Writing Infinity gave me the chance to grapple with that. And now I’m in a constant existential relationship with time; I’m constantly thinking about it. Time is intricately linked to death, they’re inevitably linked. When you come back to time you come back to death.”

In 2008, Ross Manson, artistic director, of Toronto’s Volcano Theatre, approached Moscovitch with an article in Harper’s magazine about the history of timekeeping, with the idea of commissioning her to write on the theme. Moscovitch went on to read Time Reborn: From the Crisis in Physics to the Future of the Universe [2013], in which American theoretical physicist Lee Smolin, of the Perimeter Institute for Theoretical Physics in Ontario, challenges Einstein’s idea of time as illusion.

With Manson’s help, she would go on to meet Smolin as she worked on her play, turning to him as an expert source on the science she was trying to convey in her story. Along the way, she formed a friendship with the man she was once intimidated to meet.

“Oddly enough, while all the specifics are different about what we do, some of the generals are the same,” she explains. “We have no language in common, but we really enjoy hanging out with each other. There’s a critical endeavour in both of our work that is thought-based, and we both very much live in our minds.”

For a more jaundiced view, there’s Conrad Sweatman’s April 5, 2019 review of the play’s script in book form for prairiefire,

The uses and abuses of science in playwriting: a review of Hannah Moscovitch’s play Infinity 

Hannah Moscovitch is an indie darling of Canadian theatre, and her Dora-winning play Infinity reaffirms her reputation as one of Canada’s brightest, most ambitious playwrights. If this sounds like the sort of detached praise one reads on a student report card, it’s partially because throughout my readings of Infinity I wrestled between admiration and annoyance at its rather academic cleverness. While ultimately it earns my letter of recommendation, Infinity sometimes feels like the dramatic equivalent of a class valedictorian’s graduation speech.

Back to Infinity. In his lively introduction to the play’s script, the famous physicist Lee Smolin, who consulted on the play, describes scientists and artists as“explorers of our common future” and pleads for a more open, friendly exchange between these two camps. (Smolin, vi). It comes off as a conciliatory remark after decades of the ‘science wars’ in academia, and Smolin also lauds Moscovitch for bucking the humanities’ postmodernist trend of knocking science and its practitioners. All fine sentiments. But what does this emphasis on the commonality between art and science mean, if anything, about the relationship between the subjective, social stuff of art and the objective, natural stuff of science? Does it suggest that the scientific method should by employed by playwrights and novelists in the fictional study of human nature, as some of the naturalist novelists of the 19th century believed? 

I have no reason to think that either Smolin or Moscovitch really wish for science to colonize the arts and humanities. …

Infinity is a fine addition to the aforementioned genre of smart, humanistic plays about physicists and mathematicians that had its heyday around the turn of the Millennium. It has some of their same flaws and cerebral charms and belongs more, in spirit, to the comparatively untroubled moment, before the Iraq and Afghanistan wars, the Global Recession, and Trump. If, like me, you spent your first years willingly reading serious literature and theatre at length in a humanities department where every text was filtered through the parallax perspectives of postmodern critical theory, you may find refreshing Infinity’s enthusiasm for science and its world of objectivism. You may feel the same way about its avoidance of the crude identity politics, inspired partially by such theory, that’s particularly in vogue in the arts right now: a kind of reactive agitprop in the age of Trump. But with the world staggering right now from one crisis to the next, a contemporary play about Ivy League intellectuals, their theories of time and struggles for authenticity, seems, well, a little untimely. …

Sweatman has identified one of the big problems with using concepts from mathematics and the sciences to inform fiction and art. The romantic poets ran into the same problem as Richard Holmes explores at length in his 2008 book, The Age of Wonder: How the Romantic Generation Discovered the Beauty and Terror of Science. Shelley eventually abandoned his attempts at including science in his poems.

