Tag Archives: Canadian Institutes of Health Research

Students from Nakoda Oyade Education Centre and scientists at the Canadian Light Source (CLS) use science to help bison

It’s known as Paskwâwimostos – ᐸᐢᑳᐧᐃᐧᒧᐢᑐᐢ – The Bison Project and is being conducted at Canada’s only synchrotron, the Canadian Light Source (CLS) in Saskatoon, Saskatchewan. Here’s more from a November 24, 2022 CLS news release (also received via email), Note: Links have been removed,

Bison have long held a prominent place in the culture of the Carry the Kettle Nakoda Nation, located about 100 kms east of Regina. The once-abundant animals were a vital source of food and furs for the ancestors of today’s Carry the Kettle people.

Now, high school students from Nakoda Oyade Education Centre at Carry the Kettle are using synchrotron imaging to study the health of a local bison herd, with an eye to protecting and growing their numbers.

Armin Eashappie, a student involved in the Bison Project, says the work she and her classmates are doing is a chance to give back to an animal that was once integral to the very existence of her community. “We don’t want them to go extinct, says Eashappie. “They helped us with everything. We got our tools, our clothes, our food from them. We used every single part of the buffalo, nothing was left behind…they
even helped us make our homes – the teepees – we used the hides to cover them up.”

Eashappie’s classmate, Leslie Kaysaywaysemat, says that if their team can identify items the bison are eating that are not good for their health, these could potentially be replaced by other, healthier items. “We want to preserve them and make sure all generations can see how magnificent these creatures are,” he says.

The students, who are participating in the CLS’s Bison Project, gathered samples of bison hair, soil from where the animals graze, and plants they feed on, then analyzed them using the IDEAS beamline at the CLS. The Bison Project, coordinated by the Education group of the CLS, integrates Traditional Knowledge and mainstream science in a transformative research experience for First Nation, Métis, and Inuit
students.

Timothy Eashappie, Elder for the Bison Project, says it’s “awesome” that the students can use the Canadian Light Source machine to learn more about an animal that his people have long taken care of on the prairies. “That’s how we define ourselves – as
Buffalo People,” says Eashappie. “Since the beginning of time, they gave themselves to us, and now these young people are finding out how important these buffalo are to them, because it preserves their language, their culture, and their way of life. And now it’s our turn to take care of the bison.”

Once they’ve completed their analysis, the students will share their findings with the Chief and Council for Carry the Kettle.

The Canadian Light Source (CLS) is a national research facility of the University of Saskatchewan and one of the largest science projects in Canada’s history. More than 1,000 academic, government and industry scientists from around the world use the CLS every year in innovative health, agriculture, environment, and advanced materials research.

The Canada Foundation for Innovation [CFI], Natural Sciences and Engineering Research Council [NSERC], Canadian Institutes of Health Research [CIHR], the Government of Saskatchewan, and the University of Saskatchewan fund CLS operations.

You can find more about the CLS Bison Project here,

The Bison Project integrates Traditional Knowledge (TK) and mainstream Science in an experience that engages First Nation, Métis, and Inuit (FNMI) teachers, students, and communities. The Bison Project creates a unique opportunity to incorporate land-based hunting and herd management, synchrotron science, mainstream science principles and TK.

I found a bit more information about bison and their return in a November 23, 2020 article by Mark A. Bonta for The Daylighter,

For ecologists and environmentalists, it’s more than just a story about the return of a keystone species. 

The bison, it turns out, is an animal that maintains and restores the prairie.

Ecological restoration

Unlike cattle, bison are wallowers, so these powerful animals’ efforts to rid themselves of insect parasites, by rubbing their hide and rolling around on the ground, actually create permanent depressions, called bison wallows, in the landscape. 

These create fertile ground for diverse plant species — and the animals that rely on them. 

Bison also rub against woody plants and kill them off, keeping the prairies open, while their dung fertilizes the soil.

Iconic species like the greater prairie-chicken and the prairie dog all benefit from the restoration of bison. 

