Tag Archives: China

Smartphone as augmented reality system with software from Brown University

You need to see this,

Amazing, eh? The researchers are scheduled to present this work sometime this week at the ACM Symposium on User Interface Software and Technology (UIST) being held in New Orleans, US, from October 20-23, 2019.

Here’s more about ‘Portal-ble’ in an October 16, 2019 news item on ScienceDaily,

A new software system developed by Brown University [US] researchers turns cell phones into augmented reality portals, enabling users to place virtual building blocks, furniture and other objects into real-world backdrops, and use their hands to manipulate those objects as if they were really there.

The developers hope the new system, called Portal-ble, could be a tool for artists, designers, game developers and others to experiment with augmented reality (AR). The team will present the work later this month at the ACM Symposium on User Interface Software and Technology (UIST 2019) in New Orleans. The source code for Andriod is freely available for download on the researchers’ website, and iPhone code will follow soon.

“AR is going to be a great new mode of interaction,” said Jeff Huang, an assistant professor of computer science at Brown who developed the system with his students. “We wanted to make something that made AR portable so that people could use anywhere without any bulky headsets. We also wanted people to be able to interact with the virtual world in a natural way using their hands.”

An October 16, 2019 Brown University news release (also on EurekAlert), which originated the news item, provides more detail,

Huang said the idea for Portal-ble’s “hands-on” interaction grew out of some frustration with AR apps like Pokemon GO. AR apps use smartphones to place virtual objects (like Pokemon characters) into real-world scenes, but interacting with those objects requires users to swipe on the screen.

“Swiping just wasn’t a satisfying way of interacting,” Huang said. “In the real world, we interact with objects with our hands. We turn doorknobs, pick things up and throw things. So we thought manipulating virtual objects by hand would be much more powerful than swiping. That’s what’s different about Portal-ble.”

The platform makes use of a small infrared sensor mounted on the back of a phone. The sensor tracks the position of people’s hands in relation to virtual objects, enabling users to pick objects up, turn them, stack them or drop them. It also lets people use their hands to virtually “paint” onto real-world backdrops. As a demonstration, Huang and his students used the system to paint a virtual garden into a green space on Brown’s College Hill campus.

Huang says the main technical contribution of the work was developing the right accommodations and feedback tools to enable people to interact intuitively with virtual objects.

“It turns out that picking up a virtual object is really hard if you try to apply real-world physics,” Huang said. “People try to grab in the wrong place, or they put their fingers through the objects. So we had to observe how people tried to interact with these objects and then make our system able accommodate those tendencies.”

To do that, Huang enlisted students in a class he was teaching to come up with tasks they might want to do in the AR world — stacking a set of blocks, for example. The students then asked other people to try performing those tasks using Portal-ble, while recording what people were able to do and what they couldn’t. They could then adjust the system’s physics and user interface to make interactions more successful.

“It’s a little like what happens when people draw lines in Photoshop,” Huang said. “The lines people draw are never perfect, but the program can smooth them out and make them perfectly straight. Those were the kinds of accommodations we were trying to make with these virtual objects.”

The team also added sensory feedback — visual highlights on objects and phone vibrations — to make interactions easier. Huang said he was somewhat surprised that phone vibrations helped users to interact. Users feel the vibrations in the hand they’re using to hold the phone, not in the hand that’s actually grabbing for the virtual object. Still, Huang said, vibration feedback still helped users to more successfully interact with objects.

In follow-up studies, users reported that the accommodations and feedback used by the system made tasks significantly easier, less time-consuming and more satisfying.

Huang and his students plan to continue working with Portal-ble — expanding its object library, refining interactions and developing new activities. They also hope to streamline the system to make it run entirely on a phone. Currently the infrared sensor requires an infrared sensor and external compute stick for extra processing power.

Huang hopes people will download the freely available source code and try it for themselves. 
“We really just want to put this out there and see what people do with it,” he said. “The code is on our website for people to download, edit and build off of. It will be interesting to see what people do with it.

Co-authors on the research paper were Jing Qian, Jiaju Ma, Xiangyu Li, Benjamin Attal, Haoming Lai, James Tompkin and John Hughes. The work was supported by the National Science Foundation (IIS-1552663) and by a gift from Pixar.

You can find the conference paper here on jeffhuang.com,

Portal-ble: Intuitive Free-hand Manipulationin Unbounded Smartphone-based Augmented Reality by Jing Qian, Jiaju Ma, Xiangyu Li∗, Benjamin Attal, Haoming Lai,James Tompkin, John F. Hughes, Jeff Huang. Brown University, Providence RI, USA; Southeast University, Nanjing, China. Presented at ACM Symposium on User Interface Software and Technology (UIST) being held in New Orleans, US

This is the first time I’ve seen an augmented reality system that seems accessible, i.e., affordable. You can find out more on the Portal-ble ‘resource’ page where you’ll also find a link to the source code repository. The researchers, as noted in the news release, have an Android version available now with an iPhone version to be released in the future.

‘Xuan paper’ made fire-resistant with nanowires

Xuan paper is special being both rare and used for calligraphy and art works. Before getting to the ‘fire-resistant’ news, it might be helpful to get some details about Xuan paper as it is typically prepared and used (from a Dec. 29, 2018 news item on xinhuanet.com),

Today’s Chinese artists now have the opportunity to preserve their works much longer than the masters who painted hundreds of years ago.

Chinese researchers have developed a non-flammable version of Xuan paper that has high thermal stability, according to the Chinese Academy of Sciences (CAS).

Xuan paper, a type of handmade paper, was originally produced in ancient China and used for both Chinese calligraphy and paintings. The procedure of making Xuan paper was listed as a world intangible cultural heritage by UNESCO in 2009.

The raw materials need to produce Xuan paper are found in Jingxian County, east China’s Anhui Province and as of late, are in short supply.

The traditional handmade method of Xuan paper involves more than 100 steps and takes nearly two years [emphasis mine]. It has a low output and high cost. Xuan paper made with organic materials often suffers from degradation, yellowing and deteriorating properties during the long-term natural aging process.

Furthermore, the most lethal problem of traditional Xuan paper is its high flammability.

A January 18, 2019 news item on Nanowerk adds a few more details about the traditional paper while describing the ‘new’ Xuan paper (Note: A link has been removed),

Xuan paper is an excellent example of the traditional handmade paper, and features excellent properties of durability, ink wetting, and resistance to insects and mildew. Its excellent durability is attributed to its unique raw materials and handmade manufacturing process under mild conditions.

The bark of pteroceltis tatarinowii, a common species of elm in the area, is used as the main raw material to produce Xuan paper. Limestone particles are deposited on the surface of pteroceltis bark fibers, which can neutralize acids produced by the hydrolysis of plant fibers and from the environment.

Since the raw materials are only produced in Jing County, Anhui Province, China, Xuan paper suffers from a severe shortage. Also, it has the shortcomings such as complicated traditional hand making process and flammability. In a recent paper published in ACS Sustainable Chemistry & Engineering (“Fire-Resistant Inorganic Analogous Xuan Paper with Thousands of Years’ Super-Durability”), a team led by Prof. ZHU Yingjie from Shanghai Institute of Ceramics of Chinese Academy of Sciences developed a new kind of “fire-resistant Xuan paper” based on ultralong hydroxyapatite nanowires.

A January 18, 2019 Chinese Academy of Sciences (CAS) press release, which originated the news item, provides more technical details,

The unique integral structure of the “fire-resistant Xuan paper” with excellent mechanical properties and high flexibility was designed to be similar to the reinforced concrete structure in tall buildings. Ultralong hydroxyapatite nanowires are used as the main building material and are similar to the concrete. Silica glass fibers with micrometer-sized diameters are used as the reinforcing framework material and are similar to supporting steel bars.
In addition, a new kind of inorganic adhesive composed of amorphous nanoparticles was designed, prepared and used as the binder in the “fire-resistant Xuan paper”.

The as-prepared “fire-resistant Xuan paper” well keeps its properties even after the simulated aging for up to 3000 years.

The original whiteness of the “fire-resistant Xuan paper” is 92%, and its whiteness has a slight decrease to 91.6%, with the whiteness retention as high as 99.6% after the simulated aging for 2000 years. Even after the simulated aging for 3000 years, its whiteness only decreases to 86.7% with 94.2% of the whiteness retention. It is much higher than that of the traditional Xuan paper. The whiteness of the traditional unprocessed Xuan paper decreases from initial 70.5% to 47.3% with 67.1% of the whiteness retention after the simulated aging for 2000 years. Its whiteness decreases to 42.2% with 59.9% of the whiteness retention after the simulated aging for 3000 years.

The “fire-resistant Xuan paper” exhibits superior mechanical properties during the simulated aging process.

The retention percentage of tensile strength of the “fire-resistant Xuan paper” is as high as 95.2% aging for 2000 years, and 81.3% aging for 3000 years. In contrast, the average retention percentage of tensile strength of the unprocessed Xuan paper is only 54.9% aging for 2000 years, and 40.4% aging for 3000 years. Furthermore, the “fire-resistant Xuan paper” has an excellent ink wetting performance, which is mainly attributed to the nanoscale porous structure and hydroxyl groups of utralong hydroxyapatite nanowires.

The prevention of mould growth on the paper is a great challenge, because the mould can cause the deterioration of the Xuan paper. In this study, experiments showed that different kinds of mould spores do not breed and spread on the “fire-resistant Xuan paper”, and it is able to maintain a clean surface without the growth of any mould, indicating the excellent anti-mildew performance of the “fire-resistant Xuan paper” even exposure to the external nutrients. On the contrary, the growth and spread of mould are obviously observed on the traditional Xuan paper in the presence of external nutrients, indicating that its anti-mildew performance is not satisfactory.

The most important property is that the “fire-resistant Xuan paper” is fire resistant and highly thermal stable. Thus it can prevent the precious calligraphy and painting works as well as books, documents, and archives from the damage by fire. In addition, the production process of the “fire-resistant Xuan paper” is simple, highly efficient, and it only needs 3~4 days to produce.

Xuan paper is the best material carrier for the calligraphy and painting arts, many of which have been well preserved for hundreds of years.

Here’s a link to and a citation for the paper,

Fire-Resistant Inorganic Analogous Xuan Paper with Thousands of Years’ Super-Durability by Li-Ying Dong and Ying-Jie Zhu. ACS Sustainable Chem. Eng., 2018, 6 (12), pp 17239–17251 DOI: 10.1021/acssuschemeng.8b04630 Publication Date (Web): November 7, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

One last thing, the researchers have made an image illustrating their work available,

Courtesy: CAS and American Chemical Society

Ouchies no more! Not from bandages, anyway.

An adhesive that US and Chinese scientists have developed shows great promise not just for bandages but wearable robotics too. From a December 14, 2018 news item on Nanowerk,

Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Xi’an Jiaotong University in China have developed a new type of adhesive that can strongly adhere wet materials — such as hydrogel and living tissue — and be easily detached with a specific frequency of light.

The adhesives could be used to attach and painlessly detach wound dressings, transdermal drug delivery devices, and wearable robotics.

A December 18, 2018 SEAS news release by Leah Burrows (also on EurekAlert but published Dec. 14, 2018), which originated the news item, delves further,

“Strong adhesion usually requires covalent bonds, physical interactions, or a combination of both,” said Yang Gao, first author of the paper and researcher at Xi’an Jiaotong University. “Adhesion through covalent bonds is hard to remove and adhesion through physical interactions usually requires solvents, which can be time-consuming and environmentally harmful. Our method of using light to trigger detachment is non-invasive and painless.”