Interestingly, most of us don’t seem to realize that the arts and sciences have been intimately linked for millenia. For example, De rerum natura a multi-volume poem by Roman poet, Lucretius ( (c. 99 BCE – c. 55 BCE), is a philosophical treatise exploring mind, soul, and the principles of atomism (i.e., atoms).

I hope you enjoy the play, if you choose to go. According to the Events webpage (scroll down), the playwright will be present at two post-show talkbacks.

Techno Art: mathematicians help conserve digital art

For anyone who’s not familiar with the problem, digital art is disappearing or very difficult and/or expensive to access after the technology on which or with which it was created becomes obsolete. Fear not! Mathematicians are coming to the rescue in a joint programme between New York University (NYU) and the Solomon R. Guggenheim Museum.

From a February 16, 2019 news item on ScienceDaily,

Just as conservators have developed methods to protect traditional artworks, computer scientists have now created means to safeguard computer- or time-based art by following the same preservation principles.

Software- and computer-based works of art are fragile — not unlike their canvas counterparts — as their underlying technologies such as operating systems and programming languages change rapidly, placing these works at risk.

These include Shu Lea Cheang’s Brandon (1998-99), Mark Napier’s net.flag (2002), and John F. Simon Jr.’s Unfolding Object (2002),  three online works recently conserved at the Solomon R. Guggenheim Museum, through a collaboration with New York University’s Courant Institute of Mathematical Sciences.

Fortunately, just as conservators have developed methods to protect traditional artworks, computer scientists, in collaboration with time-based media conservators, have created means to safeguard computer- or time-based art by following the same preservation principles.

Brandon’s interface “bigdoll” after the 2016–2017 restoration. (C) Solomon R. Guggenheim Museum

A February 15, 2019 NYU news release, which originated the news item, delves further into the world of digital art preservation and conservation,

“The principles of art conservation for traditional works of art can be applied to decision-making in conservation of software- and computer-based works of art with respect to programming language selection, programming techniques, documentation, and other aspects of software remediation during restoration,” explains Deena Engel, a professor of computer science at New York University’s Courant Institute of Mathematical Sciences.

Since 2014, she has been working with the Guggenheim Museum’s Conservation Department to analyze, document, and preserve computer-based artworks from the museum’s permanent collection. In 2016, the Guggenheim took more formal steps to ensure the stature of these works by establishing Conserving Computer-Based Art (CCBA), a research and treatment initiative aimed at preserving software and computer-based artworks held by the museum.

“As part of conserving contemporary art, conservators are faced with new challenges as artists use current technology as media for their artworks,” says Engel. “If you think of a word processing document that you wrote 10 years ago, can you still open it and read or print it? Software-based art can be very complex. Museums are tasked with conserving and exhibiting works of art in perpetuity. It is important that museums and collectors learn to care for these vulnerable and important works in contemporary art so that future generations can enjoy them.”

Under this initiative, a team led by Engel and Joanna Phillips, former senior conservator of time-based media at the Guggenheim Museum, and including conservation fellow Jonathan Farbowitz and Lena Stringari, deputy director and chief conservator at the Guggenheim Museum, explore and implement both technical and theoretical approaches to the treatment and restoration of software-based art.

In doing so, they not only strive to maintain the functionality and appeal of the original works, but also follow the ethical principles that guide conservation of traditional artwork, such as sculptures and paintings. Specifically, Engel and Phillips adhere to the American Institute for Conservation of Historic and Artistic Works’ Code of Ethics, Guidelines for Practice, and Commentaries, applying these standards to artistic creations that rely on software as a medium.

“For example, if we migrate a work of software-based art from an obsolete programming environment to a current one, our selection and programming decisions in the new programming language and environment are informed in part by evaluating the artistic goals of the medium first used,” explains Engel. “We strive to maintain respect for the artist’s coding style and approach in our restoration.”

So far, Phillips and Engel have completed two restorations of on-line artworks at the museum: Cheang’s Brandon (restored in 2016-2017) and Simon’s Unfolding Object (restored in 2018).