Bison herds have also proved highly adaptive to the “new,” post-colonial ecology of the Great Plains.

They are adapting to hunting season, for example, by delaying their migration. This keeps them out of harm’s way — but also increases the risk of human-bison conflicts.

Bonta’s article provides a little more detail about the mixed feelings that the return of the bison have engendered.

Science funding, 2018 Canadian federal budget, and a conversation between Prime Minister Justin Trudeau and US science popularizer, Bill Nye (the Science Guy)

It may be too soon to describe it as a fallback position but Canadian Prime Minister, Justin Trudeau, seems to return to science when he wants to generate or bask in positive news coverage.  Coming off a not entirely successful state visit to India (February 17 – 23, 2018), he received some of the worst notices of his international diplomatic efforts to date. (This February 23, 2018 article, ‘India to Justin Trudeau: Stop trying so hard‘, by Vidhi Doshi for The Washington Post was one of the kinder pieces while this February 25, 2018 article, ‘Why Justin Trudeau’s India tour turned out to be a diplomatic disaster‘, by Candice Malcolm and published on economictimes.indiatimes.com was one of the more scathing.

Budget 2018: We’re in the money

The announcement of the federal budget (February 27, 2018) might be viewed as offering welcome relief from torrents of criticism.  From a March 7, 2018 Canadian Science Policy Centre announcement (CSPC; received via email) about the publication of a series of opinion pieces (editorials) concerning the 2018 federal budget,

CSPC’s Official Statement on the Federal Budget 2018
Déclaration officielle du CPSC concernant le budget fédéral 2018

Canadian Science Policy Centre commends the Government of Canada for the strong investment in Science projected in the Budget 2018 for the next five years. The Centre congratulates all Canadians, in particular members of the Fundamental Science Review Panel and the entire community who strongly supported the panel recommendations and the investment in Science.

Le Centre sur les politiques scientifiques canadiennes félicite le Gouvernement du Canada pour son investissement substantiel en sciences prévu dans le budget 2018 pour les cinq prochaines années. Le Centre félicite tous les Canadiens, plus particulièrement les membres du Comité de l’examen du soutien aux sciences ainsi que la communauté dans son ensemble, qui a vivement appuyé les recommandations du Comité et l’investissement en sciences.

You can find the editorials here (17 in total including an interview with Science Minister Kirsty Duncan … surprisingly[!!!!], she’s very proud of the government’s budget for science) along with editorials on other issues. Russ Roberts’ piece (Federal Budget 2018 – Missed Another Opportunity to Maximize ROI on Canadians’ Investments in Innovation) stands out as it is rather ‘grumpy’ but only in comparison to pretty much everyone else who is pleased to one degree or another.

The editorials put me in mind of an old song celebrating money in a Busby Berkeley production. Prepare yourself, over the top was where he liked to live,

Budget 2018: a little more nuance

Brooke Struck over on sciencemetrics.org offers some incisive analysis in two separate blog postings. First, he tackles the money in a February 28, 2018 posting (Note: Links have been removed),

The Naylor report [links to my 3-part series on the report also known as, INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research {Review of fundamental research final report} follow at the end of this posting] contained many recommendations, but the one that got the most press—and surely is the focus of attention right now, given the release of the budget yesterday—is the recommendation that funding for the three granting councils be increased. The amounts were quite high, too, calling for an increase from $3.5 billion to $4.8 billion to remediate slides over the decade of the previous government’s term.

The timing of the report’s release was wise, as a release before that year’s budget might have created the expectation that the money would flow immediately, which simply doesn’t fit with the timelines of federal budget development processes. From April 2017 to now, the research community in Canada has rallied around the report and its recommendations, sustaining a campaign to keep research (and its funding) in the national discussion.

