Tag Archives: Wilder Penfield

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 2 of 3

This is the middle commentary on the report titled,(INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research). Part 1 of my commentary having provided some introductory material and first thoughts about the report, this part offers more detailed thoughts and Part 3 offers ‘special cases’ and sums up some of the ideas first introduced in part 1.

The report: the good, the informative, and the problematic

As Canadian government reports go, this is quite readable and I’m delighted to note some sections are downright engaging. (Thank you to the writer)

Happily, the report acknowledges the problems with the usual measures for research performance (p. xiv print; p. 18 PDF in the Executive Summary and, also, in Chapter 3). Also happily, the panel describes how the scope of the disciplines was decided,

Among the early challenges for the Panel were misinterpretation of its moniker and the related scope of its work. The term “fundamental science” originated with federal Budget 2016, which announced the Government of Canada’s intent to undertake a review.3 Alignment of terminology followed. Some members of the anglophone research community were understandably concerned that the Panel’s mandate excluded applied science in a range of fields, as well as the social sciences and humanities. Francophone researchers, accustomed to les sciences sociales et humaines, were more sanguine.

Minister Duncan [Kirsty Duncan], whose own scholarship cuts across the natural sciences, social sciences, and humanities, made it clear from the outset that the Panel was to examine the full range of scientific and scholarly disciplines. The Panel’s secretariat and members similarly emphasized the breadth of our review. We were accordingly delighted to receive submissions from many researchers and organizations representative of disciplines supported by the three granting councils, others doing transdisciplinary research who sometimes find themselves in limbo, and others again frustrated that the lack of collaboration across the councils has effectively shut out their disciplines altogether.

A residual source of some confusion was the term “fundamental”, which is used infrequently in the social sciences and humanities even though much scholarship in those fields is arguably basic or conceptual.

The Panel again took a pragmatic view. Our mandate was derived in meaningful measure from concerns that Canada’s capacity for generation of exciting new knowledge had been eroded. We therefore assumed our remit ranged from basic science focused on making major discoveries to applied science with important technological implications, and from deep philosophical inquiry to rigorous economic evaluations of policies and programs.

The Panel emphasizes in this latter regard that societies without great science and scholarship across a wide range of disciplines are impoverished in multiple dimensions. From the social sciences and humanities, contributions range from deeper understanding of the complexity of human nature and social structures to grace in self-expression and excellence and beauty in the creative and performing arts. From the natural and health sciences and engineering, while attention often focuses on practical applications, basic research provides the breakthrough insights that fundamentally change our understanding of the natural world and our cosmos. We return to this subject in Chapter 2.

The Panel also observes that these categorizations are all focused on research subject matter, when in fact the subject that really matters may be the person doing the research. Postsecondary education enriched by exposure to basic research provides citizens with an outlook and intellectual tools that are extraordinarily well-suited to technological and social innovation. Indeed, countless authors of abstract graduate theses have gone on to lives of deep and productive engagement with practical problems, bringing with them perspectives that reflect an inquiring and critical mind.

In brief, the Panel’s primary interest is in the extramural research realm, and particularly in supports for research into topics chosen by scholars and scientists from the full range of disciplines, using methods that they have developed or adapted, and subject to review by research colleagues. This research may be basic or applied. It may be project-based or programmatic. And it may have early application or no immediate relevance. However, a key criterion is that the work is sufficiently excellent to withstand critical scrutiny by peers, [emphasis mine] and produces knowledge that, after appropriate review, can be shared widely to advance the collective store of knowledge and ideas in the relevant field or fields. (p. 4-5 print; pp. 38-9 PDF)

Here’s a problem not mentioned in the report. Sometimes, the most exciting work is not appreciated or even approved by your peers. Daniel Schechtman’s work with quasicrystals  illustrates the issue (from the Dan Schechtman Wikipedia entry),

“I was a subject of ridicule and lectures about the basics of crystallography. The leader of the opposition to my findings was the two-time Nobel Laureate Linus Pauling, [emphasis mine] the idol of the American Chemical Society and one of the most famous scientists in the world. For years, ’til his last day, he fought against quasi-periodicity in crystals. He was wrong, and after a while, I enjoyed every moment of this scientific battle, knowing that he was wrong.”[citation needed]