The adhesive uses an aqueous solution of polymer chains spread between two, non-sticky materials — like jam between two slices of bread. On their own, the two materials adhere poorly together but the polymer chains act as a molecular suture, stitching the two materials together by forming a network with the two preexisting polymer networks. This process is known as topological entanglement.

When exposed to ultra-violet light, the network of stitches dissolves, separating the two materials.

The researchers, led by Zhigang Suo, the Allen E. and Marilyn M. Puckett Professor of Mechanics and Materials at SEAS, tested adhesion and detachment on a range of materials, sticking together hydrogels; hydrogels and organic tissue; elastomers; hydrogels and elastomers; and hydrogels and inorganic solids.

“Our strategy works across a range of materials and may enable broad applications,” said Kangling Wu, co-lead author and researcher at Xi’an Jiaotong University in China.
While the researchers focused on using UV light to trigger detachment, their work suggests the possibility that the stitching polymer could detach with near-infrared light, a feature which could be applied to a range of new medical procedures.

“In nature, wet materials don’t like to adhere together,” said Suo. “We have discovered a general approach to overcome this challenge. Our molecular sutures can strongly adhere wet materials together. Furthermore, the strong adhesion can be made permanent, transient, or detachable on demand, in response to a cue. So, as we see it, nature is full of loopholes, waiting to be stitched.”

Here’s a link to and  a citation for the paper,

Photodetachable Adhesion by Yang Gao, Kangling Wu, Zhigang Suo. https://doi.org/10.1002/adma.201806948 First published: 14 December 2018

This paper is behind a paywall.

An artificial synapse tuned by light, a ferromagnetic memristor, and a transparent, flexible artificial synapse

Down the memristor rabbit hole one more time.* I started out with news about two new papers and inadvertently found two more. In a bid to keep this posting to a manageable size, I’m stopping at four.

UK

In a June 19, 2019 Nanowerk Spotlight article, Dr. Neil Kemp discusses memristors and some of his latest work (Note: A link has been removed),

Memristor (or memory resistors) devices are non-volatile electronic memory devices that were first theorized by Leon Chua in the 1970’s. However, it was some thirty years later that the first practical device was fabricated. This was in 2008 when a group led by Stanley Williams at HP Research Labs realized that switching of the resistance between a conducting and less conducting state in metal-oxide thin-film devices was showing Leon Chua’s memristor behaviour.

The high interest in memristor devices also stems from the fact that these devices emulate the memory and learning properties of biological synapses. i.e. the electrical resistance value of the device is dependent on the history of the current flowing through it.

There is a huge effort underway to use memristor devices in neuromorphic computing applications and it is now reasonable to imagine the development of a new generation of artificial intelligent devices with very low power consumption (non-volatile), ultra-fast performance and high-density integration.

These discoveries come at an important juncture in microelectronics, since there is increasing disparity between computational needs of Big Data, Artificial Intelligence (A.I.) and the Internet of Things (IoT), and the capabilities of existing computers. The increases in speed, efficiency and performance of computer technology cannot continue in the same manner as it has done since the 1960s.

To date, most memristor research has focussed on the electronic switching properties of the device. However, for many applications it is useful to have an additional handle (or degree of freedom) on the device to control its resistive state. For example memory and processing in the brain also involves numerous chemical and bio-chemical reactions that control the brain structure and its evolution through development.

To emulate this in a simple solid-state system composed of just switches alone is not possible. In our research, we are interested in using light to mediate this essential control.

We have demonstrated that light can be used to make short and long-term memory and we have shown how light can modulate a special type of learning, called spike timing dependent plasticity (STDP). STDP involves two neuronal spikes incident across a synapse at the same time. Depending on the relative timing of the spikes and their overlap across the synaptic cleft, the connection strength is other strengthened or weakened.

In our earlier work, we were only able to achieve to small switching effects in memristors using light. In our latest work (Advanced Electronic Materials, “Percolation Threshold Enables Optical Resistive-Memory Switching and Light-Tuneable Synaptic Learning in Segregated Nanocomposites”), we take advantage of a percolating-like nanoparticle morphology to vastly increase the magnitude of the switching between electronic resistance states when light is incident on the device.

We have used an inhomogeneous percolating network consisting of metallic nanoparticles distributed in filamentary-like conduction paths. Electronic conduction and the resistance of the device is very sensitive to any disruption of the conduction path(s).

By embedding the nanoparticles in a polymer that can expand or contract with light the conduction pathways are broken or re-connected causing very large changes in the electrical resistance and memristance of the device.

Our devices could lead to the development of new memristor-based artificial intelligence systems that are adaptive and reconfigurable using a combination of optical and electronic signalling. Furthermore, they have the potential for the development of very fast optical cameras for artificial intelligence recognition systems.

Our work provides a nice proof-of-concept but the materials used means the optical switching is slow. The materials are also not well suited to industry fabrication. In our on-going work we are addressing these switching speed issues whilst also focussing on industry compatible materials.

Currently we are working on a new type of optical memristor device that should give us orders of magnitude improvement in the optical switching speeds whilst also retaining a large difference between the resistance on and off states. We hope to be able to achieve nanosecond switching speeds. The materials used are also compatible with industry standard methods of fabrication.

The new devices should also have applications in optical communications, interfacing and photonic computing. We are currently looking for commercial investors to help fund the research on these devices so that we can bring the device specifications to a level of commercial interest.

If you’re interested in memristors, Kemp’s article is well written and quite informative for nonexperts, assuming of course you can tolerate not understanding everything perfectly.

Here are links and citations for two papers. The first is the latest referred to in the article, a May 2019 paper and the second is a paper appearing in July 2019.

Percolation Threshold Enables Optical Resistive‐Memory Switching and Light‐Tuneable Synaptic Learning in Segregated Nanocomposites by Ayoub H. Jaafar, Mary O’Neill, Stephen M. Kelly, Emanuele Verrelli, Neil T. Kemp. Advanced Electronic Materials DOI: https://doi.org/10.1002/aelm.201900197 First published: 28 May 2019

Wavelength dependent light tunable resistive switching graphene oxide nonvolatile memory devices by Ayoub H.Jaafar, N.T.Kemp. DOI: https://doi.org/10.1016/j.carbon.2019.07.007 Carbon Available online 3 July 2019

The first paper (May 2019) is definitely behind a paywall and the second paper (July 2019) appears to be behind a paywall.

Dr. Kemp’s work has been featured here previously in a January 3, 2018 posting in the subsection titled, Shining a light on the memristor.

China

This work from China was announced in a June 20, 2019 news item on Nanowerk,

Memristors, demonstrated by solid-state devices with continuously tunable resistance, have emerged as a new paradigm for self-adaptive networks that require synapse-like functions. Spin-based memristors offer advantages over other types of memristors because of their significant endurance and high energy effciency.

However, it remains a challenge to build dense and functional spintronic memristors with structures and materials that are compatible with existing ferromagnetic devices. Ta/CoFeB/MgO heterostructures are commonly used in interfacial PMA-based [perpendicular magnetic anisotropy] magnetic tunnel junctions, which exhibit large tunnel magnetoresistance and are implemented in commercial MRAM [magnetic random access memory] products.

“To achieve the memristive function, DW is driven back and forth in a continuous manner in the CoFeB layer by applying in-plane positive or negative current pulses along the Ta layer, utilizing SOT that the current exerts on the CoFeB magnetization,” said Shuai Zhang, a coauthor in the paper. “Slowly propagating domain wall generates a creep in the detection area of the device, which yields a broad range of intermediate resistive states in the AHE [anomalous Hall effect] measurements. Consequently, AHE resistance is modulated in an analog manner, being controlled by the pulsed current characteristics including amplitude, duration, and repetition number.”

“For a follow-up study, we are working on more neuromorphic operations, such as spike-timing-dependent plasticity and paired pulsed facilitation,” concludes You. …

Here’s are links to and citations for the paper (Note: It’s a little confusing but I believe that one of the links will take you to the online version, as for the ‘open access’ link, keep reading),

A Spin–Orbit‐Torque Memristive Device by Shuai Zhang, Shijiang Luo, Nuo Xu, Qiming Zou, Min Song, Jijun Yun, Qiang Luo, Zhe Guo, Ruofan Li, Weicheng Tian, Xin Li, Hengan Zhou, Huiming Chen, Yue Zhang, Xiaofei Yang, Wanjun Jiang, Ka Shen, Jeongmin Hong, Zhe Yuan, Li Xi, Ke Xia, Sayeef Salahuddin, Bernard Dieny, Long You. Advanced Electronic Materials Volume 5, Issue 4 April 2019 (print version) 1800782 DOI: https://doi.org/10.1002/aelm.201800782 First published [online]: 30 January 2019 Note: there is another DOI, https://doi.org/10.1002/aelm.201970022 where you can have open access to Memristors: A Spin–Orbit‐Torque Memristive Device (Adv. Electron. Mater. 4/2019)

The paper published online in January 2019 is behind a paywall and the paper (almost the same title) published in April 2019 has a new DOI and is open access. Final note: I tried accessing the ‘free’ paper and opened up a free file for the artwork featuring the work from China on the back cover of the April 2019 of Advanced Electronic Materials.

Korea

Usually when I see the words transparency and flexibility, I expect to see graphene is one of the materials. That’s not the case for this paper (link to and citation for),

Transparent and flexible photonic artificial synapse with piezo-phototronic modulator: Versatile memory capability and higher order learning algorithm by Mohit Kumar, Joondong Kim, Ching-Ping Wong. Nano Energy Volume 63, September 2019, 103843 DOI: https://doi.org/10.1016/j.nanoen.2019.06.039 Available online 22 June 2019

Here’s the abstract for the paper where you’ll see that the material is made up of zinc oxide silver nanowires,

An artificial photonic synapse having tunable manifold synaptic response can be an essential step forward for the advancement of novel neuromorphic computing. In this work, we reported the development of highly transparent and flexible two-terminal ZnO/Ag-nanowires/PET photonic artificial synapse [emphasis mine]. The device shows purely photo-triggered all essential synaptic functions such as transition from short-to long-term plasticity, paired-pulse facilitation, and spike-timing-dependent plasticity, including in the versatile memory capability. Importantly, strain-induced piezo-phototronic effect within ZnO provides an additional degree of regulation to modulate all of the synaptic functions in multi-levels. The observed effect is quantitatively explained as a dynamic of photo-induced electron-hole trapping/detraining via the defect states such as oxygen vacancies. We revealed that the synaptic functions can be consolidated and converted by applied strain, which is not previously applied any of the reported synaptic devices. This study will open a new avenue to the scientific community to control and design highly transparent wearable neuromorphic computing.

This paper is behind a paywall.

Jiggly jell-o as a new hydrogen fuel catalyst

Jello [uploaded from https://www.organicauthority.com/eco-chic-table/new-jell-o-mold-jiggle-chic-holidays]

I’m quite intrigued by this ‘jell-o’ story. It’s hard to believe a childhood dessert might prove to have an application as a catalyst for producing hydrogen fuel. From a December 14, 2018 news item on Nanowerk,

A cheap and effective new catalyst developed by researchers at the University of California, Berkeley, can generate hydrogen fuel from water just as efficiently as platinum, currently the best — but also most expensive — water-splitting catalyst out there.