One note that the panel emphasized was that the Social Sciences and Humanities Research Council (SSHRC) had been hit particularly hard. The rule of thumb is apparently that SSHRC is supposed to get 20% of the total granting council budget, while 40% goes to the natural sciences & engineering [Natural Sciences and Engineering Council] (NSERC) and 40% goes to health research [Canadian Institutes of Health Research] (CIHR). SSHRC’s portion had consistently clocked in at around 15%.

Furthermore, the report emphasized that the underlying reasoning behind the 40-40-20 split might not hold water anymore, as the social sciences and humanities really don’t have any other major sources of funding beyond government support, whereas other types of research can draw on support from other players as well. The 40-40-20 split from government is not a 40-40-20 split in practice once additional sources are considered in the equation.

Delivery: as promised?

And that brings us to yesterday’s budget. While the report had called for an injection of $1.3 billion, the finance minister apparently couldn’t scrape together more than a measly $925 million—which, of course, is a huge amount of money. Some will lament the gap and rend their shirts in twain about promises broken, while others will cheer the victory of science retaking its rightful place through another #PromiseKept. That increase translated into a 25% bump in fundamental research spending, so I guess how you feel about it depends on your views about how much a 25% increase really means. For those keeping score at home, that apparently closes the gap to about 90% of real spending power levels before the slides under Harper.

But was it a 25% increase for everyone? No, the $925 million was not split evenly between the councils. Identical portions of $354.7 million will go to NSERC and CIHR (roughly 38% each from the new money) while $215.5 million will go to SSHRC (just over 23% of the new money). Comparing their funding levels this morning to those of yesterday morning, NSERC and CIHR saw increases of about 20%–25%, while SSHRC saw an increase of over 40%.

But did the government really heed the advice of their panel about getting back to the 40-40-20 allocation across the councils (while acknowledging that even that split is perhaps not sufficient anymore)? With its increase, SSHRC will be up from 15% of the tri-council total to about 16.5% of the total. That sounds like progress.

On the flip side, though, the government has just announced a massive injection to research spending, with an ongoing annual increase after that (following the same split as the one-time boost). No further increases are likely to happen again in the near future, and it would take three more increases just like this one for SSHRC to reach its 20%. The social sciences and humanities have made some headway, but they aren’t likely to get any closer than this to their 20%. The big investment has been made, and this will be the status quo for a while—consider that the Naylor panel was the first of its kind in 40 years.

I don’t think this excerpt does justice to Struck’s posting and recommend you read it in its entirety if you have the time and there’s this March 8, 2018 posting where he examines ‘evidence’ in relation to the budget (Note: Links have been removed),

The new budget provides a lot of money for science. It also emphasizes the importance of evidence-based decision-making to government, employing the term “evidence-based” about 20 times in the document. A lot of the new science money is earmarked to increase science for policy as well, separate from the fundamental science funding we discussed last week.

For example, Statistics Canada will get millions of extra dollars, in one-time injections as well as increases to ongoing, regular operating budgets. Why? “Better data will… support [the Government’s] commitment to evidence-based policy-making.” (p. 187). There are also hundreds of millions of dollars for science conducted within the federal government: labs and facilities (p.83) as well as highlighted projects (e.g., ocean and freshwater surveillance, p. 98). Again, all this is on top of the $925 million for fundamental research outside of government, administered by the funding councils. All told, that’s a big boost for research.

What about the uptake of that research in decision-making? There’s a whole section in Chapter 2 entitled “Placing Evidence at the Centre of Program Evaluation and Design.” The result? Statistics Canada gets $1 million annually to “improve performance evaluations for innovation-related programs,” and the Treasury Board gets $2 million annually to build an internal team for innovation performance evaluation, drawing on (among other things) the StatsCan innovation data.

Beyond that, the previous budget outlined $2 million annually for the federal Chief Science Advisor and her secretariat. That outlay doesn’t mention improving evidence-based decision-making, though it’s a key part of the CSA’s mandate. Together, what we see here is that there’s a huge disparity between the new money being spent on research and data, and the new money being spent to develop “a strong culture of evidence-based decision-making” (Budget 2018, p. 276).