Commissioned by the Guggenheim in 1998, Brandon was the first of three web artworks acquired by the museum. Many features of the work had begun to fail within the fast-evolving technological landscape of the Internet: specific pages were no longer accessible, text and image animations no longer displayed properly, and internal and external links were broken. Through changes implemented by CCBA, Brandon fully resumes its programmed, functional, and aesthetic behaviors. The newly restored artwork can again be accessed at http://brandon.guggenheim.org.

Unfolding Object enables visitors from across the globe to create their own individual artwork online by unfolding the pages of a virtual “object”—a two-dimensional rectangular form—click by click, creating a new, multifaceted shape. Users may also see traces left by others who have previously unfolded the same facets, represented by lines or hash marks. The colors of the object and the background change depending on the time of day, so that two simultaneous users in different time zones are looking at different colors. But because the Java technology used to develop this early Internet artwork is now obsolete, the work was no longer supported by contemporary web browsers and is not easily accessible online.

The CCBA team, in dialogue with the artist, analyzed and documented the artwork’s original source code and aesthetic and functional behaviors before identifying a treatment strategy. The team determined that a migration from the obsolete Java applet code to the contemporary programming language JavaScript was necessary. In place of a complete rewriting of the code, a treatment that art conservators would deem invasive, the CCBA team developed a new migration strategy more in line with contemporary conservation ethics, “code resituation,” which preserves as much of the original source code as possible

About the CCBA

A longtime pioneer in the field of contemporary art conservation, and one of the few institutions in the United States with dedicated staff and lab facilities for the conservation of time-based media art, the Guggenheim established the Conserving Computer-Based Art initiative in 2016. The first program dedicated to this subject at the museum, this multiyear project was created to research and develop better practices for the acquisition, preservation, maintenance, and display of computer-based art. By addressing the challenges of preserving digital artworks, including hardware failure, rapid obsolescence of operating systems, and artists’ custom software, CCBA is tasked with the conservation of 22 computer-based artworks in the Guggenheim collection to ensure long-term storage and access to the public. The CCBA initiative is an opportunity for the Guggenheim to facilitate cross-institutional collaboration towards best-practice development, and CCBA integrates the museum’s ongoing work with the faculty and students of the Department of Computer Science at NYU’s Courant Institute for Mathematical Sciences.

Conserving Computer-Based Art is supported by the Carl & Marilynn Thoma Art Foundation, the New York State Council on the Arts with the support of Governor Andrew Cuomo and the New York State Legislature, Christie’s, and Josh Elkes.

About the Solomon R. Guggenheim Foundation

The Solomon R. Guggenheim Foundation was established in 1937 and is dedicated to promoting the understanding and appreciation of modern and contemporary art through exhibitions, education programs, research initiatives, and publications. The Guggenheim international constellation of museums includes the Solomon R. Guggenheim Museum, New York; the Peggy Guggenheim Collection, Venice; the Guggenheim Museum Bilbao; and the future Guggenheim Abu Dhabi. In 2019, the Frank Lloyd Wright-designed Solomon R. Guggenheim Museum celebrates 60 years as an architectural icon and “temple of spirit” where radical art and architecture meet. To learn more about the museum and the Guggenheim’s activities around the world, visit guggenheim.org.

About the Courant Institute of Mathematical Sciences

New York University’s Courant Institute of Mathematical Sciences is a leading center for research and education in mathematics and computer science. The Institute has contributed to domestic and international science and engineering by promoting an integrated view of mathematics and computation. Faculty and students are engaged in a broad range of research activities, which include many areas of mathematics and computer science as well as the application of these disciplines to problems in the biological, physical, and economic sciences. The Courant Institute has played a central role in the development of applied mathematics, analysis, and computer science, and its faculty has received numerous national and international awards in recognition of their extraordinary research accomplishments. For more information, visit http://www.cims.nyu.edu/.

Have fun exploring these relatively newly available art works.