The catalyst, which is composed of nanometer-thin sheets of metal carbide, is manufactured using a self-assembly process that relies on a surprising ingredient: gelatin, the material that gives Jell-O its jiggle.

Two-dimensional metal carbides spark a reaction that splits water into oxygen and valuable hydrogen gas. Berkeley researchers have discovered an easy new recipe for cooking up these nanometer-thin sheets that is nearly as simple as making Jell-O from a box. (Xining Zang graphic, copyright Wiley)

A December 13, 2018 University of California at Berkeley (UC Berkeley) news release by Kara Manke (also on EurekAlert but published on Dec. 14, 2018), which originated the news item, provides more technical detail,

“Platinum is expensive, so it would be desirable to find other alternative materials to replace it,” said senior author Liwei Lin, professor of mechanical engineering at UC Berkeley. “We are actually using something similar to the Jell-O that you can eat as the foundation, and mixing it with some of the abundant earth elements to create an inexpensive new material for important catalytic reactions.”

The work appears in the Dec. 13 [2018] print edition of the journal Advanced Materials.

A zap of electricity can break apart the strong bonds that tie water molecules together, creating oxygen and hydrogen gas, the latter of which is an extremely valuable source of energy for powering hydrogen fuel cells. Hydrogen gas can also be used to help store energy from renewable yet intermittent energy sources like solar and wind power, which produce excess electricity when the sun shines or when the wind blows, but which go dormant on rainy or calm days.

A black and white image of metal carbide under high magnification.

When magnified, the two-dimensional metal carbides resemble sheets of cell[o]phane. (Xining Zang photo, copyright Wiley)

But simply sticking an electrode in a glass of water is an extremely inefficient method of generating hydrogen gas. For the past 20 years, scientists have been searching for catalysts that can speed up this reaction, making it practical for large-scale use.

“The traditional way of using water gas to generate hydrogen still dominates in industry. However, this method produces carbon dioxide as byproduct,” said first author Xining Zang, who conducted the research as a graduate student in mechanical engineering at UC Berkeley. “Electrocatalytic hydrogen generation is growing in the past decade, following the global demand to lower emissions. Developing a highly efficient and low-cost catalyst for electrohydrolysis will bring profound technical, economical and societal benefit.”

To create the catalyst, the researchers followed a recipe nearly as simple as making Jell-O from a box. They mixed gelatin and a metal ion — either molybdenum, tungsten or cobalt — with water, and then let the mixture dry.

“We believe that as gelatin dries, it self-assembles layer by layer,” Lin said. “The metal ion is carried by the gelatin, so when the gelatin self-assembles, your metal ion is also arranged into these flat layers, and these flat sheets are what give Jell-O its characteristic mirror-like surface.”

Heating the mixture to 600 degrees Celsius triggers the metal ion to react with the carbon atoms in the gelatin, forming large, nanometer-thin sheets of metal carbide. The unreacted gelatin burns away.

The researchers tested the efficiency of the catalysts by placing them in water and running an electric current through them. When stacked up against each other, molybdenum carbide split water the most efficiently, followed by tungsten carbide and then cobalt carbide, which didn’t form thin layers as well as the other two. Mixing molybdenum ions with a small amount of cobalt boosted the performance even more.

“It is possible that other forms of carbide may provide even better performance,” Lin said.

On the left, an illustration of blue spheres, representing gelatin molecules, arranged in a lattice shape. On the right, an illustration of thin sheets of metal carbide.

Molecules in gelatin naturally self-assemble in flat sheets, carrying the metal ions with them (left). Heating the mixture to 600 degrees Celsius burns off the gelatin, leaving nanometer-thin sheets of metal carbide. (Xining Zang illustration, copyright Wiley)

The two-dimensional shape of the catalyst is one of the reasons why it is so successful. That is because the water has to be in contact with the surface of the catalyst in order to do its job, and the large surface area of the sheets mean that the metal carbides are extremely efficient for their weight.

Because the recipe is so simple, it could easily be scaled up to produce large quantities of the catalyst, the researchers say.

“We found that the performance is very close to the best catalyst made of platinum and carbon, which is the gold standard in this area,” Lin said. “This means that we can replace the very expensive platinum with our material, which is made in a very scalable manufacturing process.”

Co-authors on the study are Lujie Yang, Buxuan Li and Minsong Wei of UC Berkeley, J. Nathan Hohman and Chenhui Zhu of Lawrence Berkeley National Lab; Wenshu Chen and Jiajun Gu of Shanghai Jiao Tong University; Xiaolong Zou and Jiaming Liang of the Shenzhen Institute; and Mohan Sanghasadasa of the U.S. Army RDECOM AMRDEC.

Here’s a link to and a citation for the paper,

Self‐Assembly of Large‐Area 2D Polycrystalline Transition Metal Carbides for Hydrogen Electrocatalysis by Xining Zang, Wenshu Chen, Xiaolong Zou, J. Nathan Hohman, Lujie Yang
Buxuan Li, Minsong Wei, Chenhui Zhu, Jiaming Liang, Mohan Sanghadasa, Jiajun Gu, Liwei Lin. Advanced Materials Volume30, Issue 50 December 13, 2018 1805188 DOI: https://doi.org/10.1002/adma.201805188 First published [online]: 09 October 2018

This paper is behind a paywall.

Membrane stretching as a new transport mechanism for nanomaterials

This work comes from Catalonia, Spain by way of a collaboration between Chinese, German, and, of course, Spanish scientists. From a December 12, 2018 Universitat Rovira i Virgili press release (also on EurekAlert),

Increasing awareness of bioeffects and toxicity of nanomaterials interacting with cells puts in focus the mechanisms by which nanomaterials can cross lipid membranes. Apart from well-discussed energy-dependent endocytosis for large objects and passive diffusion through membranes by solute molecules, there can exist other transport mechanisms based on physical principles. Based on this hypothesis, the team of theoretical physics at Universitat Rovira i Virgili in Tarragona, led by Dr. Vladimir Baulin, designed a research project to investigate the interaction between nanotube and lipid membranes. In computer simulations, the researchers studied what they call a “model bilayer”, composed only by one type of lipids. Based on their calculations, the team of Dr. Baulin observed that ultra -short nanotube (10nm length) can insert perpendicularly to the lipid bilayer core.

They observed that these nanotubes stay trapped in the cell membrane, as commonly accepted by the scientific community. But a surprise appears when they stretched their model cell membrane, then inserted nanotubes which were trapped in the bilayer, suddenly started to escape from the bilayer on both sides. This means that it is possible to control the transport of nanomaterial across a cell membrane by tuning the membrane tension.

This is where Dr. Baulin contacted Dr. Jean-Baptiste Fleury at the Saarland University (Germany) to confirm this mechanism and to study experimentally this tension-mediated transport phenomena. Dr. Fleury and his team, designed a microfluidic experiment with a well-controlled phospholipid bilayer, an experimental model for cell membranes and added ultra-small carbon nanotubes (10nm in length) in solution. The nanotubes had an adsorbed lipid monolayer that guarantees their stable dispersion and prevent their clustering. Using a combination of optical fluorescent microscopy and electrophysiological measurements, the team of Dr. Fleury could follow individual nanotube crossing a bilayer and unravel their pathway on a molecular level. And as predicted by the simulations, they observed that nanotubes inserted into the bilayer by dissolving their lipid coating into the artificial membrane. When a tension of 4mN/m was applied to the bilayer, nanotubes spontaneously escaped the bilayer just in few milliseconds, while at lower tensions nanotubes remain trapped inside the membrane.

This discovery of translocation of tiny nanotubes through barriers protecting cells, i.e. lipid bilayer, may raise concerns about safety of nanomaterials for public health and suggest new mechanical mechanisms to control the drug delivery.

Caption: Nanotubes trapped inside the membrane. Credit: © URV

Here’s a link to and a citation for the paper,

Tension-Induced Translocation of an Ultrashort Carbon Nanotube through a Phospholipid Bilayer by Yachong Guo, Marco Werner, Ralf Seemann, Vladimir A. Baulin, and Jean-Baptiste Fleury. ACS Nano, Article ASAP DOI: 10.1021/acsnano.8b04657 Publication Date (Web): November 19, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

Chen Qiufan, garbage, and Chinese science fiction stories

Garbage has been dominating Canadian news headlines for a few weeks now. First, it was Canadian garbage in the Philippines and now it’s Canadian garbage in Malaysia. Interestingly, we’re also having problems with China, since December 2018, when we detained a top executive from Huawe, a China-based international telecommunicatons company, in accordance with an official request from the US government and, in accordance, with what Prime Minister Justin Trudeau calls the ‘rule of law’. All of this provides an interesting backdrop (for Canadians anyway) on the topic of China, garbage, and science fiction.

A May 16, 2019 article by Anjie Zheng for Fast Company explores some of the latest and greatest from China’s science fiction writing community,

Like any good millennial, I think about my smartphone, to the extent that I do at all, in terms of what it does for me. It lets me message friends, buy stuff quickly, and amass likes. I hardly ever think about what it actually is—a mass of copper wires, aluminum alloys, and lithium battery encased in glass—or where it goes when I upgrade.

Chen Qiufan wants us to think about that. His debut novel, Waste Tide, is set in a lightly fictionalized version of Guiyu, the world’s largest electronic waste disposal. First published in Chinese in 2013, the book was recently released in the U.S. with a very readable translation into English by Ken Liu.

Chen, who has been called “China’s William Gibson,” is part of a younger generation of sci-fi writers who have achieved international acclaim in recent years. Liu Cixin became the first Chinese to win the prestigious Hugo Award for his Three Body Problem in 2015. The Wandering Earth, based on a short story by Liu, became China’s first science-fiction blockbuster when it was released in 2018. It was the highest-grossing film in the fastest-growing film market in the world last year and was recently scooped up by Netflix.

Aynne Kokas in a March 13, 2019 article for the Washington Post describes how the hit film, The Wandering Earth, fits into an overall Chinese-led movie industry focused on the future and Hollywood-like, i. e. like US movie industry, domination,

“The Wandering Earth,” directed by Frant Gwo, takes place in a future where the people of Earth must flee their sun as it swells into a red giant. Thousands of engines — the first of them constructed in Hangzhou, one of China’s tech hubs — propel the entire planet toward a new solar system, while everyone takes refuge from the cold in massive underground cities. On the surface, the only visible reminders of the past are markers of China’s might. The Shanghai Tower, the Oriental Pearl Tower and a stadium for the Shanghai 2044 Olympics all thrust out of the ice, having apparently survived the journey’s tsunamis, deep freeze and cliff-collapsing earthquakes.

The movie is China’s first big-budget sci-fi epic, and its production was ambitious, involving some 7,000 workers and 10,000 specially-built props. Audience excitement was correspondingly huge: Nearly half a million people wrote reviews of the film on Chinese social network site Douban. Having earned over $600 million in domestic sales, “The Wandering Earth” marks a major achievement for the country’s film industry.

It is also a major achievement for the Chinese government.

Since opening up the country’s film market in 2001, the Chinese government has aspired to learn from Hollywood how to make commercially appealing films, as I detail in my book “Hollywood Made in China.” From initial private offerings for state media companies, to foreign investment in films, studios and theme parks, the government allowed outside capital and expertise to grow the domestic commercial film industry — but not at the expense of government oversight. This policy’s underlying aim was to expand China’s cultural clout and political influence.