Reading between the line items

The funding disparity suggests that the government feels that evidence-based policymaking is hampered primarily by supply-side problems. If we just pushed more science in the front end, we’d get a better flow of evidence through the policymaking pipeline. There’s almost no money to patch up whatever holes there may be in that pipeline between the research money inputs and the better policy outputs.

This quality of analysis is what one would hope for from the Canadian Science Policy Centre (CSPC). Perhaps once their initial euphoria and back-patting has passed, the CSPC commentators will offer more nuanced takes on the budget.

Budget 2018: The good includes a new intellectual property strategy

First, there’s a lot to like in the 2018 budget as the CSPC folks noticed. Advancing gender equality, supporting innovation and business, supporting fundamental research through the tri-council agencies, and more are all to the good.

Surprisingly, no one else seems to have mentioned a new (?) intellectual property strategy introduced in the document (from Chapter 2: Progress; scroll down about 80% of the way, Note: The formatting has been changed),

Budget 2018 proposes measures in support of a new Intellectual Property Strategy to help Canadian entrepreneurs better understand and protect intellectual property, and get better access to shared intellectual property.

What Is a Patent Collective?
A Patent Collective is a way for firms to share, generate, and license or purchase intellectual property. The collective approach is intended to help Canadian firms ensure a global “freedom to operate”, mitigate the risk of infringing a patent, and aid in the defence of a patent infringement suit.

Budget 2018 proposes to invest $85.3 million over five years, starting in 2018–19, with $10 million per year ongoing, in support of the strategy. The Minister of Innovation, Science and Economic Development will bring forward the full details of the strategy in the coming months, including the following initiatives to increase the intellectual property literacy of Canadian entrepreneurs, and to reduce costs and create incentives for Canadian businesses to leverage their intellectual property:

  • To better enable firms to access and share intellectual property, the Government proposes to provide $30 million in 2019–20 to pilot a Patent Collective. This collective will work with Canada’s entrepreneurs to pool patents, so that small and medium-sized firms have better access to the critical intellectual property they need to grow their businesses.
  • To support the development of intellectual property expertise and legal advice for Canada’s innovation community, the Government proposes to provide $21.5 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada. This funding will improve access for Canadian entrepreneurs to intellectual property legal clinics at universities. It will also enable the creation of a team in the federal government to work with Canadian entrepreneurs to help them develop tailored strategies for using their intellectual property and expanding into international markets.
  • To support strategic intellectual property tools that enable economic growth, Budget 2018 also proposes to provide $33.8 million over five years, starting in 2018–19, to Innovation, Science and Economic Development Canada, including $4.5 million for the creation of an intellectual property marketplace. This marketplace will be a one-stop, online listing of public sector-owned intellectual property available for licensing or sale to reduce transaction costs for businesses and researchers, and to improve Canadian entrepreneurs’ access to public sector-owned intellectual property.

The Government will also consider further measures, including through legislation, in support of the new intellectual property strategy.

Helping All Canadians Harness Intellectual Property
Intellectual property is one of our most valuable resources, and every Canadian business owner should understand how to protect and use it.

To better understand what groups of Canadians are benefiting the most from intellectual property, Budget 2018 proposes to provide Statistics Canada with $2 million over three years to conduct an intellectual property awareness and use survey. This survey will help identify how Canadians understand and use intellectual property, including groups that have traditionally been less likely to use intellectual property, such as women and Indigenous entrepreneurs. The results of the survey should help the Government better meet the needs of these groups through education and awareness initiatives.

The Canadian Intellectual Property Office will also increase the number of education and awareness initiatives that are delivered in partnership with business, intermediaries and academia to ensure Canadians better understand, integrate and take advantage of intellectual property when building their business strategies. This will include targeted initiatives to support underrepresented groups.

Finally, Budget 2018 also proposes to invest $1 million over five years to enable representatives of Canada’s Indigenous Peoples to participate in discussions at the World Intellectual Property Organization related to traditional knowledge and traditional cultural expressions, an important form of intellectual property.

