British Broadcasting Corporation’s Channel 4 (BBC 4) will be telecasting the ultimate do-it-yourself (DIY) project, How to build a bionic man on Feb. 7, 2013, 9 pm GMT. Corinne Burns in a Jan. 30, 2013 posting for the Guardian science blogs describes the documentary (Note: Links have been removed),
Created by Darlow Smithson Productions (DSP, the TV company behind Touching The Void and Richard Hammond’s Engineering Connections), with the help of robotics experts Shadow Robot Company, the bionic man was conceived as a literal response to the question: how close is bionic technology is to catching up with – and even exceeding – the capabilities of the human body?
DSP got in touch with Dr Bertolt Meyer, a charismatic young researcher from Zurich University and himself a lifelong user of prosthetic technology, and invited him to, essentially, rebuild himself in bionic form. The result can be seen in How to Build a Bionic Man, to be broadcast on Channel 4 on 7 February. The Bionic Man himself will then reside in the Science Museum’s Who Am I? gallery from 7 February until 11 March.
Richard Walker (left), chief roboticist, and Dr Bertolt Meyer (right) at the Body Lab. On the table is an iWalk BiOM ankle. Photograph: Channel 4 [downloaded from http://www.guardian.co.uk/science/blog/2013/jan/30/build-bionic-man]
Burns goes on to discuss some of the issues raised by the increasing sophistication of prosthetics (Note: Links have been removed),
The engineering behind modern prosthetics is certainly awe-inspiring. The iLimb Ultra, of which Bertolt is a user, is part of the new class of myoelectric prosthetics. These custom-made devices function by placing electrical sensors directly in contact with the skin. These sensors pick up the signals generated by muscular movements in the residual limb – signals that are then translated by software into natural, intuitive movement in the prosthetic limb.
We all know about prosthetic limbs, even if many of us are not aware of just how sophisticated they now are. Less familiar, though, is the idea of bionic organs. Far removed from the iron lung of yore, these new fully integrated artificial body parts are designed to plug directly into our own metabolism – in effect, they are not within us, they become us. They’re the ultimate in biomimicry.
…
It’s one thing to use a bionic organ to replace lost function. But in a future world where we could, feasibly, replace virtually all of our body, will we blur the boundaries of artificial and natural to an extent that we have to recalibrate our definition of self and non-self? That’s especially pertinent when we consider the reality of neural prosthetics, like the “memory chips” developed by Dr Theodore Berger. Instinctively, many of us are uncomfortable with brain implants – but should we be? And will this discomfort be reduced if we broaden our definition of self?
Bertolt himself is pleased with the increasing normalisation, and even “coolness”, of prosthetics. But he expresses caution about the potential for elective use of such technology – would we ever choose to remove a healthy body part, in order to replace it with a stronger, better prosthetic?
Burns’ posting isn’t the only place where these discussion points and others related to human enhancement and robotic technologies are being raised, in a Jan. 18, 2013 posting I mentioned *a television advertisement for a new smartphone that ‘upgrades your brain’ that ‘normalises’ the idea of brain implants and other enhancements for everybody. As well, The Economist recently featured an article, You, robot? in its September 1st – 7th, 2012 issue about the European Union’s RoboLaw Project,
SPEAKING at a conference organised by The Economist earlier this year [2012], Hugh Herr, a roboticist at the Massachusetts Institute of Technology, described disabilities as conditions that persist “because of poor technology” and made the bold claim that during the 21st century disability would be largely eliminated. What gave his words added force was that half way through his speech, after ten minutes of strolling around the stage, he unexpectedly pulled up his trouser legs to reveal his bionic legs, and then danced a little jig. In future, he suggested, people might choose to replace an arthritic, painful limb with a fully functional robotic one. “Why wouldn’t you replace it?” he asked. “We’re going to see a lot of unusual situations like that.”
It is precisely to consider these sorts of situations, and the legal and ethical conundrums they will pose, that a new research project was launched in March. Is a prosthetic legally part of your body? When is it appropriate to amputate a limb and replace it with a robotic one? What are the legal rights of a person with “locked in” syndrome who communicates via a brain-computer interface? Do brain implants and body-enhancement devices require changes to the definition of disability? The RoboLaw project is an effort to anticipate such quandaries and work out where and how legal frameworks might need to be changed as the technology of bionics and neural interfaces improves. Funded to the tune of €1.9m ($2.3m), of which €1.4m comes from the European Commission, it brings together experts from engineering, law, regulation, philosophy and human enhancement.