Until recently, Hollywood films dominated the country’s growing box office. That finally changed in 2015, with the release of major local blockbusters “Monster Hunt” and “Lost in Hong Kong.” The proliferation of homegrown hits signaled that the Chinese box office profits no longer depend on Hollywood studio films — sending an important message to foreign trade negotiators and studios.

Kokas provides some insight into how the Chinese movie industry is designed to further the Chinese government’s vision of the future. As a Canadian, I don’t see that much difference between the US and China industry’s vision. Both tout themselves as the answer to everything, both target various geographic regions for the ‘bad guys’, and both tout their national moral superiority in their films. I suppose the same can be said for most countries’ film industries but both China and the US can back themselves with economic might.

Zheng’s article delves deeper into garbage, and Chen Qiufan’s science fiction while illuminating the process of changing a ‘good guy’ into a ‘bad guy’,

Chen, 37, grew up a few miles from the real Guiyu. Mountains of scrap electronics are shipped there every year from around the world. Thousands of human workers sort through the junk for whatever can be reduced to reusable precious metals. They strip wires and disassemble circuit boards, soaking them in acid baths for bits of copper, tin, platinum, and gold. Whatever can’t be processed is burned. The water in Guiyu has been so contaminated it is undrinkable; the air is toxic. The workers, migrants from poor rural areas in China, have an abnormally high rate of respiratory diseases and cancer.

For the decades China was revving its economic engine, authorities were content to turn a blind eye to the human costs of the recycling business. It was an economic win-win. For developed countries like the U.S., it’s cheaper to ship waste to places like China than trying to recycle it themselves. And these shipments create jobs and profits for the Chinese.

In recent years, however, steps have been taken to protect workers and the environment in China. …

Waste Tide highlights the danger of “throw-away culture,” says Chen, also known in English as Stanley Chan. When our personal electronics stop serving us, whether because they break or our lust for the newest specs get the better of us, we toss them. Hopefully we’re conscientious enough to bring them to local recyclers that claim they’ll dispose of them properly. But that’s likely the end of our engagement with the trash. Out of sight, out of mind.

Fiction, and science fiction in particular, is an apt medium for Chen to probe the consequences of this arrangement. “It’s not journalism,” he says. Instead, the story is an imaginative, action-packed tale of power imbalances, and the individual characters that think they’re doing good. Waste Tide culminates, expectedly, in an insurgency of the workers against their exploitative overlords.

Guiyu has been fictionalized in Waste Tide as “Silicon Isle.” (A homophone of the Chinese character “gui” translates to “Silicon,” and “yu” is an island). The waste hell is ruled by three ruthless family clans, dominated by the Luo clan. They treat workers as slaves and derisively call them “waste people.”

Technology in the near-future has literally become extensions of selves and only exacerbates class inequality. Prosthetic inner ears improve balance; prosthetic limbs respond to mental directives; helmets heighten natural senses. The rich “switch body parts as easily as people used to switch phones.” Those with fewer means hack discarded prosthetics to get the same kick. When they’re no longer needed, synthetic body parts contaminated with blood and bodily fluids are added to the detritus.

At the center of the story is Mimi, a migrant worker who dreams of earning enough money to return home and live a quiet life. She strikes up a relationship with Kaizong, a Chinese-American college graduate trying to rediscover his roots. But the good times are short-lived. The boss of the Luo clan becomes convinced that Mimi holds the key to rousing his son from his coma and soon kidnaps the hapless girl.

For all the advanced science, there is a backwards superstition that animates Silicon Isle. [emphasis mine] The clan bosses subscribe to “a simple form of animism.” They pray to the wind and sea for ample supplies of waste. They sacrifice animals (and some humans) to bring them luck, and use local witches to exorcise evil spirits. Boss Luo has Mimi kidnapped and tortured in an effort to appease the gods in the hopes of waking up his comatose son. The torture of Mimi infects her with a mysterious disease that splits her consciousness. The waste people are enraged by her violation, which eventually sparks a war against the ruling clans. [emphasis mine]

A parallel narrative involves an American, Scott Brandle, who works for an environmental company. While in town trying to set up a recycling facility, he stumbles onto the truth about the virus that may have infected Mimi: a chemical weapon developed and used by the U.S. [emphasis mine] years earlier. Invented by a Japanese researcher [emphasis mine] working in the U.S., the drug is capable of causing mass hallucinations and terror. When Brandle learns that Mimi may have been infected with this virus, he wants a piece of her [emphasis mine] too, so that scientists back home can study its effects.

Despite portraying the future of China in a less-than-positive light, [emphasis mine] Waste Tide has not been banned–a common result for works that displease Beijing; instead, the book won China’s prestigious Nebula award for science fiction, and is about to be reprinted on the mainland. …

An interview with Chen (it’s worthwhile to read his take on what he’s doing) follows the plot description in this intriguing and what seems to be a sometimes disingenuous article.

The animism and the war against the ruling class? It reminds me a little of the tales told about old Chine and Mao’s campaign to overthrow the ruling classes who had kept control of the proletariat, in part, by encouraging ‘superstitious religious belief’.

As far as I’m concerned the interpretation can go either or both ways: a critique of the current government’s policies and where they might lead in the future and/or a reference back to the glorious rising of China’s communist government. Good fiction always contains ambiguity; it’s what fuels courses in literature.

Also, the bad guys are from the US and Japan, countries which have long been allied with each other and with which China has some serious conflicts.

Interesting, non? And, it’s not that different from what you’ll see in US (or any other country’s for that matter) science fiction wiring and movies, except that the heroes are Chinese.

Getting back to the garbage in the Philippines, there are 69 containers on their way back to Canada as of May 30, 2019. As for why all this furor about Canadian garbage in the Philippines and Malaysia, it’s hard to believe that Canada is the only sinner. Of course, we are in China’s bad books due to the Huawei executive’s detention here (she is living in her home in Vancouver and goes out and about as she wishes, albeit under surveillance).

Anyway, I can’t help but wonder if indirect pressure is being exerted by China or if the Philippines and Malaysia have been incentivized in some way by China. The timing has certainly been interesting.

Political speculation aside, it’s probably a good thing that countries are refusing to take our garbage. As I’m sure more than one environmentalist would be happy to point out, it’s about time we took care of our own mess.

Unusual appetite for gold

This bacterium (bacteria being the plural) loves gold, which is lucky for anyone trying to develop artificial photosynthesis.From an October 9, 2018 news item on ScienceDaily,

A bacterium named Moorella thermoacetica won’t work for free. But UC Berkeley [University of California at Berkeley] researchers have figured out it has an appetite for gold. And in exchange for this special treat, the bacterium has revealed a more efficient path to producing solar fuels through artificial photosynthesis.

An October 5, 2018 UC Berkeley news release by Theresa Duque (also on EurekAlert but published on October 9, 2018), which originated the news item, expands on the theme,

M. thermoacetica first made its debut as the first non-photosensitive bacterium to carry out artificial photosynthesis (link is external) in a study led by Peidong Yang, a professor in UC Berkeley’s College of Chemistry. By attaching light-absorbing nanoparticles made of cadmium sulfide (CdS) to the bacterial membrane exterior, the researchers turned M. thermoacetica into a tiny photosynthesis machine, converting sunlight and carbon dioxide into useful chemicals.

Now Yang and his team of researchers have found a better way to entice this CO2-hungry bacterium into being even more productive. By placing light-absorbing gold nanoclusters inside the bacterium, they have created a biohybrid system that produces a higher yield of chemical products than previously demonstrated. The research, funded by the National Institutes of Health, was published on Oct. 1 in Nature Nanotechnology (link is external).

For the first hybrid model, M. thermoacetica-CdS, the researchers chose cadmium sulfide as the semiconductor for its ability to absorb visible light. But because cadmium sulfide is toxic to bacteria, the nanoparticles had to be attached to the cell membrane “extracellularly,” or outside the M. thermoacetica-CdS system. Sunlight excites each cadmium-sulfide nanoparticle into generating a charged particle known as an electron. As these light-generated electrons travel through the bacterium, they interact with multiple enzymes in a process known as “CO2 reduction,” triggering a cascade of reactions that eventually turns CO2 into acetate, a valuable chemical for making solar fuels.

But within the extracellular model, the electrons end up interacting with other chemicals that have no part in turning CO2 into acetate. And as a result, some electrons are lost and never reach the enzymes. So to improve what’s known as “quantum efficiency,” or the bacterium’s ability to produce acetate each time it gains an electron, the researchers found another semiconductor: nanoclusters made of 22 gold atoms (Au22), a material that M. thermoacetica took a surprising shine to.

A single nanocluster of 22 gold atoms

Figure: A single nanocluster of 22 gold atoms – Au22 – is only 1 nanometer in diameter, allowing it to easily slip through the bacterial cell wall.

“We selected Au22 because it’s ideal for absorbing visible light and has the potential for driving the CO2 reduction process, but we weren’t sure whether it would be compatible with the bacteria,” Yang said. “When we inspected them under the microscope, we discovered that the bacteria were loaded with these Au22 clusters – and were still happily alive.”

Imaging of the M. thermoacetica-Au22 system was done at UC Berkeley’s Molecular Imaging Center (link is external).

The researchers also selected Au22 ­– dubbed by the researchers as “magic” gold nanoclusters – for its ultrasmall size: A single Au22nanocluster is only 1 nanometer in diameter, allowing each nanocluster to easily slip through the bacterial cell wall.

“By feeding bacteria with Au22 nanoclusters, we’ve effectively streamlined the electron transfer process for the CO2 reduction pathway inside the bacteria, as evidenced by a 2.86 percent quantum efficiency – or 33 percent more acetate produced within the M. thermoacetica-Au22 system than the CdS model,” Yang said.

The magic gold nanocluster is the latest discovery coming out of Yang’s lab, which for the past six years has focused on using biohybrid nanostructures to convert CO2 into useful chemicals as part of an ongoing effort to find affordable, abundant resources for renewable fuels, and potential solutions to thwart the effects of climate change.

“Next, we’d like to find a way to reduce costs, improve the lifetimes for these biohybrid systems, and improve quantum efficiency,” Yang said. “By continuing to look at the fundamental aspect of how gold nanoclusters are being photoactivated, and by following the electron transfer process within the CO2 reduction pathway, we hope to find even better solutions.”

Co-authors with Yang are UC Berkeley graduate student Hao Zhang and former postdoctoral fellow Hao Liu, now at Donghua University in Shanghai, China.

Here’s a link to and a citation for the paper,

Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production by Hao Zhang, Hao Liu, Zhiquan Tian, Dylan Lu, Yi Yu, Stefano Cestellos-Blanco, Kelsey K. Sakimoto, & Peidong Yang. Nature Nanotechnologyvolume 13, pages900–905 (2018). DOI: https://doi.org/10.1038/s41565-018-0267-z Published: 01 October 2018

This paper is behind a paywall.

For lovers of animation, the folks at UC Berkeley have produced this piece about the ‘gold-loving’ bacterium,

Wearable electronic textiles from the UK, India, and Canada: two different carbon materials

It seems wearable electronic textiles may be getting nearer to the marketplace. I have three research items (two teams working with graphene and one working with carbon nanotubes) that appeared on my various feeds within two days of each other.