Fields Centre for Quantitative Analysis and Modelling (CQAM) and ArtSci Salon: call for mathematical artworks

Currently, the deadline is July 26, 2019. For information about the call, there’s a July 6, 2019 ArtSci Salon announcement (received via email) about the call). Note: Both the Art/Sci Salon and CQAM are located in Toronto, Ontario but this is not limited to Canadian artists as far as I can tell,

Please, see this quick call!! this is for existing artworks: do you have
any math-related digital work/photography/drawing/ in high res? please
consider submitting!!!

Call for Artworks
Fields CQAM – ArtSci Salon
deadline: July 26, 2019

The Fields Centre for Quantitative Analysis and Modeling and ArtSci
Salon are looking for Mathematically related, Mathematically inspired,
or Mathematically informed artworks to feature on a limited series of
cards and small prints.

Fields CQAM (CQAM https://www.cqam.ca/ … is a research centre
comprised of 11 labs pairing leading researchers and industry from
across Ontario, simultaneously training a new pool of quantitative
scientists while enabling rapid translation of innovations from idea to
implementation. Mathematical modeling data analytics and visualization,
geometry processing and fabrication, health analytics, and human machine
interaction are only a few of the diverse research fields the centre is
engaged in. Please, check their website …for more information.

The artwork will be printed on cards. A limited number of bigger prints
will be distributed to volunteers who have made an outstanding
contribution to Fields CQAM. The selected artist will receive an
honorarium of $300 – $500 [CAD].

GENERAL REQUIREMENTS

– Artworks can engage with a variety of topics in mathematics. For
instance, they can complement themes explored by CQAM labs.

– Acceptable formats are: Black & White or Color digitally generated
artworks (like visualizations, or digitally produced illustrations);
reproductions of paintings and other canvas-based work; photographic
work; drawings and other illustrations etc. Artworks must be high res
(see below)

– Size can vary (5X7in, 4X6in, 5x5in, 3×3 etc., keep in mind that the
artwork must fit a rectangular or squared-shaped – card).

TECHNICAL INSTRUCTIONS

Please, send the following material tracy.barber@cqam.ca via WeTransfer
(use free version) https://wetransfer.com/

– 1 high res (300dpi) image

– a short bio

– a short description of the artwork

The deadline to propose your artwork is July 26, 2019

For more information please contact Tracy Barber (CQAM)
tracy.barber@cqam.ca

Or Roberta Buiani (ArtSci Salon) rbuiani@gmail.com

I’m guessing this art/sci call for artworks is being handled exclusively by the Art/Sci Salon folks since there doesn’t seem to be any additional information about it on the CQAM website.

A day late but better than never: 2019 International Day of Women and Girls in Science

February 11, 2019 was the International Day of Women and Girls in Science but there’s at least one celebratory event that is extended to include February 12. So, I’ll take what I can get and jump on to that bandwagon too. Happy 2019 International Day of Women and Girls in Science—a day late!

To make up fr being late to the party, I have two news items to commemorate the event.

21st Edition of the L’Oréal-UNESCO International Awards for Women in Science

From a February 11, 2019 UNESCO (United Nations Educational, Scientific and Cultural Organization) press release received via email,

Paris, 11 February [2019]—On the occasion of the International Day of Women and Girls in Science celebrated on 11 February, the L’Oréal Foundation and UNESCO have announced the laureates of the 21st International Awards For Women in Science, which honours outstanding women scientists, from all over the world. These exceptional women are recognized for the excellence of their research in the fields of material science, mathematics and computer science.

Each laureate receive €100,000 and their achievements will be celebrated alongside those of 15 promising young women scientists from around the world at an awards ceremony on 14 March [2019] at UNESCO’s Headquarters in Paris.

