Tag Archives: artificial neural network (ANN)

Connecting biological and artificial neurons (in UK, Switzerland, & Italy) over the web

Caption: The virtual lab connecting Southampton, Zurich and Padova. Credit: University of Southampton

A February 26, 2020 University of Southampton press release (also on EurekAlert) describes this work,

Research on novel nanoelectronics devices led by the University of Southampton enabled brain neurons and artificial neurons to communicate with each other. This study has for the first time shown how three key emerging technologies can work together: brain-computer interfaces, artificial neural networks and advanced memory technologies (also known as memristors). The discovery opens the door to further significant developments in neural and artificial intelligence research.

Brain functions are made possible by circuits of spiking neurons, connected together by microscopic, but highly complex links called ‘synapses’. In this new study, published in the scientific journal Nature Scientific Reports, the scientists created a hybrid neural network where biological and artificial neurons in different parts of the world were able to communicate with each other over the internet through a hub of artificial synapses made using cutting-edge nanotechnology. This is the first time the three components have come together in a unified network.

During the study, researchers based at the University of Padova in Italy cultivated rat neurons in their laboratory, whilst partners from the University of Zurich and ETH Zurich created artificial neurons on Silicon microchips. The virtual laboratory was brought together via an elaborate setup controlling nanoelectronic synapses developed at the University of Southampton. These synaptic devices are known as memristors.

The Southampton based researchers captured spiking events being sent over the internet from the biological neurons in Italy and then distributed them to the memristive synapses. Responses were then sent onward to the artificial neurons in Zurich also in the form of spiking activity. The process simultaneously works in reverse too; from Zurich to Padova. Thus, artificial and biological neurons were able to communicate bidirectionally and in real time.

Themis Prodromakis, Professor of Nanotechnology and Director of the Centre for Electronics Frontiers at the University of Southampton said “One of the biggest challenges in conducting research of this kind and at this level has been integrating such distinct cutting edge technologies and specialist expertise that are not typically found under one roof. By creating a virtual lab we have been able to achieve this.”

The researchers now anticipate that their approach will ignite interest from a range of scientific disciplines and accelerate the pace of innovation and scientific advancement in the field of neural interfaces research. In particular, the ability to seamlessly connect disparate technologies across the globe is a step towards the democratisation of these technologies, removing a significant barrier to collaboration.

Professor Prodromakis added “We are very excited with this new development. On one side it sets the basis for a novel scenario that was never encountered during natural evolution, where biological and artificial neurons are linked together and communicate across global networks; laying the foundations for the Internet of Neuro-electronics. On the other hand, it brings new prospects to neuroprosthetic technologies, paving the way towards research into replacing dysfunctional parts of the brain with AI [artificial intelligence] chips.”

I’m fascinated by this work and after taking a look at the paper, I have to say, the paper is surprisingly accessible. In other words, I think I get the general picture. For example (from the Introduction to the paper; citation and link follow further down),

… To emulate plasticity, the memristor MR1 is operated as a two-terminal device through a control system that receives pre- and post-synaptic depolarisations from one silicon neuron (ANpre) and one biological neuron (BN), respectively. …

If I understand this properly, they’ve integrated a biological neuron and an artificial neuron in a single system across three countries.

For those who care to venture forth, here’s a link and a citation for the paper,

Memristive synapses connect brain and silicon spiking neurons by Alexantrou Serb, Andrea Corna, Richard George, Ali Khiat, Federico Rocchi, Marco Reato, Marta Maschietto, Christian Mayr, Giacomo Indiveri, Stefano Vassanelli & Themistoklis Prodromakis. Scientific Reports volume 10, Article number: 2590 (2020) DOI: https://doi.org/10.1038/s41598-020-58831-9 Published 25 February 2020

The paper is open access.

US white paper on neuromorphic computing (or the nanotechnology-inspired Grand Challenge for future computing)

The US has embarked on a number of what is called “Grand Challenges.” I first came across the concept when reading about the Bill and Melinda Gates (of Microsoft fame) Foundation. I gather these challenges are intended to provide funding for research that advances bold visions.

There is the US National Strategic Computing Initiative established on July 29, 2015 and its first anniversary results were announced one year to the day later. Within that initiative a nanotechnology-inspired Grand Challenge for Future Computing was issued and, according to a July 29, 2016 news item on Nanowerk, a white paper on the topic has been issued (Note: A link has been removed),

Today [July 29, 2016), Federal agencies participating in the National Nanotechnology Initiative (NNI) released a white paper (pdf) describing the collective Federal vision for the emerging and innovative solutions needed to realize the Nanotechnology-Inspired Grand Challenge for Future Computing.