UK/China

This research study is the result of a collaboration between UK and Chinese scientists. From a May 15, 2019 news item on phys.org (Note: Links have been removed),


Wearable electronic components incorporated directly into fabrics have been developed by researchers at the University of Cambridge. The devices could be used for flexible circuits, healthcare monitoring, energy conversion, and other applications.

The Cambridge researchers, working in collaboration with colleagues at Jiangnan University in China, have shown how graphene – a two-dimensional form of carbon – and other related materials can be directly incorporated into fabrics to produce charge storage elements such as capacitors, paving the way to textile-based power supplies which are washable, flexible and comfortable to wear.

The research, published in the journal Nanoscale, demonstrates that graphene inks can be used in textiles able to store electrical charge and release it when required. The new textile electronic devices are based on low-cost, sustainable and scalable dyeing of polyester fabric. The inks are produced by standard solution processing techniques.

Building on previous work by the same team, the researchers designed inks which can be directly coated onto a polyester fabric in a simple dyeing process. The versatility of the process allows various types of electronic components to be incorporated into the fabric.

Schematic of the textile-based capacitor integrating GNP/polyesters as electrodes and h-BN/polyesters as dielectrics. Credit: Felice Torrisi

A May 16, 2019 University of Cambridge press release, which originated the news item, probes further,

Most other wearable electronics rely on rigid electronic components mounted on plastic or textiles. These offer limited compatibility with the skin in many circumstances, are damaged when washed and are uncomfortable to wear because they are not breathable.

“Other techniques to incorporate electronic components directly into textiles are expensive to produce and usually require toxic solvents, which makes them unsuitable to be worn,” said Dr Felice Torrisi from the Cambridge Graphene Centre, and the paper’s corresponding author. “Our inks are cheap, safe and environmentally-friendly, and can be combined to create electronic circuits by simply overlaying different fabrics made of two-dimensional materials on the fabric.”

The researchers suspended individual graphene sheets in a low boiling point solvent, which is easily removed after deposition on the fabric, resulting in a thin and uniform conducting network made up of multiple graphene sheets. The subsequent overlay of several graphene and hexagonal boron nitride (h-BN) fabrics creates an active region, which enables charge storage. This sort of ‘battery’ on fabric is bendable and can withstand washing cycles in a normal washing machine.

“Textile dyeing has been around for centuries using simple pigments, but our result demonstrates for the first time that inks based on graphene and related materials can be used to produce textiles that could store and release energy,” said co-author Professor Chaoxia Wang from Jiangnan University in China. “Our process is scalable and there are no fundamental obstacles to the technological development of wearable electronic devices both in terms of their complexity and performance.”

The work done by the Cambridge researchers opens a number of commercial opportunities for ink based on two-dimensional materials, ranging from personal health and well-being technology, to wearable energy and data storage, military garments, wearable computing and fashion.

“Turning textiles into functional energy storage elements can open up an entirely new set of applications, from body-energy harvesting and storage to the Internet of Things,” said Torrisi “In the future our clothes could incorporate these textile-based charge storage elements and power wearable textile devices.”

Here’s a link to and a citation for the paper,

Wearable solid-state capacitors based on two-dimensional material all-textile heterostructures by Siyu Qiang, Tian Carey, Adrees Arbab, Weihua Song, Chaoxia Wang and Felice Torris. Nanoscale, 2019, Advance Article DOI: 10.1039/C9NR00463G First published on 18 Apr 2019

This paper is behind a paywall.

India

Prior to graphene’s reign as the ‘it’ carbon material, carbon nanotubes (CNTs) ruled. It’s been quieter on the CNT front since graphene took over but a May 15, 2019 Nanowerk Spotlight article by Michael Berger highlights some of the latest CNT research coming out of India,


The most important technical challenge is to blend the chemical nature of raw materials with fabrication techniques and processability, all of which are diametrically conflicting for textiles and conventional energy storage devices. A team from Indian Institute of Technology Bombay has come out with a comprehensive approach involving simple and facile steps to fabricate a wearable energy storage device. Several scientific and technological challenges were overcome during this process.

First, to achieve user-comfort and computability with clothing, the scaffold employed was the the same as what a regular fabric is made up of – cellulose fibers. However, cotton yarns are electrical insulators and therefore practically useless for any electronics. Therefore, the yarns are coated with single-wall carbon nanotubes (SWNTs).

SWNTs are hollow, cylindrical allotropes of carbon and combine excellent mechanical strength with electrical conductivity and surface area. Such a coating converts the electrical insulating cotton yarn to a metallic conductor with high specific surface area. At the same time, using carbon-based materials ensures that the final material remains light-weight and does not cause user discomfort that can arise from metallic wires such as copper and gold. This CNT-coated cotton yarn (CNT-wires) forms the electrode for the energy storage device.

Next, the electrolyte is composed of solid-state electrolyte sheets since no liquid-state electrolytes can be used for this purpose. However, solid state electrolytes suffer from poor ionic conductivity – a major disadvantage for energy storage applications. Therefore, a steam-based infiltration approach that enhances the ionic conductivity of the electrolyte is adopted. Such enhancement of humidity significantly increases the energy storage capacity of the device.


The integration of the CNT-wire electrode with the electrolyte sheet was carried out by a simple and elegant approach of interweaving the CNT-wire through the electrolyte (see Figure 1). This resulted in cross-intersections which are actually junctions where the electrical energy can be stored. Each such junction is now an energy storage unit, referred to as sewcap.

The advantage of this process is that several 100s and 1000s of sewcaps can be made in a small area and integrated to increase the total amount of energy stored in the system. This scalability is unique and critical aspect of this work and stems from the approach of interweaving.

Further, this process is completely adaptable with current processes used in textile industries. Hence, a proportionately large energy-storage is achieved by creating sewcap-junctions in various combinations.

All components of the final sewcap device are flexible. However, they need to be protected from environmental effects such as temperature, humidity and sweat while retaining the mechanical flexibility. This is achieved by laminating the entire device between polymer sheets. The process is exactly similar to the one used for protecting documents and ID cards.

The laminated sewcap can be integrated easily on clothing and fabrics while retaining the flexibility and sturdiness. This is demonstrated by the unchanged performance of the device during extreme and harsh mechanical testing such as striking repeatedly with a hammer, complete flexing, bending and rolling and washing in a laundry machine.

In fact, this is the first device that has been proven to be stable under rigorous washing conditions in the presence of hot water, detergents and high torque (spinning action of washing machine). This provides the device with comprehensive mechanical stability.


CNTs have high surface area and electrical conductivity. The CNT-wire combines these properties of CNTs with stability and porosity of cellulose yarns. The junction created by interweaving is essentially comprised of two such CNT-wires that are sandwiching an electrolyte. Application of potential difference leads to polarization of the electrolyte thus enabling energy storage similar to the way in which a conventional capacitor acts.

“We use the advantage of the interweaving process and create several such junctions. So, with each junction being able to store a certain amount of electrical energy, all the junctions synchronized are able to store a large amount of energy. This provides high energy density to the device,” Prof. C. Subramaniam, Department of Chemistry, IIT Bombay and corresponding author of the paper points out.

The device has also been employed for lighting up an LED [light-emitting diode]. This can be potentially scaled to provide electrical energy demanded by the application.

This image accompanies the paper written by Prof. C. Subramaniam and his team,

Courtesy: IACS Applied Materials Interfaces

Here’s a link to and a citation for the paper,

Interwoven Carbon Nanotube Wires for High-Performing, Mechanically Robust, Washable, and Wearable Supercapacitors by Mihir Kumar Jha, Kenji Hata, and Chandramouli Subramaniam. ACS Appl. Mater. Interfaces, Article ASAP DOI: 10.1021/acsami.8b22233 Publication Date (Web): April 29, 2019 Copyright © 2019 American Chemical Society

This paper is behind a paywall.

Canada

A research team from the University of British Columbia (UBC at the Okanagan Campus) joined the pack with a May 16, 2019 news item on ScienceDaily,

Forget the smart watch. Bring on the smart shirt.

Researchers at UBC Okanagan’s School of Engineering have developed a low-cost sensor that can be interlaced into textiles and composite materials. While the research is still new, the sensor may pave the way for smart clothing that can monitor human movement.

A May 16, 2019 UBC news release (also on EurekAlert), which originated the news item, describes the work in more detail,


“Microscopic sensors are changing the way we monitor machines and humans,” says Hoorfar, lead researcher at the Advanced Thermo-Fluidic Lab at UBC’s Okanagan campus. “Combining the shrinking of technology along with improved accuracy, the future is very bright in this area.”

This ‘shrinking technology’ uses a phenomenon called piezo-resistivity—an electromechanical response of a material when it is under strain. These tiny sensors have shown a great promise in detecting human movements and can be used for heart rate monitoring or temperature control, explains Hoorfar.

Her research, conducted in partnership with UBC Okanagan’s Materials and Manufacturing Research Institute, shows the potential of a low-cost, sensitive and stretchable yarn sensor. The sensor can be woven into spandex material and then wrapped into a stretchable silicone sheath. This sheath protects the conductive layer against harsh conditions and allows for the creation of washable wearable sensors.

While the idea of smart clothing—fabrics that can tell the user when to hydrate, or when to rest—may change the athletics industry, UBC Professor Abbas Milani says the sensor has other uses. It can monitor deformations in fibre-reinforced composite fabrics currently used in advanced industries such as automotive, aerospace and marine manufacturing.

The low-cost stretchable composite sensor has also shown a high sensitivity and can detect small deformations such as yarn stretching as well as out-of-plane deformations at inaccessible places within composite laminates, says Milani, director of the UBC Materials and Manufacturing Research Institute.

The testing indicates that further improvements in its accuracy could be achieved by fine-tuning the sensor’s material blend and improving its electrical conductivity and sensitivity This can eventually make it able to capture major flaws like “fibre wrinkling” during the manufacturing of advanced composite structures such as those currently used in airplanes or car bodies.

“Advanced textile composite materials make the most of combining the strengths of different reinforcement materials and patterns with different resin options,” he says. “Integrating sensor technologies like piezo-resistive sensors made of flexible materials compatible with the host textile reinforcement is becoming a real game-changer in the emerging era of smart manufacturing and current automated industry trends.”

Here’s a link to and a citation for the paper,

Graphene‐Coated Spandex Sensors Embedded into Silicone Sheath for Composites Health Monitoring and Wearable Applications by Hossein Montazerian, Armin Rashidi, Arash Dalili, Homayoun Najjaran, Abbas S. Milani, Mina Hoorfar. Small Volume15, Issue17 April 26, 2019 1804991 DOI: https://doi.org/10.1002/smll.201804991 First published: 28 March 2019

This paper is behind a paywall.

Will there be one winner or will they find CNTs better for one type of wearable tech textile while graphene excels for another type of wearable tech textile?

Genes, intelligence, Chinese CRISPR (clustered regularly interspaced short palindromic repeats) babies, and other children

This started out as an update and now it’s something else. What follows is a brief introduction to the Chinese CRISPR twins; a brief examination of parents, children, and competitiveness; and, finally, a suggestion that genes may not be what we thought. I also include a discussion about how some think scientists should respond when they know beforehand that one of their kin is crossing an ethical line. Basically, this is a complex topic and I am attempting to interweave a number of competing lines of query into one narrative about human nature and the latest genetics obsession.