It’s not wholly clear what they mean by ‘intellectual property’. The focus seems to be on  patents as they are the only intellectual property (as opposed to copyright and trademarks) singled out in the budget. As for how the ‘patent collective’ is going to meet all its objectives, this budget supplies no clarity on the matter. On the plus side, I’m glad to see that indigenous peoples’ knowledge is being acknowledged as “an important form of intellectual property” and I hope the discussions at the World Intellectual Property Organization are fruitful.

That said, it’s good to see the government adopting a fresh approach to the matter.

Budget 2018: Who’s watching over us?

Russ Roberts (CSPC editorial) makes an excellent point in his piece about getting some sort of return on investment (ROI) made by the Canadian government on behalf of its taxpayers. One note, the issue is not new and unique to this Liberal government. As far as I’m aware, there never has been any mechanism for determining whether taxpayers’ money has been well spent and other than knowing that insulin was a huge boon to the world and could be described as a great ROI. So, I’m not suggesting that everything has to be measured in dollars and cents but just that we occasionally give it some thought.

Another aspect I’d like to see considered is oversight. In my March 5, 2018 posting I posed a question, What is happening with Alberta’s (Canada) Ingenuity Lab? In sum, Dr. Carlo Montemagno came to Alberta to head up the lab which is funded to the tune of $100M over 10 years. He was making over $500,000/year when he left some five years into the project to become Chancellor at Southern Illinois University (SIU). I had some questions about Montemagno’s tenure in Alberta. For example, was hiring his daughter and son-in-law (as he did again at SIU where he has received severe criticism) to work at the Ingenuity Lab a good idea? It may have been but it seems as if the question was never asked. Other questions also present themselves such as, what is happening to an industrial pilot project on carbon transformation that Montemagno touted?

Increasingly, I’m wondering what sort of oversight these heavily funded science projects are receiving, especially in light of the government’s massive foul up over the Phoenix pay system for federal government employees. (I’m aware that I’m conflating science and technology.) We’re entering the third year of a botched (a very polite term) and increasingly expensive payroll technology implementation. Take for example this recommendation from the Canada Treasury Board’s Lessons Learned from the Transformation of Pay Administration Initiative webpage which has me shaking my head,

Fully test the IT Solution before launch
Lesson 14: Launch any required new IT solution only after it has been fully tested with end-to-end real-life simulations using a broad spectrum of real users and when all doubts regarding success have been addressed and verified independently.

The federal government has over 300,000 employees whose payroll was migrated to this system and they didn’t test it (!) or so I infer from this recommendation. (According to a CBC [Canadian Broadcasting Corporation] news online August 24, 2017 news item, a little over 1/2 of Canada’s federal public servants have been affected,

Nearly one in every two federal public servants paid through the problem-plagued Phoenix system has opened a file seeking redress for a pay issue, CBC News has learned.

As of Aug. 8 [2017], there were 156,035 employees who had been waiting at least 30 days to have their pay complaint dealt with, according to data released to Radio-Canada by a government source.

That number represents nearly one-half of the 313,734 public servants paid through Phoenix. It’s also the first instance in which the scope of the Phoenix payroll issues has been laid clear in terms of people affected, rather than in terms of “transactions” or “cases.”

The documents show the government has been tracking the numbers of individuals affected by Phoenix since at least June 26 [2017].

“It’s shocking that we’ve just learned that they were hiding those numbers, because they didn’t want to show how big that catastrophe is for our public servants,” said Alexandre Boulerice, the NDP’s [New Democratic Party] finance critic.