The grand challenge, announced on October 20, 2015, is to “create a new type of computer that can proactively interpret and learn from data, solve unfamiliar problems using what it has learned, and operate with the energy efficiency of the human brain.” The white paper describes the technical priorities shared by the agencies, highlights the challenges and opportunities associated with these priorities, and presents a guiding vision for the research and development (R&D) needed to achieve key technical goals. By coordinating and collaborating across multiple levels of government, industry, academia, and nonprofit organizations, the nanotechnology and computer science communities can look beyond the decades-old approach to computing based on the von Neumann architecture and chart a new path that will continue the rapid pace of innovation beyond the next decade.

A July 29, 2016 US National Nanotechnology Coordination Office news release, which originated the news item, further and succinctly describes the contents of the paper,

“Materials and devices for computing have been and will continue to be a key application domain in the field of nanotechnology. As evident by the R&D topics highlighted in the white paper, this challenge will require the convergence of nanotechnology, neuroscience, and computer science to create a whole new paradigm for low-power computing with revolutionary, brain-like capabilities,” said Dr. Michael Meador, Director of the National Nanotechnology Coordination Office. …

The white paper was produced as a collaboration by technical staff at the Department of Energy, the National Science Foundation, the Department of Defense, the National Institute of Standards and Technology, and the Intelligence Community. …

The white paper titled “A Federal Vision for Future Computing: A Nanotechnology-Inspired Grand Challenge” is 15 pp. and it offers tidbits such as this (Note: Footnotes not included),

A new materials base may be needed for future electronic hardware. While most of today’s electronics use silicon, this approach is unsustainable if billions of disposable and short-lived sensor nodes are needed for the coming Internet-of-Things (IoT). To what extent can the materials base for the implementation of future information technology (IT) components and systems support sustainability through recycling and bio-degradability? More sustainable materials, such as compostable or biodegradable systems (polymers, paper, etc.) that can be recycled or reused,  may play an important role. The potential role for such alternative materials in the fabrication of integrated systems needs to be explored as well. [p. 5]

The basic architecture of computers today is essentially the same as those built in the 1940s—the von Neumann architecture—with separate compute, high-speed memory, and high-density storage components that are electronically interconnected. However, it is well known that continued performance increases using this architecture are not feasible in the long term, with power density constraints being one of the fundamental roadblocks.7 Further advances in the current approach using multiple cores, chip multiprocessors, and associated architectures are plagued by challenges in software and programming models. Thus,  research and development is required in radically new and different computing architectures involving processors, memory, input-output devices, and how they behave and are interconnected. [p. 7]

Neuroscience research suggests that the brain is a complex, high-performance computing system with low energy consumption and incredible parallelism. A highly plastic and flexible organ, the human brain is able to grow new neurons, synapses, and connections to cope with an ever-changing environment. Energy efficiency, growth, and flexibility occur at all scales, from molecular to cellular, and allow the brain, from early to late stage, to never stop learning and to act with proactive intelligence in both familiar and novel situations. Understanding how these mechanisms work and cooperate within and across scales has the potential to offer tremendous technical insights and novel engineering frameworks for materials, devices, and systems seeking to perform efficient and autonomous computing. This research focus area is the most synergistic with the national BRAIN Initiative. However, unlike the BRAIN Initiative, where the goal is to map the network connectivity of the brain, the objective here is to understand the nature, methods, and mechanisms for computation,  and how the brain performs some of its tasks. Even within this broad paradigm,  one can loosely distinguish between neuromorphic computing and artificial neural network (ANN) approaches. The goal of neuromorphic computing is oriented towards a hardware approach to reverse engineering the computational architecture of the brain. On the other hand, ANNs include algorithmic approaches arising from machinelearning,  which in turn could leverage advancements and understanding in neuroscience as well as novel cognitive, mathematical, and statistical techniques. Indeed, the ultimate intelligent systems may as well be the result of merging existing ANN (e.g., deep learning) and bio-inspired techniques. [p. 8]

As government documents go, this is quite readable.

For anyone interested in learning more about the future federal plans for computing in the US, there is a July 29, 2016 posting on the White House blog celebrating the first year of the US National Strategic Computing Initiative Strategic Plan (29 pp. PDF; awkward but that is the title).