There have been some recent legal challenges as to what constitutes one’s body (from The Economist article, You, robot?),
If you are dependent on a robotic wheelchair for mobility, for example, does the wheelchair count as part of your body? Linda MacDonald Glenn, an American lawyer and bioethicist, thinks it does. Ms Glenn (who is not involved in the RoboLaw project) persuaded an initially sceptical insurance firm that a “mobility assistance device” damaged by airline staff was more than her client’s personal property, it was an extension of his physical body. The airline settled out of court.
RoboLaw is a European Union Framework Programme 7-funded two year project, which started in 2012. There is a conference to be held in the Netherlands, April 23 – 24, 2013, from the RoboLaw home page,
RoboLaw Authors Workshop and Volume on ‘Opportunities and risks of robotics in relation to human values’
23-24 April 2013, Tilburg University, Tilburg (The Netherlands)
Call for paper and participation. Robotic technologies, taken to encompass anything from ‘traditional’ robots to emerging technologies in the field of biomedical research, such as nanotechnologies, bionics, and neural interfaces, as well as innovative biomedical applications, such as biomechatronic prostheses, hybrid bionic systems and bio- mechatronic components for sensory and motor augmentation, will have a profound impact on our lives. They may also affect human values, such as privacy, autonomy, bodily integrity, health, etc. In this workshop, we will focus on the impact of new technologies, and particularly robotics, on fundamental rights and human values. …
Important dates
Before 1 January 2013: Send an email to Ronald Leenes confirming your attendance, expressing your intention to either submit a paper or act as a commentator/reviewer.
Before 1 February: Send a 300 word abstract of the intended paper to Ronald Leenes
Before 8 February: Notification of acceptance.
Before 1 March: If your abstract has been accepted, send a draft of your full paper in PDF format to Ronald Leenes
Before 5 March: Circulation of papers
23-24 April 2013: Workshop
10 May: Selected final papers to be handed in.
According to the schedule, it’s a bit late to start the process for submitting an abstract but it never hurts to try.
Canadian academic, Gregor Wolbring, assistant professor, Dept of Community Health Sciences, Program in Community Rehabilitation and Disability Studies at the University of Calgary and past president of the Canadian Disability Studies Association, offers a nuanced perspective on human enhancement issues and the term, ableism. From my Aug. 30, 2011 posting on cyborgs, eyeborgs and others,
… Gregor’s June 17, 2011 posting on the FedCan blog,
The term ableism evolved from the disabled people rights movements in the United States and Britain during the 1960s and 1970s. It questions and highlights the prejudice and discrimination experienced by persons whose body structure and ability functioning were labelled as ‘impaired’ as sub species-typical. Ableism of this flavor is a set of beliefs, processes and practices, which favors species-typical normative body structure based abilities. It labels ‘sub-normative’ species-typical biological structures as ‘deficient’, as not able to perform as expected.
The disabled people rights discourse and disability studies scholars question the assumption of deficiency intrinsic to ‘below the norm’ labeled body abilities and the favoritism for normative species-typical body abilities. The discourse around deafness and Deaf Culture would be one example where many hearing people expect the ability to hear. This expectation leads them to see deafness as a deficiency to be treated through medical means. In contrast, many Deaf people see hearing as an irrelevant ability and do not perceive themselves as ill and in need of gaining the ability to hear. Within the disabled people rights framework ableism was set up as a term to be used like sexism and racism to highlight unjust and inequitable treatment.
Ableism is, however, much more pervasive.
Ableism based on biological structure is not limited to the species-typical/ sub species-typical dichotomy. With recent science and technology advances, and envisioned advances to come, we will see the dichotomy of people exhibiting species-typical and the so-called sub species-typical abilities labeled as impaired, and in ill health. On the other side we will see people exhibiting beyond species-typical abilities as the new expectation norm. An ableism that favours beyond species-typical abilities over species-typical and sub species-typical abilities will enable a change in meaning and scope of concepts such as health, illness, rehabilitation, disability adjusted life years, medicine, health care, and health insurance. For example, one will only be labeled as healthy if one has received the newest upgrade to one’s body – meaning one would by default be ill until one receives the upgrade.
You can find more about Gregor’s work on his University of Calgary webpage or his blog.
Finally, for anyone who wants a look at BBC 4’s ‘biionic man’,
A television company asked Dr Bertolt Meyer – who has a prosthetic arm – to rebuild himself in bionic form. Photograph: Channel 4 [downloaded from http://www.guardian.co.uk/science/blog/2013/jan/30/build-bionic-man]
* The articles ‘an’ was corrected to ‘a’ on July 16, 2013.