Interestingly,  the government is hoping to introduce more technology into their governance. Michael Karlin’s (@supergovernance) Twitter feed and his latest essay provide some insight into the government’s preparations for the introduction of artificial intelligence (AI), Note: Links have been removed,

Towards Rules for Automation in Government

Caveat: This is a personal view of work underway that I’m leading. What I describe is subject to incredible change as this policy work winds its way through government and consultations. Our approach may change for reasons that I’m simply not privy to, and that’s fine. This is meant to solicit ideas, but also show the complexity about what it takes to make policy. I hope that people find it useful, particularly students of public admin. It also represents my view of the world only, and neither my organization’s or the Government of Canada writ large.

AI is a rapidly evolving space, and trying to create rules in a time of disruption is risky. Too severe and innovation can be hindered; this is unacceptable during a time when the Government of Canada is embracing digital culture. On the other hand, if the rules don’t have meaning and teeth, and Canadians will not be sufficiently protected from the negative outcomes of this technology, like this or this. Trying to strike the right balance between facilitating innovation while being protective of right is a challenge, and one that benefits from ongoing discussions with different sectors across the country. It also means that I might work hard to build a consensus around a set of rules that we try out and have to scrap and redesign after a year in deployment because they don’t work.

Let’s not forget the 2017 Canadian federal budget introduced funding ($125M) for a Pan-Canadian Artificial Intelligence Strategy to be administered by the Canadian Institute for Advanced Research (CIFAR). So, federal funding for science is often intimately linked to technology., hence the conflation.

Sunny ways: a discussion between Justin Trudeau and Bill Nye

Billed as a discussion about the Canadian federal 2018 budget and science, Justin Trudeau sat down with Bill Nye, a US science popularizer and television personality on March 6, 2018 for about an hour. Kate Young, parliamentary secretary to the minister of science (Kirsty Duncan) was moderator.

As to be expected Bill Nye did not know much about the budget and the funding it provided for science, technology, research, and innovation but he was favourably impressed overall. In short, if you were looking for an incisive policy discussion, this was not the venue for it.

The conversation was quite genial throughout. Paul Wells in his March 6, 2018 article for Maclean’s offers a good summary of the main points and answers a few questions I had (for example, why a US television science personality?),

News of this bit of show-business [televised discussion] drew a fair bit of advance comment, most of it on Twitter on Monday night, some of it critical or worried. Some who don’t like Nye’s climate-change activism said he’s not a scientist. This is, by many definitions, true: He’s a mechanical engineer. I’m here to tell you that it’s hard to get a degree in mechanical engineering without learning some science, but for those inclined to draw distinctions, fill your boots. Others wished a Canadian scientist had been Trudeau’s chosen interlocutor, instead of some TV Yankee.

Part of the answer to that came from the U of O students, who were pleased to see the Prime Minister but plainly way more pleased to see Bill Nye the Science Guy. There simply isn’t a Canadian scientist (or science-friendly mechanical engineer) who would have provoked as much excitement. [emphasis mine; sadly true]

My own concern was that Nye, who has been critical of the Trump administration, might attempt to draw distinctions between the blackened anti-science hell-pit of his own country and the bright shiny city on a hill called Canada. Such distinctions would have been misinformed, for reasons I’ll explain in a bit, but in fact Nye mostly managed to avoid making them.

Mostly he and Trudeau just shot the breeze, in ways that were low on detail but not unpleasant.

One comment that Trudeau made raised a lot of interest on Paul Wells’ fTwitfer feed (#inklessPW), ‘all babies are scientists’. Wells’ notes where this idea likely originated (Note: A link has been removed),

The babies-are-scientists bit, I heard from a former New Brunswick education minister named Kelly Lamrock, could come from a book that was in vogue at about the time Trudeau was working as a schoolteacher, The Scientist in the Crib. To anyone who’s watched a toddler who was fascinated about dinosaurs grow into a teenager who couldn’t care less, Trudeau’s reverie makes sense as folk wisdom if not as a precise description of the scientific method.

There are also people who claim all babies are artists or musicians or mathematicians or … . Take your pick.