Linus Pauling is noted saying “There is no such thing as quasicrystals, only quasi-scientists.”[15] Pauling was apparently unaware of a paper in 1981 by H. Kleinert and K. Maki which had pointed out the possibility of a non-periodic Icosahedral Phase in quasicrystals[16] (see the historical notes). The head of Shechtman’s research group told him to “go back and read the textbook” and a couple of days later “asked him to leave for ‘bringing disgrace’ on the team.”[17] [emphasis mine] Shechtman felt dejected.[15] On publication of his paper, other scientists began to confirm and accept empirical findings of the existence of quasicrystals.[18][19]

Schechtman does get back into the lab, finds support for his discovery from other scientists, and wins the Nobel Prize for Chemisty in 2011. But, that first few years was pretty rough sledding. As for the problem, how can you tell the difference between ground-breaking research and a ‘nutbar’ theory?

Getting back to the report, there’s a very nice listing of research milestones (the inception of various funding agencies, science ministries, important reports, and more) in the Canadian research landscape on pp. 8-9 print; pp. 42-3 PDF. The list stretches from 1916 to 2016. Oddly, the 2011 Jenkins report (also known as the Review of Federal Support to R&D report) is not on the list. Of course, it was a report commissioned by the then Conservative federal government.

Chapter 2 is the ‘Case for Science and Inquiry’ and it includes a bit of a history of the world, geologically speaking (p. 18 print; p. 52 PDF), and more. The scholars that are referenced tend to be from Europe and the US (sigh … isn’t there a way to broaden our perspectives?).

I was surprised that they didn’t include Wilder Penfield’s work in their partial listing of Canadian discoveries, and achievements in natural sciences, engineering, and health (p. 22 print; p. 56 PDF). From the Wilder Penfield Wikipedia entry*,

Wilder Graves Penfield OM CC CMG FRS[1] (January 26, 1891 – April 5, 1976) was an American-Canadian pioneering neurosurgeon once dubbed “the greatest living Canadian.”[2] He expanded brain surgery’s methods and techniques, including mapping the functions of various regions of the brain such as the cortical homunculus. His scientific contributions on neural stimulation expand across a variety of topics including hallucinations, illusions, and déjà vu. Penfield devoted a lot of his thinking to mental processes, including contemplation of whether there was any scientific basis for the existence of the human soul.[2]

Also mildly surprising was Ursula Franklin’s exclusion from their sampling of great Canadian thinkers in the social science and humanities (p. 23 print; p. 57 PDF) especially as there seems to be room for one more entry. From the Ursula Franklin Wikipedia entry,

Ursula Martius Franklin, CC OOnt FRSC (16 September 1921 – 22 July 2016), was a German-Canadian metallurgist, research physicist, author, and educator who taught at the University of Toronto for more than 40 years.[1] …

Franklin is best known for her writings on the political and social effects of technology. For her, technology was much more than machines, gadgets or electronic transmitters. It was a comprehensive system that includes methods, procedures, organization, “and most of all, a mindset”.[5] …

For some, Franklin belongs in the intellectual tradition of Harold Innis and Jacques Ellul who warn about technology’s tendency to suppress freedom and endanger civilization.[8] …

As noted earlier, Chapter 3 offers information about typical measures for scientific impact. There were two I didn’t mention. First, there are the scores for interprovincial collaboration. While we definitely could improve our international collaboration efforts, it’s the interprovincial efforts that tend to be pitiful (Note: I’ve had to create the table myself so it’s not identical to the report table’s format),

Province or Territory  Collaborative rates 2003-2014
Interprovincial International
Alberta 24.4 42.5
British Columbia 23.0 48.2
Manitoba 33.5 39.7
New Brunswick 35.7 38.0
Newfoundland and Labrador 33.6 38.7
Northwest Territories 86.9 32.5
Nova Scotia 34.7 40.9
Nunavut 85.7 34.5
Ontario 14.8 43.4
Prince Edward island 46.7 40.6
Québec 16.9 43.8
Saskatchewan 33.9 41.7
Yukon 79.4 39.0
Canada 9.8 43.7