EXTENDING THE AWARD TO MATHEMATICS AND COMPUTER SCIENCE

Mathematics is a prestigious discipline and a source of innovation in many domains, however, it is also one of the scientific fields with the lowest representation of women at the highest level. Since the establishment of the three most prestigious international prizes for the discipline (Fields, Wolf and Abel), only one woman mathematician has been recognized, out of a total of 141 laureates.

The L’Oréal Foundation and UNESCO have therefore decided to reinforce their efforts to empower women in science by extending the International Awards dedicated to material science to two more research areas: mathematics and computer science.

Two mathematicians now figure among the five laureates receiving the 2019 For Women in Science Awards: Claire Voisin, one of five women to have received a gold medal from the the French National Centre for Scientific Research (CNRS), and the first women mathematician to enter the prestigious Collège de France, and Ingrid Daubechies of Duke University (USA), the first woman researcher to head the International Mathematical Union.

FOR WOMEN IN SCIENCE: MORE THAN 20-YEARS OF COMMITMENT

In the field of scientific research, the glass ceiling is still a reality: Women only account for 28% of researchers, occupy just 11% of senior academic positions,[4] and number a mere 3% of Nobel Science Prizes

Since 1998, the L’Oréal Foundation, in partnership with UNESCO, has worked to improve the representation of women in scientific careers, upholding the conviction that the world needs science, and science needs women.

In its first 20 years, the For Women in Science programme supported and raised the profiles of 102 laureates and more than 3,000 talented young scientists, both doctoral and post-doctoral candidates, providing them with research fellowships, allocated annually in 117 countries.
 
L’ORÉAL-UNESCO INTERNATIONAL AWARDS FOR WOMEN IN SCIENCE
THE FIVE 2019 LAUREATES

AFRICA AND THE ARAB STATES Professor Najat Aoun SALIBA – Analytical and atmospheric chemistry

Professor of Chemistry and Director of the Nature Conservation Center at the American University of Beirut, Lebanon

Professor Saliba is rewarded for her pioneering work in identifying carcinogenic agents and other toxic air pollutants in the in Middle East, and in modern nicotine delivery systems, such as cigarettes and hookahs. Her innovative work in analytical and atmospheric chemistry will make it possible to address some of the most pressing environmental challenges and help advance public health policies and practices.

ASIA PACIFIC

Professeur Maki KAWAI – Chemistry / Catalysis
Director General, Institute of Molecular Sciences, Tokyo University, Japan, member of the Science Council of Japan 

Professor Maki Kawai is recognized for her ground-breaking work in manipulating molecules at the atomic level, in order to transform materials and create innovative materials. Her exceptional research has contributed to establishing the foundations of nanotechnologies at the forefront of discoveries of new chemical and physical phenomena that stand to address critical environmental issues such as energy efficiency.

LATIN AMERICA

Professor Karen HALLBERG – Physics/ Condensed matter physics
Professor at the Balseiro Institute and Research Director at the Bariloche Atomic Centre, CNEA/CONICET, Argentina

Professor Karen Hallberg is rewarded for developing cutting-edge computational approaches that allow scientists to understand the physics of quantum matter. Her innovative and creative techniques represent a major contribution to understanding nanoscopic systems and new materials.

NORTH AMERICA

Professor Ingrid DAUBECHIES – Mathematics / Mathematical physics
Professor of Mathematics and Electrical and Computer Engineering, Duke University, United States 

Professor Daubechies is recognized for her exceptional contribution to the numerical treatment of images and signal processing, providing standard and flexible algorithms for data compression. Her innovative research on wavelet theory has led to the development of treatment and image filtration methods used in technologies from medical imaging equipment to wireless communication.

EUROPE

Professor Claire VOISIN – Mathematics / Algebraic geometry

Professor at the Collège de France and former researcher at the French National Centre for Scientific Research (CNRS)

Professor Voisin is rewarded for her outstanding work in algebraic geometry. Her pioneering discoveries have allowed [mathematicians and scientists] to resolve fundamental questions on topology and Hodge structures of complex algebraic varieties.
 