Introduction to the Chinese CRISPR twins

Back in November 2018 I covered the story about the Chinese scientist, He Jiankui , who had used CRISPR technology to edit genes in embryos that were subsequently implanted in a waiting mother (apparently there could be as many as eight mothers) with the babies being brought to term despite an international agreement (of sorts) not to do that kind of work. At this time, we know of the twins, Lulu and Nana but, by now, there may be more babies. (I have much more detail about the initial controversies in my November 28, 2018 posting.)

It seems the drama has yet to finish unfolding. There may be another consequence of He’s genetic tinkering.

Could the CRISPR babies, Lulu and Nana, have enhanced cognitive abilities?

Yes, according to Antonio Regalado’s February 21, 2019 article (behind a paywall) for MIT’s (Massachusetts Institute of Technology) Technology Review, those engineered babies may have enhanced abilities for learning and remembering.

For those of us who can’t get beyond the paywall, others have been successful. Josh Gabbatiss in his February 22, 2019 article for independent.co.uk provides some detail,

The world’s first gene edited babies may have had their brains unintentionally altered – and perhaps cognitively enhanced – as a result of the controversial treatment undertaken by a team of Chinese scientists.

Dr He Jiankui and his team allegedly deleted a gene from a number of human embryos before implanting them in their mothers, a move greeted with horror by the global scientific community. The only known successful birth so far is the case of twin girls Nana and Lulu.

The now disgraced scientist claimed that he removed a gene called CCR5 [emphasis mine] from their embroyos in an effort to make the twins resistant to infection by HIV.

But another twist in the saga has now emerged after a new paper provided more evidence that the impact of CCR5 deletion reaches far beyond protection against dangerous viruses – people who naturally lack this gene appear to recover more quickly from strokes, and even go further in school. [emphasis mine]

Dr Alcino Silva, a neurobiologist at the University of California, Los Angeles, who helped identify this role for CCR5 said the work undertaken by Dr Jiankui likely did change the girls’ brains.

“The simplest interpretation is that those mutations will probably have an impact on cognitive function in the twins,” he told the MIT Technology Review.

The connection immediately raised concerns that the gene was targeted due to its known links with intelligence, which Dr Silva said was his immediate response when he heard the news.

… there is no evidence that this was Dr Jiankui’s goal and at a press conference organised after the initial news broke, he said he was aware of the work but was “against using genome editing for enhancement”.

..

Claire Maldarelli’s February 22, 2019 article for Popular Science provides more information about the CCR5 gene/protein (Note: Links have been removed),

CCR5 is a protein that sits on the surface of white blood cells, a major component of the human immune system. There, it allows HIV to enter and infect a cell. A chunk of the human population naturally carries a mutation that makes CCR5 nonfunctional (one study found that 10 percent of Europeans have this mutation), which often results in a smaller protein size and one that isn’t located on the outside of the cell, preventing HIV from ever entering and infecting the human immune system.

The goal of the Chinese researchers’ work, led by He Jiankui of the Southern University of Science and Technology located in Shenzhen, was to tweak the embryos’ genome to lack CCR5, ensuring the babies would be immune to HIV.

But genetics is rarely that simple.

In recent years, the CCR5 gene has been a target of ongoing research, and not just for its relationship to HIV. In an attempt to understand what influences memory formation and learning in the brain, a group of researchers at UCLA found that lowering the levels of CCR5 production enhanced both learning and memory formation. This connection led those researchers to think that CCR5 could be a good drug target for helping stroke victims recover: Relearning how to move, walk, and talk is a key component to stroke rehabilitation.

… promising research, but it begs the question: What does that mean for the babies who had their CCR5 genes edited via CRISPR prior to their birth? Researchers speculate that the alternation will have effects on the children’s cognitive functioning. …

John Loeffler’s February 22, 2019 article for interestingengineering.com notes that there are still many questions about He’s (scientist’s name) research including, did he (pronoun) do what he claimed? (Note: Links have been removed),

Considering that no one knows for sure whether He has actually done as he and his team claim, the swiftness of the condemnation of his work—unproven as it is—shows the sensitivity around this issue.

Whether He did in fact edit Lulu and Nana’s genes, it appears he didn’t intend to impact their cognitive capacities. According to MIT Technology Review, not a single researcher studying CCR5’s role in intelligence was contacted by He, even as other doctors and scientists were sought out for advice about his project.

This further adds to the alarm as there is every expectation that He should have known about the connection between CCR5 and cognition.

At a gathering of gene-editing researchers in Hong Kong two days after the birth of the potentially genetically-altered twins was announced, He was asked about the potential impact of erasing CCR5 from the twins DNA on their mental capacity.

He responded that he knew about the potential cognitive link shown in Silva’s 2016 research. “I saw that paper, it needs more independent verification,” He said, before adding that “I am against using genome editing for enhancement.”

The problem, as Silva sees it, is that He may be blazing the trail for exactly that outcome, whether He intends to or not. Silva says that after his 2016 research was published, he received an uncomfortable amount of attention from some unnamed, elite Silicon Valley leaders who seem to be expressing serious interest in using CRISPR to give their children’s brains a boost through gene editing. [emphasis mine]

As such, Silva can be forgiven for not quite believing He’s claims that he wasn’t intending to alter the human genome for enhancement. …

The idea of designer babies isn’t new. As far back as Plato, the thought of using science to “engineer” a better human has been tossed about, but other than selective breeding, there really hasn’t been a path forward.

In the late 1800s, early 1900s, Eugenics made a real push to accomplish something along these lines, and the results were horrifying, even before Nazism. After eugenics mid-wifed the Holocaust in World War II, the concept of designer children has largely been left as fodder for science fiction since few reputable scientists would openly declare their intention to dabble in something once championed and pioneered by the greatest monsters of the 20th century.

Memories have faded though, and CRISPR significantly changes this decades-old calculus. CRISPR makes it easier than ever to target specific traits in order to add or subtract them from an embryos genetic code. Embryonic research is also a diverse enough field that some scientist could see pioneering designer babies as a way to establish their star power in academia while getting their names in the history books, [emphasis mine] all while working in relative isolation. They only need to reveal their results after the fact and there is little the scientific community can do to stop them, unfortunately.

When He revealed his research and data two days after announcing the births of Lulu and Nana, the gene-scientists at the Hong Kong conference were not all that impressed with the quality of He’s work. He has not provided access for fellow researchers to either his data on Lulu, Nana, and their family’s genetic data so that others can verify that Lulu and Nana’s CCR5 genes were in fact eliminated.

This almost rudimentary verification and validation would normally accompany a major announcement such as this. Neither has He’s work undergone a peer-review process and it hasn’t been formally published in any scientific journal—possibly for good reason.

Researchers such as Eric Topol, a geneticist at the Scripps Research Institute, have been finding several troubling signs in what little data He has released. Topol says that the editing itself was not precise and show “all kinds of glitches.”

Gaetan Burgio, a geneticist at the Australian National University, is likewise unimpressed with the quality of He’s work. Speaking of the slides He showed at the conference to support his claim, Burgio calls it amateurish, “I can believe that he did it because it’s so bad.”

Worse of all, its entirely possible that He actually succeeded in editing Lulu and Nana’s genetic code in an ad hoc, unethical, and medically substandard way. Sadly, there is no shortage of families with means who would be willing to spend a lot of money to design their idea of a perfect child, so there is certainly demand for such a “service.”

It’s nice to know (sarcasm icon) that the ‘Silicon Valley elite’ are willing to volunteer their babies for scientific experimentation in a bid to enhance intelligence.

The ethics of not saying anything

Natalie Kofler, a molecular biologist, wrote a February 26, 2019 Nature opinion piece and call to action on the subject of why scientists who were ‘in the know’ remained silent about He’s work prior to his announcements,

Millions [?] were shocked to learn of the birth of gene-edited babies last year, but apparently several scientists were already in the know. Chinese researcher He Jiankui had spoken with them about his plans to genetically modify human embryos intended for pregnancy. His work was done before adequate animal studies and in direct violation of the international scientific consensus that CRISPR–Cas9 gene-editing technology is not ready or appropriate for making changes to humans that could be passed on through generations.

Scholars who have spoken publicly about their discussions with He described feeling unease. They have defended their silence by pointing to uncertainty over He’s intentions (or reassurance that he had been dissuaded), a sense of obligation to preserve confidentiality and, perhaps most consistently, the absence of a global oversight body. Others who have not come forward probably had similar rationales. But He’s experiments put human health at risk; anyone with enough knowledge and concern could have posted to blogs or reached out to their deans, the US National Institutes of Health or relevant scientific societies, such as the Association for Responsible Research and Innovation in Genome Editing (see page 440). Unfortunately, I think that few highly established scientists would have recognized an obligation to speak up.

I am convinced that this silence is a symptom of a broader scientific cultural crisis: a growing divide between the values upheld by the scientific community and the mission of science itself.

A fundamental goal of the scientific endeavour is to advance society through knowledge and innovation. As scientists, we strive to cure disease, improve environmental health and understand our place in the Universe. And yet the dominant values ingrained in scientists centre on the virtues of independence, ambition and objectivity. That is a grossly inadequate set of skills with which to support a mission of advancing society.

Editing the genes of embryos could change our species’ evolutionary trajectory. Perhaps one day, the technology will eliminate heritable diseases such as sickle-cell anaemia and cystic fibrosis. But it might also eliminate deafness or even brown eyes. In this quest to improve the human race, the strengths of our diversity could be lost, and the rights of already vulnerable populations could be jeopardized.

Decisions about how and whether this technology should be used will require an expanded set of scientific virtues: compassion to ensure its applications are designed to be just, humility to ensure its risks are heeded and altruism to ensure its benefits are equitably distributed.

Calls for improved global oversight and robust ethical frameworks are being heeded. Some researchers who apparently knew of He’s experiments are under review by their universities. Chinese investigators have said He skirted regulations and will be punished. But punishment is an imperfect motivator. We must foster researchers’ sense of societal values.

Fortunately, initiatives popping up throughout the scientific community are cultivating a scientific culture informed by a broader set of values and considerations. The Scientific Citizenship Initiative at Harvard University in Cambridge, Massachusetts, trains scientists to align their research with societal needs. The Summer Internship for Indigenous Peoples in Genomics offers genomics training that also focuses on integrating indigenous cultural perspectives into gene studies. The AI Now Institute at New York University has initiated a holistic approach to artificial-intelligence research that incorporates inclusion, bias and justice. And Editing Nature, a programme that I founded, provides platforms that integrate scientific knowledge with diverse cultural world views to foster the responsible development of environmental genetic technologies.

Initiatives such as these are proof [emphasis mine] that science is becoming more socially aware, equitable and just. …

I’m glad to see there’s work being done on introducing a broader set of values into the scientific endeavour. That said, these programmes seem to be voluntary, i.e., people self-select, and those most likely to participate in these programmes are the ones who might be inclined to integrate social values into their work in the first place.

This doesn’t address the issue of how to deal with unscrupulous governments pressuring scientists to create designer babies along with hypercompetitive and possibly unscrupulous individuals such as the members of the ‘Silicon Valley insiders mentioned in Loeffler’s article, teaming up with scientists who will stop at nothing to get their place in the history books.

Like Kofler, I’m encouraged to see these programmes but I’m a little less convinced that they will be enough. What form it might take I don’t know but I think something a little more punitive is also called for.