* *The interprovincial collaboration rates (IPC) are computed on whole counts, not fractional counts. So, for example, a publication with authors from four provinces would count as one for Canada and one for each of the provinces. So the IPC for the whole of Canada would be 1 out of 874,475 (Canada’s whole publication count over 2003–2014) and the IPC for Ontario (for example) would be 1 out of 396,811 (the whole count for Ontario). Therefore the interprovincial collaboration rate would be lower for Canada than for Ontario. (p. 39 print; 73 PDF)

Second, there are the prizes,

Moving from highly-cited researchers and papers to the realm of major international research prizes takes us further into the realm of outlying talent. Major international prizes for research are relevant measures because they bring great prestige not just to individuals and teams, but also to institutions and nations. They are also the culmination of years of excellence in research and, particularly when prizes are won repeatedly across a range of disciplines, they send strong signals to the world about the health of a nation’s basic research ecosystem.

Unfortunately, Canada’s performance in winning international prizes is also lagging. In 2013 the Right Honourable David Johnston, Governor General of Canada, and Dr Howard Alper, then chair of the national Science, Technology and Innovation Council (STIC), observed that Canadians underperform “when it comes to the world’s most distinguished awards”, e.g., Nobel Prize, Wolf Prize, and Fields Medal. They added: “In the period from 1941 to 2008, Canadians received 19 of the top international awards in science—an impressive achievement, to be sure, but lacking when compared with the United States (with 1,403 winners), the United Kingdom (222), France (91), Germany (75) and Australia (42).”22 ix

There is an interesting wrinkle to the dominance of the U.S. in Nobel prizes.23 Over 30 per cent of all U.S. Nobel laureates since 1950 were foreign-born, with that proportion rising over time. From 2007 to 2016, the 54 Nobel prizes awarded to U.S.-based researchers included 20 immigrants. Sources differ as to whether more of the U.S. Nobel laureates originated from Canada or Germany, but the best estimate is that, since 1901, there have been 15 Canadian-born, and in many cases Canadian-educated, Nobel laureates based in the U.S.—double the total number of Nobel prizes awarded to Canadian-based researchers in the same period.

From the standpoint of international recognition, 2015 was an exceptional year. Canadians won two of the pinnacle awards: a Nobel prize (Arthur McDonald for Physics) and a Wolf prize (James Arthur for Mathematics). Those prizes celebrate work that exemplifies two very different models of discovery. As a theoretical mathematician, Dr Arthur’s pioneering papers in automorphic forms have been overwhelmingly sole-authored; his long-term support has come from modest NSERC Discovery Grants. As a particle physicist, Dr McDonald has led a large team in developing and operating the renowned Sudbury Neutrino Laboratory, a major science facility purpose-built deep in an active nickel mine, where startling observations have been made that are forcing a reconsideration of The Standard Model for Elementary Particles. In both cases, however, what matters is that the work began decades ago, and Canada provided long-term support at the levels and in forms required to enable path-breaking discoveries to be made.

Canada cannot assume that there will be a series of other pinnacle prizes awarded based on discoveries that tap into work initiated in the 1970s and 1980s. To ensure a continuous pipeline of successful nominations for international awards, research institutions must be supported consistently to recruit and retain outstanding scholars and scientists. They in turn must be supported to create world-class research environments through meritocratic adjudication processes that offer fair access to appropriate levels of consistent funding for scientific inquiry. Our assessment thus far has not given us great confidence that these winning conditions are being created, let alone enhanced. (pp. 46-7 print; pp. 80-1 PDF)

I found one more interesting bit in the report, a dated list of Canadian science advice vehicles. Somewhat optimistically given the speed with which the initiative has moved forward, they’ve listed a Canadian chief science advisor for 2017 (p. 54 print; p. 88 PDF). Understandably, since it is a recommendation, they left out the NACRI, .