 
L’ORÉAL-UNESCO INTERNATIONAL AWARDS FOR WOMEN IN SCIENCE
THE 15  INTERNATIONAL RISING TALENTS OF 2019
 
Among the 275 national and regional fellowship winners we support each year, the For Women in Science programme selects the 15 most promising researchers, all of whom will also be honoured on 14 March 2019.

AFRICA AND THE ARAB STATES

Dr. Saba AL HEIALY – Health sciences

L’Oréal-UNESCO regional fellowship Dubai, Mohammed Bin Rashid University for Medicine and Health Sciences

Dr. Zohra DHOUAFLI – Neuroscience/ Biochemistry

L’Oréal-UNESCO regional fellowship Tunisia, Center of Biotechnology of Borj-Cédria

Dr. Menattallah ELSERAFY – Molecular biology/Genetics

L’Oréal-UNESCO regional fellowship Egypt, Zewail City of Science and Technology

Dr. Priscilla Kolibea MANTE – Neurosciences

L’Oréal-UNESCO regional fellowship Ghana, Kwame Nkrumah University of Science and Technology

NORTH AMERICA

Dr. Jacquelyn CRAGG – Health sciences
L’Oréal-UNESCO regional fellowship Canada, University of British Columbia
 
LATIN AMERICA

Dr. Maria MOLINA – Chemistry/Molecular biology

L’Oréal-UNESCO regional fellowship Argentina, National University of Rio Cuart

Dr. Ana Sofia VARELA – Chemistry/Electrocatalysis

L’Oréal-UNESCO regional fellowship Mexico, Institute of Chemistry, National Autonomous University of Mexico
 
ASIA PACIFIC

Dr. Sherry AW – Neuroscience

L’Oréal-UNESCO regional fellowship Singapore, Institute of Molecular and Cell Biology

Dr. Mika NOMOTO – Molecular biology / Plant pathology

L’Oréal-UNESCO regional fellowship Singapore, University of Nagoya

Dr. Mary Jacquiline ROMERO – Quantum physics

L’Oréal-UNESCO regional fellowship Australia, University of Queensland
 
EUROPE

Dr. Laura ELO – Bioinformatics

L’Oréal-UNESCO regional fellowship Finland, University of Turku and Åbo Akademi University

Dr. Kirsten JENSEN – Material chemistry, structural analysis

L’Oréal-UNESCO regional fellowship Denmark, University of Copenhagen

Dr. Biola María JAVIERRE MARTÍNEZ Genomics

L’Oréal-UNESCO regional fellowship Spain, Josep Carreras Leukaemia Research Institute 

Dr. Urte NENISKYTE – Neuroscience

L’Oréal-UNESCO regional fellowship Lithuania, University of Vilnius

Dr. Nurcan TUNCBAG – Bioinformatics

L’Oréal-UNESCO regional fellowship Turkey, Middle East Technical University

Congratulations to all!

“Investment in Women in Science for Inclusive Green Growth” (conference) 11 – 12 February 2019

This conference is taking place at UN (United Nations) headquarters in New York City. There is an agenda which includes the talks for February 12, 2019 and they feature a bit of a surprise,

[February 12, 2019]
10.00 – 12.30:
High-Level Panel on:
   
Investment in Science Education for Shaping Society’s Future

Scientists contribute greatly to the economic health and wealth of a nation.
However, worldwide, the levels of participation in science and technology in
school and in post-school education have fallen short of the expectations of
policy-makers and the needs of business, industry, or government.

The continuing concern to find the reasons why young people decide not to
study science and technology is a critical one if we are to solve the underlying
problem.  Furthermore, while science and technology play key roles in today’s
global economy and leveling the playing field among various demographics,
young people particularly girls are turning away from science subjects. Clearly,
raising interest in science among young people is necessary for increasing the
number of future science professionals, as well as, providing opportunities for
all citizens of all countries to understand and use science in their daily lives.