CCR5 and freedom from HIV

I’ve added this piece about the Berlin and London patients because, back in November 2018, I failed to realize how compelling the idea of eradicating susceptibility to AIDS/HIV might be. Reading about some real life remissions helped me to understand some of He’s stated motivations a bit better. Unfortunately, there’s a major drawback described here in a March 5, 2019 news item on CBC (Canadian Broadcasting Corporation) online news attributed to Reuters,

An HIV-positive man in Britain has become the second known adult worldwide to be cleared of the virus that causes AIDS after he received a bone marrow transplant from an HIV-resistant donor, his doctors said.

The therapy had an early success with a man known as “the Berlin patient,” Timothy Ray Brown, a U.S. man treated in Germany who is 12 years post-transplant and still free of HIV. Until now, Brown was the only person thought to have been cured of infection with HIV, the virus that causes AIDS.

Such transplants are dangerous and have failed in other patients. They’re also impractical to try to cure the millions already infected.

In the latest case, the man known as “the London patient” has no trace of HIV infection, almost three years after he received bone marrow stem cells from a donor with a rare genetic mutation that resists HIV infection — and more than 18 months after he came off antiretroviral drugs.

“There is no virus there that we can measure. We can’t detect anything,” said Ravindra Gupta, a professor and HIV biologist who co-led a team of doctors treating the man.

Gupta described his patient as “functionally cured” and “in remission,” but cautioned: “It’s too early to say he’s cured.”

Gupta, now at Cambridge University, treated the London patient when he was working at University College London. The man, who has asked to remain anonymous, had contracted HIV in 2003, Gupta said, and in 2012 was also diagnosed with a type of blood cancer called Hodgkin’s lymphoma.

In 2016, when he was very sick with cancer, doctors decided to seek a transplant match for him.

“This was really his last chance of survival,” Gupta told Reuters.

Doctors found a donor with a gene mutation known as CCR5 delta 32, which confers resistance to HIV. About one per cent of people descended from northern Europeans have inherited the mutation from both parents and are immune to most HIV. The donor had this double copy of the mutation.

That was “an improbable event,” Gupta said. “That’s why this has not been observed more frequently.”

Most experts say it is inconceivable such treatments could be a way of curing all patients. The procedure is expensive, complex and risky. To do this in others, exact match donors would have to be found in the tiny proportion of people who have the CCR5 mutation.

Specialists said it is also not yet clear whether the CCR5 resistance is the only key [emphasis mine] — or whether the graft-versus-host disease may have been just as important. Both the Berlin and London patients had this complication, which may have played a role in the loss of HIV-infected cells, Gupta said.

Not only is there some question as to what role the CCR5 gene plays, there’s also a question as to whether or not we know what role genes play.

A big question: are genes what we thought?

Ken Richardson’s January 3, 2019 article for Nautilus (I stumbled across it on May 14, 2019 so I’m late to the party) makes and supports a startling statement, It’s the End of the Gene As We Know It We are not nearly as determined by our genes as once thought (Note: A link has been removed),

We’ve all seen the stark headlines: “Being Rich and Successful Is in Your DNA” (Guardian, July 12); “A New Genetic Test Could Help Determine Children’s Success” (Newsweek, July 10); “Our Fortunetelling Genes” make us (Wall Street Journal, Nov. 16); and so on.

The problem is, many of these headlines are not discussing real genes at all, but a crude statistical model of them, involving dozens of unlikely assumptions. Now, slowly but surely, that whole conceptual model of the gene is being challenged.

We have reached peak gene, and passed it.

The preferred dogma started to appear in different versions in the 1920s. It was aptly summarized by renowned physicist Erwin Schrödinger in a famous lecture in Dublin in 1943. He told his audience that chromosomes “contain, in some kind of code-script, the entire pattern of the individual’s future development and of its functioning in the mature state.”

Around that image of the code a whole world order of rank and privilege soon became reinforced. These genes, we were told, come in different “strengths,” different permutations forming ranks that determine the worth of different “races” and of different classes in a class-structured society. A whole intelligence testing movement was built around that preconception, with the tests constructed accordingly.

The image fostered the eugenics and Nazi movements of the 1930s, with tragic consequences. Governments followed a famous 1938 United Kingdom education commission in decreeing that, “The facts of genetic inequality are something that we cannot escape,” and that, “different children … require types of education varying in certain important respects.”

Today, 1930s-style policy implications are being drawn once again. Proposals include gene-testing at birth for educational intervention, embryo selection for desired traits, identifying which classes or “races” are fitter than others, and so on. And clever marketizing now sees millions of people scampering to learn their genetic horoscopes in DNA self-testing kits.[emphasis mine]

So the hype now pouring out of the mass media is popularizing what has been lurking in the science all along: a gene-god as an entity with almost supernatural powers. Today it’s the gene that, in the words of the Anglican hymn, “makes us high and lowly and orders our estate.”

… at the same time, a counter-narrative is building, not from the media but from inside science itself.

So it has been dawning on us is that there is no prior plan or blueprint for development: Instructions are created on the hoof, far more intelligently than is possible from dumb DNA. That is why today’s molecular biologists are reporting “cognitive resources” in cells; “bio-information intelligence”; “cell intelligence”; “metabolic memory”; and “cell knowledge”—all terms appearing in recent literature.1,2 “Do cells think?” is the title of a 2007 paper in the journal Cellular and Molecular Life Sciences.3 On the other hand the assumed developmental “program” coded in a genotype has never been described.


It is such discoveries that are turning our ideas of genetic causation inside out. We have traditionally thought of cell contents as servants to the DNA instructions. But, as the British biologist Denis Noble insists in an interview with the writer Suzan Mazur,1 “The modern synthesis has got causality in biology wrong … DNA on its own does absolutely nothing [ emphasis mine] until activated by the rest of the system … DNA is not a cause in an active sense. I think it is better described as a passive data base which is used by the organism to enable it to make the proteins that it requires.”

I highly recommend reading Richardson’s article in its entirety. As well, you may want to read his book, ” Genes, Brains and Human Potential: The Science and Ideology of Intelligence .”

As for “DNA on its own doing absolutely nothing,” that might be a bit of a eye-opener for the Silicon Valley elite types investigating cognitive advantages attributed to the lack of a CCR5 gene. Meanwhile, there are scientists inserting a human gene associated with brain development into monkeys,

Transgenic monkeys and human intelligence

An April 2, 2019 news item on chinadaily.com describes research into transgenic monkeys,

Researchers from China and the United States have created transgenic monkeys carrying a human gene that is important for brain development, and the monkeys showed human-like brain development.

Scientists have identified several genes that are linked to primate brain size. MCPH1 is a gene that is expressed during fetal brain development. Mutations in MCPH1 can lead to microcephaly, a developmental disorder characterized by a small brain.

In the study published in the Beijing-based National Science Review, researchers from the Kunming Institute of Zoology, Chinese Academy of Sciences, the University of North Carolina in the United States and other research institutions reported that they successfully created 11 transgenic rhesus monkeys (eight first-generation and three second-generation) carrying human copies of MCPH1.

According to the research article, brain imaging and tissue section analysis showed an altered pattern of neuron differentiation and a delayed maturation of the neural system, which is similar to the developmental delay (neoteny) in humans.

Neoteny in humans is the retention of juvenile features into adulthood. One key difference between humans and nonhuman primates is that humans require a much longer time to shape their neuro-networks during development, greatly elongating childhood, which is the so-called “neoteny.”

Here’s a link to and a citation for the paper,

Transgenic rhesus monkeys carrying the human MCPH1 gene copies show human-like neoteny of brain development by Lei Shi, Xin Luo, Jin Jiang, Yongchang Chen, Cirong Liu, Ting Hu, Min Li, Qiang Lin, Yanjiao Li, Jun Huang Hong Wang, Yuyu Niu, Yundi Shi, Martin Styner, Jianhong Wang, Yi Lu, Xuejin Sun, Hualin Yu, Weizhi Ji, Bing Su. National Science Review, nwz043, https://doi.org/10.1093/nsr/nwz043 Published: 27 March 2019

This appears to be an open access paper,

Transgenic monkeys and an ethical uproar

Predictably, this research set off alarms as Sharon Kirkey’s April 12, 2019 article for the National Post describes in detail (Note: A link has been removed)l,

Their brains may not be bigger than normal, but monkeys created with human brain genes are exhibiting cognitive changes that suggest they might be smarter — and the experiments have ethicists shuddering.

In the wake of the genetically modified human babies scandal, Chinese scientists [as a scientist from the US] are drawing fresh condemnation from philosophers and ethicists, this time over the announcement they’ve created transgenic monkeys with elements of a human brain.

Six of the monkeys died, however the five survivors “exhibited better short-term memory and shorter reaction time” compared to their wild-type controls, the researchers report in the journa.

According to the researchers, the experiments represent the first attempt to study the genetic basis of human brain origin using transgenic monkeys. The findings, they insist, “have the potential to provide important — and potentially unique — insights into basic questions of what actually makes humans unique.”

For others, the work provokes a profoundly moral and visceral uneasiness. Even one of the collaborators — University of North Carolina computer scientist Martin Styner — told MIT Technology Review he considered removing his name from the paper, which he said was unable to find a publisher in the West.

“Now we have created this animal which is different than it is supposed to be,” Styner said. “When we do experiments, we have to have a good understanding of what we are trying to learn, to help society, and that is not the case here.” l

In an email to the National Post, Styner said he has an expertise in medical image analysis and was approached by the researchers back in 2011. He said he had no input on the science in the project, beyond how to best do the analysis of their MRI data. “At the time, I did not think deeply enough about the ethical consideration.”

….

When it comes to the scientific use of nonhuman primates, ethicists say the moral compass is skewed in cases like this.

Given the kind of beings monkeys are, “I certainly would have thought you would have had to have a reasonable expectation of high benefit to human beings to justify the harms that you are going to have for intensely social, cognitively complex, emotional animals like monkeys,” said Letitia Meynell, an associate professor in the department of philosophy at Dalhousie University in Halifax.

“It’s not clear that this kind of research has any reasonable expectation of having any useful application for human beings,” she said.

The science itself is also highly dubious and fundamentally flawed in its logic, she said.
“If you took Einstein as a baby and you raised him in the lab he wouldn’t turn out to be Einstein,” Meynell said. “If you’re actually interested in studying the cognitive complexity of these animals, you’re not going to get a good representation of that by raising them in labs, because they can’t develop the kind of cognitive and social skills they would in their normal environment.”

The Chinese said the MCPH1 gene is one of the strongest candidates for human brain evolution. But looking at a single gene is just bad genetics, Meynell said. Multiple genes and their interactions affect the vast majority of traits.

My point is that there’s a lot of research focused on intelligence and genes when we don’t really know what role genes actually play and when there doesn’t seem to be any serious oversight.

Global plea for moratorium on heritable genome editing

A March 13, 2019 University of Otago (New Zealand) press release (also on EurekAlert) describes a global plea for a moratorium,

A University of Otago bioethicist has added his voice to a global plea for a moratorium on heritable genome editing from a group of international scientists and ethicists in the wake of the recent Chinese experiment aiming to produce HIV immune children.

In an article in the latest issue of international scientific journal Nature, Professor Jing-Bao Nie together with another 16 [17] academics from seven countries, call for a global moratorium on all clinical uses of human germline editing to make genetically modified children.

They would like an international governance framework – in which nations voluntarily commit to not approve any use of clinical germline editing unless certain conditions are met – to be created potentially for a five-year period.