Again, here’s a link to the other parts:

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report) Commentaries

Part 1

Part 3

*’enty’ corrected to ‘entry’ and a link to Wilder Penfield’s Wikipedia entry was added on June 15, 2017.

Montreal Neuro goes open science

The Montreal Neurological Institute (MNI) in Québec, Canada, known informally and widely as Montreal Neuro, has ‘opened’ its science research to the world. David Bruggeman tells the story in a Jan. 21, 2016 posting on his Pasco Phronesis blog (Note: Links have been removed),

The Montreal Neurological Institute (MNI) at McGill University announced that it will be the first academic research institute to become what it calls ‘Open Science.’  As Science is reporting, the MNI will make available all research results and research data at the time of publication.  Additionally it will not seek patents on any of the discoveries made on research at the Institute.

Will this catch on?  I have no idea if this particular combination of open access research data and results with no patents will spread to other university research institutes.  But I do believe that those elements will continue to spread.  More universities and federal agencies are pursuing open access options for research they support.  Elon Musk has opted to not pursue patent litigation for any of Tesla Motors’ patents, and has not pursued patents for SpaceX technology (though it has pursued litigation over patents in rocket technology). …

Montreal Neuro and its place in Canadian and world history

Before pursuing this announcement a little more closely, you might be interested in some of the institute’s research history (from the Montreal Neurological Institute Wikipedia entry and Note: Links have been removed),

The MNI was founded in 1934 by the neurosurgeon Dr. Wilder Penfield (1891–1976), with a $1.2 million grant from the Rockefeller Foundation of New York and the support of the government of Quebec, the city of Montreal, and private donors such as Izaak Walton Killam. In the years since the MNI’s first structure, the Rockefeller Pavilion was opened, several major structures were added to expand the scope of the MNI’s research and clinical activities. The MNI is the site of many Canadian “firsts.” Electroencephalography (EEG) was largely introduced and developed in Canada by MNI scientist Herbert Jasper, and all of the major new neuroimaging techniques—computer axial tomography (CAT), positron emission tomography (PET), and magnetic resonance imaging (MRI) were first used in Canada at the MNI. Working under the same roof, the Neuro’s scientists and physicians made discoveries that drew world attention. Penfield’s technique for epilepsy neurosurgery became known as the Montreal procedure. K.A.C. Elliott identified γ-aminobutyric acid (GABA) as the first inhibitory neurotransmitter. Brenda Milner revealed new aspects of brain function and ushered in the field of neuropsychology as a result of her groundbreaking study of the most famous neuroscience patient of the 20th century, H.M., who had anterograde amnesia and was unable to form new memories. In 2007, the Canadian government recognized the innovation and work of the MNI by naming it one of seven national Centres of Excellence in Commercialization and Research.

For those with the time and the interest, here’s a link to an interview (early 2015?) with Brenda Milner (and a bonus, related second link) as part of a science podcast series (from my March 6, 2015 posting),

Dr. Wendy Suzuki, a Professor of Neural Science and Psychology in the Center for Neural Science at New York University, whose research focuses on understanding how our brains form and retain new long-term memories and the effects of aerobic exercise on memory. Her book Healthy Brain, Happy Life will be published by Harper Collins in the Spring of 2015.

  • Totally Cerebral: Untangling the Mystery of Memory: Neuroscientist Wendy Suzuki introduces us to scientists who have uncovered some of the deepest secrets about our brains. She begins by talking with experimental psychologist Brenda Milner [interviewed in her office at McGill University, Montréal, Quebéc], who in the 1950s, completely changed our understanding of the parts of the brain important for forming new long-term memories.
  • Totally Cerebral: The Man Without a Memory: Imagine never being able to form a new long term memory after the age of 27. Welcome to the life of the famous amnesic patient “HM”. Neuroscientist Suzanne Corkin studied HM for almost half a century, and gives us a glimpse of what daily life was like for him, and his tremendous contribution to our understanding of how our memories work.