To achieve sustainable development throughout the world, education policy
makers need to allocate high priority and considerable resources to the
teaching of science and technology in a manner that allows students to learn
science in a way that is practiced and experienced in the real world by real
scientists and engineers. Furthermore, to accomplish this goal, sustained
support is needed to increase and improve teacher training and professional
learning for STEM educators. By meeting these two needs, we can better
accomplish the ultimate aim which is to educate the scientists, technologists,
technicians, and leaders on whom future economic development is perceived to
depend over a sustained period of time.


In line with the 2019 High-Level Political Forum, this session will discuss
SDG [Sustainable development goal] 4 with special focus on Science Education.

Reforming the science curriculum to promote learning science the way it is practiced and experienced in the real world by real scientists and engineers.

Providing quality and prepared teachers for every child to include increasing the number of women and other underrepresented demographic role models for students.

Considering how science education provides us with a scientifically adept society, one ready to understand, critique and mold the future of research, as well as, serving as an integral part of feeding into the pipeline for future scientists.

Identifying factors influencing participation in science, engineering and technology as underrepresented populations including young girls make the transition from school to higher education

Parallel Panel
10.00 – 13.00:
   
Girls in Science for Sustainable Development: Vision to Action

This Panel will be convened by young change-makers and passionate girls in
science advocates from around the world to present their vision on how they can
utilize science to achieve sustainable development goals.  Further, girls in
science will experience interacting and debating with UN Officials, Diplomates,
women in science and corporate executives.   

This Panel will strive to empower, educate and embolden the potential of every
girl.  The aim of this Panel is give girls the opportunity to gain core leadership
skills, training in community-building and advocacy.


In line with the 2019 United Nations High-Level Political Forum, Girls in
Science will focus around:
SDG 4 aims to promote lifelong learning opportunities for all. How can we improve science education around the world? What resources or opportunities would be effective in achieving this goal? And How can we use technology to improve science education and opportunities for students around the world?

Nearly ½ of the world population live in poverty. SDG 8 aims to promote sustained, inclusive, and sustainable economic growth, full and productive employment, and decent work for all. What is the importance of STEM for girls and women for economic growth and how do we encourage and implement this? What role does science and technology play in reducing poverty around the world?

SDG 10 aims to reduce inequalities around the world. What are some current inequalities that girls are facing and what can be done to ameliorate this?

Following the Paris Agreement a few years back, climate change has become an increasingly discussed topic; SDG 13 focuses on climate action. What is the significance of this Sustainable Development Goal today and what contribution does women and girls in science make on this issue?

What is being done in your communities to solve the SDGs in this respect? Has it been effective? Why or why not? Would it be effective in other countries? What are some issues you or people you know face in your country in relation to these concerns?

Chairs: Sthuthi Satish and Huaxuan Chen

Mentor: Andrew Muetze – International Educator, Switzerland

Remarks:
HRH Princess Dr. Nisreen El-Hashemite

Ms. Chantal Line Carpentier

13.00 – 14.45: Lunch Break

15.00 – 16.30:

High-Level Session on: The Science of Fashion for Sustainable Development

Fashion embodies human pleasure, creativity, social codes and technologies
that have enabled societies to prosper, laid burdens on the environment and
caused competition for arable land.  No single actor, action nor technology is
sufficient to shift us away from the environmental and social challenges
embedded in the fashion industry – nor to meet the demands for sustainable
development of society at large. However, scientific and technological
developments are important for progress towards sustainable fashion.  This
Panel aims to shed light on the role of science, technology, engineering and
mathematics skills for fashion and sustainability.

16.45 – 18.00: Closing Session
Summary of Panels and Sessions by Chairs and Moderators

Introducing the International Framework and Action Plan for Member States to Approve and Adopt

Announcing the Global Fund for Women and Girls in Science

It’s good to see the UN look at fashion and sustainability. The ‘fashion’ session makes the endeavour seem a little less stuffy.