Professor Nie says the scientific scandal of the experiment that led to the world’s first genetically modified babies raises many intriguing ethical, social and transcultural/transglobal issues. His main personal concerns include what he describes as the “inadequacy” of the Chinese and international responses to the experiment.

“The Chinese authorities have conducted a preliminary investigation into the scientist’s genetic misadventure and issued a draft new regulation on the related biotechnologies. These are welcome moves. Yet, by putting blame completely on the rogue scientist individually, the institutional failings are overlooked,” Professor Nie explains.

“In the international discourse, partly due to the mentality of dichotomising China and the West, a tendency exists to characterise the scandal as just a Chinese problem. As a result, the global context of the experiment and Chinese science schemes have been far from sufficiently examined.”

The group of 17 [18] scientists and bioethicists say it is imperative that extensive public discussions about the technical, scientific, medical, societal, ethical and moral issues must be considered before germline editing is permitted. A moratorium would provide time to establish broad societal consensus and an international framework.

“For germline editing to even be considered for a clinical application, its safety and efficacy must be sufficient – taking into account the unmet medical need, the risks and potential benefits and the existence of alternative approaches,” the opinion article states.

Although techniques have improved in recent years, germline editing is not yet safe or effective enough to justify any use in the clinic with the risk of failing to make the desired change or of introducing unintended mutations still unacceptably high, the scientists and ethicists say.

“No clinical application of germline editing should be considered unless its long-term biological consequences are sufficiently understood – both for individuals and for the human species.”

The proposed moratorium does not however, apply to germline editing for research uses or in human somatic (non-reproductive) cells to treat diseases.

Professor Nie considers it significant that current presidents of the UK Royal Society, the US National Academy of Medicine and the Director and Associate Director of the US National Institute of Health have expressed their strong support for such a proposed global moratorium in two correspondences published in the same issue of Nature. The editorial in the issue also argues that the right decision can be reached “only through engaging more communities in the debate”.

“The most challenging questions are whether international organisations and different countries will adopt a moratorium and if yes, whether it will be effective at all,” Professor Nie says.

A March 14, 2019 news item on phys.org provides a précis of the Comment in Nature. Or, you ,can access the Comment with this link

Adopt a moratorium on heritable genome editing; Eric Lander, Françoise Baylis, Feng Zhang, Emmanuelle Charpentier, Paul Berg and specialists from seven countries call for an international governance framework.signed by: Eric S. Lander, Françoise Baylis, Feng Zhang, Emmanuelle Charpentier, Paul Berg, Catherine Bourgain, Bärbel Friedrich, J. Keith Joung, Jinsong Li, David Liu, Luigi Naldini, Jing-Bao Nie, Renzong Qiu, Bettina Schoene-Seifert, Feng Shao, Sharon Terry, Wensheng Wei, & Ernst-Ludwig Winnacker. Nature 567, 165-168 (2019) doi: 10.1038/d41586-019-00726-5

This Comment in Nature is open access.

World Health Organization (WHO) chimes in

Better late than never, eh? The World Health Organization has called heritable gene editing of humans ‘irresponsible’ and made recommendations. From a March 19, 2019 news item on the Canadian Broadcasting Corporation’s Online news webpage,

A panel convened by the World Health Organization said it would be “irresponsible” for scientists to use gene editing for reproductive purposes, but stopped short of calling for a ban.

The experts also called for the U.N. health agency to create a database of scientists working on gene editing. The recommendation was announced Tuesday after a two-day meeting in Geneva to examine the scientific, ethical, social and legal challenges of such research.

“At this time, it is irresponsible for anyone to proceed” with making gene-edited babies since DNA changes could be passed down to future generations, the experts said in a statement.

Germline editing has been on my radar since 2015 (see my May 14, 2015 posting) and the probability that someone would experiment with viable embryos and bring them to term shouldn’t be that much of a surprise.

Slow science from Canada

Canada has banned germline editing but there is pressure to lift that ban. (I touched on the specifics of the campaign in an April 26, 2019 posting.) This March 17, 2019 essay on The Conversation by Landon J Getz and Graham Dellaire, both of Dalhousie University (Nova Scotia, Canada) elucidates some of the discussion about whether research into germline editing should be slowed down.

Naughty (or Haughty, if you prefer) scientists

There was scoffing from some, if not all, members of the scientific community about the potential for ‘designer babies’ that can be seen in an excerpt from an article by Ed Yong for The Atlantic (originally published in my ,August 15, 2017 posting titled: CRISPR and editing the germline in the US (part 2 of 3): ‘designer babies’?),

Ed Yong in an Aug. 2, 2017 article for The Atlantic offered a comprehensive overview of the research and its implications (unusually for Yong, there seems to be mildly condescending note but it’s worth ignoring for the wealth of information in the article; Note: Links have been removed),

” … the full details of the experiment, which are released today, show that the study is scientifically important but much less of a social inflection point than has been suggested. “This has been widely reported as the dawn of the era of the designer baby, making it probably the fifth or sixth time people have reported that dawn,” says Alta Charo, an expert on law and bioethics at the University of Wisconsin-Madison. “And it’s not.”

Then about 15 months later, the possibility seemed to be realized.

Interesting that scientists scoffed at the public’s concerns (you can find similar arguments about robots and artificial intelligence not being a potentially catastrophic problem), yes? Often, nonscientists’ concerns are dismissed as being founded in science fiction.

To be fair, there are times when concerns are overblown, the difficulty is that it seems the scientific community’s default position is to uniformly dismiss concerns rather than approaching them in a nuanced fashion. If the scoffers had taken the time to think about it, germline editing on viable embryos seems like an obvious and inevitable next step (as I’ve noted previously).

At this point, no one seems to know if He actually succeeded at removing CCR5 from Lulu’s and Nana’s genomes. In November 2018, scientists were guessing that at least one of the twins was a ‘mosaic’. In other words, some of her cells did not include CCR5 while others did.

Parents, children, competition

A recent college admissions scandal in the US has highlighted the intense competition to get into high profile educational institutions. (This scandal brought to mind the Silicon Valey elite who wanted to know more about gene editing that might result in improved cognitive skills.)

Since it can be easy to point the finger at people in other countries, I’d like to note that there was a Canadian parent among these wealthy US parents attempting to give their children advantages by any means, legal or not. (Note: These are alleged illegalities.) From a March 12, 2019 news article by Scott Brown, Kevin Griffin, and Keith Fraser for the Vancouver Sun,

Vancouver businessman and former CFL [Canadian Football League] player David Sidoo has been charged with conspiracy to commit mail and wire fraud in connection with a far-reaching FBI investigation into a criminal conspiracy that sought to help privileged kids with middling grades gain admission to elite U.S. universities.

In a 12-page indictment filed March 5 [2019] in the U.S. District Court of Massachusetts, Sidoo is accused of making two separate US$100,000 payments to have others take college entrance exams in place of his two sons.

Sidoo is also accused of providing documents for the purpose of creating falsified identification cards for the people taking the tests.

In what is being called the biggest college-admissions scam ever prosecuted by the U.S. Justice Department, Sidoo has been charged with nearly 50 other people. Nine athletic coaches and 33 parents including Hollywood actresses Felicity Huffman and Lori Loughlin. are among those charged in the investigation, dubbed Operation Varsity Blues.

According to the indictment, an unidentified person flew from Tampa, Fla., to Vancouver in 2011 to take the Scholastic Aptitude Test (SAT) in place of Sidoo’s older son and was directed not to obtain too high a score since the older son had previously taken the exam, obtaining a score of 1460 out of a possible 2400.

A copy of the resulting SAT score — 1670 out of 2400 — was mailed to Chapman University, a private university in Orange, Calif., on behalf of the older son, who was admitted to and ultimately enrolled in the university in January 2012, according to the indictment.

It’s also alleged that Sidoo arranged to have someone secretly take the older boy’s Canadian high school graduation exam, with the person posing as the boy taking the exam in June 2012.

The Vancouver businessman is also alleged to have paid another $100,000 to have someone take the SAT in place of his younger son.

Sidoo, an investment banker currently serving as CEO of Advantage Lithium, was awarded the Order of B.C. in 2016 for his philanthropic efforts.

He is a former star with the UBC [University of British Columbia] Thunderbirds football team and helped the school win its first Vanier Cup in 1982. He went on to play five seasons in the CFL with the Saskatchewan Roughriders and B.C. Lions.

Sidoo is a prominent donor to UBC and is credited with spearheading an alumni fundraising campaign, 13th Man Foundation, that resuscitated the school’s once struggling football team. He reportedly donated $2 million of his own money to support the program.

Sidoo Field at UBC’s Thunderbird Stadium is named in his honour.

In 2016, he received the B.C. [British Columbia] Sports Hall of Fame’s W.A.C. Bennett Award for his contributions to the sporting life of the province.

The question of whether or not these people like the ‘Silicon Valley elite’ (mentioned in John Loeffler’s February 22, 2019 article) would choose to tinker with their children’s genome if it gave them an advantage, is still hypothetical but it’s easy to believe that at least some might seriously consider the possibility especially if the researcher or doctor didn’t fully explain just how little is known about the impact of tinkering with the genome. For example, there’s a big question about whether those parents in China fully understood what they signed up for.

By the way, cheating scandals aren’t new (see Vanity Fair’s Schools For Scandal; The Inside Dramas at 16 of America’s Most Elite Campuses—Plus Oxford! Edited by Graydon Carter, published in August 2018 and covering 25 years of the magazine’s reporting). On a similar line, there’s this March13, 2019 essay which picks apart some of the hierarchical and power issues at play in the US higher educational system which led to this latest (but likely not last) scandal.

Scientists under pressure

While Kofler’s February 26, 2019 Nature opinion piece and call to action seems to address the concerns regarding germline editing by advocating that scientists become more conscious of how their choices impact society, as I noted earlier, the ideas expressed seem a little ungrounded in harsh realities. Perhaps it’s time to give some recognition to the various pressures put on scientists from their own governments and from an academic environment that fosters ‘success’ at any cost to peer pressure, etc. (For more about the costs of a science culture focused on success, read this March 2, 2019 blog posting by Jon Tennant on digital-science.com for a breakdown.)

One other thing I should mention, for some scientists getting into the history books, winning Nobel prizes, etc. is a very important goal. Scientists are people too.

Some thoughts

There seems to be a great disjunction between what Richardson presents as an alternative narrative to the ‘gene-god’ and how genetic research is being performed and reported on. What is clear to me is that no one really understands genetics and this business of inserting and deleting genes is essentially research designed to satisfy curiosity and/or allay fears about being left behind in a great scientific race to a an unknown destination.

I’d like to see some better reporting and a more agile response by the scientific community, the various governments, and international agencies. What shape or form a more agile response might take, I don’t know but I’d like to see some efforts.

Back to the regular programme

There’s a lot about CRISPR here on this blog. A simple search of ‘CRISPR ‘in the blog’s search engine should get you more than enough information about the technology and the various issues ranging from intellectual property to risks and more.

The three part series (CRISPR and editing the germline in the US …), mentioned previously, was occasioned by the publication of a study on germline editing research with nonviable embryos in the US. The 2017 research was done at the Oregon Health and Science University by Shoukhrat Mitalipov following similar research published by Chinese scientists in 2015. The series gives relatively complete coverage of the issues along with an introduction to CRISPR and embedded video describing the technique. Here’s part 1 to get you started..