Brief personal anecdote
For those who just want the science, you may want to skip this section.

About 15 years ago, I had the privilege of talking with Mary Filer, a former surgical nurse and artist in glass. Originally from Saskatchewan, she, a former member of Wilder Penfield’s surgical team, was then in her 80s living in Vancouver and still associated with Montreal Neuro, albeit as an artist rather than a surgical nurse.

Penfield had encouraged her to pursue her interest in the arts (he was an art/science aficionado) and at this point her work could be seen many places throughout the world and, if memory serves, she had just been asked to go MNI for the unveiling of one of her latest pieces.

Her husband, then in his 90s, had founded the School of Architecture at McGill University. This couple had known all the ‘movers and shakers’ in Montreal society for decades and retired to Vancouver where their home was in a former chocolate factory.

It was one of those conversations, you just don’t forget.

More about ‘open science’ at Montreal Neuro

Brian Owens’ Jan. 21, 2016 article for Science Magazine offers some insight into the reason for the move to ‘open science’,

Guy Rouleau, the director of McGill University’s Montreal Neurological Institute (MNI) and Hospital in Canada, is frustrated with how slowly neuroscience research translates into treatments. “We’re doing a really shitty job,” he says. “It’s not because we’re not trying; it has to do with the complexity of the problem.”

So he and his colleagues at the renowned institute decided to try a radical solution. Starting this year, any work done there will conform to the principles of the “open-
science” movement—all results and data will be made freely available at the time of publication, for example, and the institute will not pursue patents on any of its discoveries. …

“It’s an experiment; no one has ever done this before,” he says. The intent is that neuroscience research will become more efficient if duplication is reduced and data are shared more widely and earlier. …”

After a year of consultations among the institute’s staff, pretty much everyone—about 70 principal investigators and 600 other scientific faculty and staff—has agreed to take part, Rouleau says. Over the next 6 months, individual units will hash out the details of how each will ensure that its work lives up to guiding principles for openness that the institute has developed. …

Owens’ article provides more information about implementation and issues about sharing. I encourage you to read it in its entirety.

As for getting more research to the patient, there’s a Jan. 26, 2016 Cafe Scientifique talk in Vancouver (my Jan. 22, 2016 ‘Events’ posting; scroll down about 40% of the way) regarding that issue although there’s no hint that the speakers will be discussing ‘open science’.

Montréal Neuro and one of Europe’s biggest research enterprises, the Human Brain Project

Its official title is the Montréal Neurological Institute and Hospital (Montréal Neuro) which is and has been, for several decades, an international centre for cutting edge neurological research. From the Jan. 28, 2013 news release on EurekAlert,

The Neuro

The Montreal Neurological Institute and Hospital — The Neuro, is a unique academic medical centre dedicated to neuroscience. Founded in 1934 by the renowned Dr. Wilder Penfield, The Neuro is recognized internationally for integrating research, compassionate patient care and advanced training, all key to advances in science and medicine. The Neuro is a research and teaching institute of McGill University and forms the basis for the Neuroscience Mission of the McGill University Health Centre.

Neuro researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders. For more information, visit theneuro.com.

Nonetheless, it was a little surprising to see that ‘The Neuro’ is part one of the biggest research projects in history since it’s the European Union, which is bankrolling the project (see my posting about the Jan. 28, 2013 announcement of the winning FET Flagship Initatives). Here’s more information about the project, its lead researchers, and Canada’s role, from the news release,

The goal of the Human Brain Project is to pull together all our existing knowledge about the human brain and to reconstruct the brain, piece by piece, in supercomputer-based models and simulations. The models offer the prospect of a new understanding of the human brain and its diseases and of completely new computing and robotic technologies. On January 28 [2013], the European Commission supported this vision, announcing that it has selected the HBP as one of two projects to be funded through the new FET [Future and Emerging Technologies] Flagship Program.

Federating more than 80 European and international research institutions, the Human Brain Project is planned to last ten years (2013-2023). The cost is estimated at 1.19 billion euros. The project will also associate some important North American and Japanese partners. It will be coordinated at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, by neuroscientist Henry Markram with co-directors Karlheinz Meier of Heidelberg University, Germany, and Richard Frackowiak of Centre Hospitalier Universitaire Vaudois (CHUV) and the University of Lausanne (UNIL).

Canada’s role in this international project is through Dr. Alan Evans of the Montreal Neurological Institute (MNI) at McGill University. His group has developed a high-performance computational platform for neuroscience (CBRAIN) and multi-site databasing technologies that will be used to assemble brain imaging data across the HBP. He is also collaborating with European scientists on the creation of ultra high-resolution 3D brain maps. «This ambitious project will integrate data across all scales, from molecules to whole-brain organization. It will have profound implications for our understanding of brain development in children and normal brain function, as well as for combatting brain disorders such as Alzheimer’s Disease,» said Dr. Evans. “The MNI’s pioneering work on brain imaging technology has led to significant advances in our understanding of the brain and neurological disorders,” says Dr. Guy Rouleau, Director of the MNI. “I am proud that our expertise is a key contributor to this international program focused on improving quality of life worldwide.”

“The Canadian Institutes of Health Research (CIHR) is delighted to acknowledge the outstanding contributions of Dr. Evans and his team. Their work on the CBRAIN infrastructure and this leading-edge HBP will allow the integration of Canadian neuroscientists into an eventual global brain project,” said Dr. Anthony Phillips, Scientific Director for the CIHR Institute of Neurosciences, Mental Health and Addiction. “Congratulations to the Canadian and European researchers who will be working collaboratively towards the same goal which is to provide insights into neuroscience that will ultimately improve people’s health.”

“From mapping the sensory and motor cortices of the brain to pioneering work on the mechanisms of memory, McGill University has long been synonymous with world-class neuroscience research,” says Dr. Rose Goldstein, Vice-Principal (Research and International Relations). “The research of Dr. Evans and his team marks an exciting new chapter in our collective pursuit to unlock the potential of the human brain and the entire nervous system – a critical step that would not be possible without the generous support of the European Commission and the FET Flagship Program.”

Canada is not the only non-European Union country making an announcement about its role in this extraordinary project. There’s a Jan. 28, 2013 news release on EurekAlert touting Israel’s role,

The European Commission has chosen the Human Brain Project, in which the Hebrew University of Jerusalem is participating, as one of two Future and Emerging Technologies Flagship topics. The enterprise will receive funding of 1.19 billion euros over the next decade.

The project will bring together top scientists from around the world who will work on one of the great challenges of modern science: understanding the human brain. Participating from Israel will a team of eight scientists, led by Prof. Idan Segev of the Edmond and Lily Safra Center for Brain Sciences (ELSC) at the Hebrew University, Prof. Yadin Dudai of the Weizmann Institute of Science, and Dr. Mira Marcus-Kalish of Tel Aviv University.

More than 80 universities and research institutions in Europe and the world will be involved in the ten-year Human Brain Project, which will commence later this year and operate until the year 2023. The project will be centered at the Ecole Polytechnique Federale de Lausanne (EPFL) in Switzerland, headed by Prof. Henry Markram, a former Israeli who was recruited ten years ago to the EPFL.

The participation of the Israeli scientists testifies to the leading role that Israeli brain research occupies in the world, said Israeli President Shimon Peres. “Israel has put brain research at the heart of its efforts for the coming decade, and our country is already spearheading the global effort towards the betterment of our understanding of mankind. I am confident that the forthcoming discoveries will benefit a wide range of domains, from health to industry, as well as our society as a whole,” Peres said.

“The human brain is the most complex and amazing structure in the universe, yet we are very far from understanding it. In a way, we are strangers to ourselves. Unraveling the mysteries of the brain will help us understand our functioning, our choices, and ultimately ourselves. I congratulate the European Commission for its vision in selecting the Human Brain Project as a Flagship Mission for the forthcoming decade,” said Peres.

What’s amusing is that as various officials and interested parties (such as myself) wax lyrical about these projects, most of the rest of the world is serenely oblivious to it all.