Wells goes on to highlight two female researchers (Trudeau being famously feminist and whose government just presented a budget boosting women) invited onstage to participate in the conversation (Note: Links have been removed),

… two young women researchers were invited onstage. Plainly their role was to be admired as pathbreaking young women researchers, pulverizing glass ceilings, embodying budget initiatives. To my relief, neither seemed interested in acting the part, or at least not in behaving as if sent straight from Central Casting.

Caitlin Miron from Queen’s University has already received some coverage for discovering a… thing… that could “switch off” cancer cells. This is how Miron was introduced. She could switch off cancer cells. It’s how Nye addressed her. You could switch off cancer cells! Miron answered, reasonably enough, that that’s how it might turn out someday, but that on the other hand it might not, and in the meantime she’s learning interesting new things about cancer cells. She was plainly flattered by the attention, but not interested in boiling her work down to slogans just yet.

Then the PM and the science guy turned to Ayda Elhage, who’s a PhD student in Chemistry at the University of Ottawa. Elhage, who was born in Lebanon, launched into a description of her work, which concentrates on (among other things) the tunable photocatalytic activity of palladium-decorated titanium dioxide [likely titanium dioxide nanoparticles]. I’m sure I don’t have to tell you how important this work is! At least I hope I don’t, because I understood almost none of it! I think it’s about complex new materials whose properties can be triggered by light. Or not. Anyway, the way she resisted any attempt to reduce her work to a gimmick or gadget was heartening to hear.

Wells winds up with this,

…  the truth is that even now, today, in the second of the dark Trump years, the United States is far more of a performer in science research than Canada is. The U.S. National Institutes of Health have about 6 or 7 times the per-capita budget of the Canadian Institutes of Health Research; NASA and the National Science Foundation together spend about twice as much per capita as Canada’s Natural Science and Engineering Research Council.

The new investments in last week’s budget, while welcome, won’t change the orders of magnitude here. The U.S. commitment to science research is cultural and durable. The Trump White House’s call for cuts to granting agencies was met with budget increases to those agencies from Congress. Trudeau’s conversion to the cause comes after almost a year’s steady pressure from the Canadian research community. But I bet those researchers were heartened to hear Trudeau talking like one of them so soon after the budget came down.

Wells also covers their comments on support for fundamental research and a foray into the Kinder Morgan pipeline controversy.

From Wells’ Twitter feed (on the day of),

2 hours ago

Nye asks Trudeau about “this pipeline, Morgan Kinder.” Uh oh.

2 hours ago

Trudeau talks about “tremendous potential” for renewables. “However, we’re not going to get there tomorrow.” The has to be a “transition phase.”

2 hours ago

This answer is longer than the Oscars.

Nye did not correctly identify the pipeline but he did comment on his visit to Fort McMurray. In any event, the Kinder Morgan portion of the discussion seemed scripted (to me), i.e, Trudeau knew the question was coming and was prepared for it. I’m guessing he also knew Nye was going to give him and his government a pass after hearing the reasons for their decision.

One question that I found interesting but not mentioned in Wells’ article was about language and the arts. It was neither Trudeau’s not Nye’s finest moment. They were clearly unable to shift gears, part of their problem being that much of what they discussed in terms of ‘baby scientists’ could also be said about the arts. Yes, all babies make art!

Final thoughts

As noted earlier, here’s a lot to applaud in the new budget, more support for fundamental research, catch up funding for the Social Sciences and Humanities Research Council, and greater support for women in the sciences and technology.

At the same time, I wish this government put more thought into how it’s spending taxpayers’ money.

Extras

For anyone who’s curious, you can find the full 2018 federal budget here and you’ll find the science funding in Chapter 2: Progress.

For the curious, you can watch the entire (!) Trudeau/Nye conversation, 1 hour, 9 minutes and 30 seconds here.

For anyone interested in the Naylor report (or my comments on it), there’s this three-part series:

  • INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 1 of 3
  • INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 2 of 3
  • INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 3 of 3

For anyone who hasn’t been following the Canadian political scene, “sunny ways” is a term that Justin Trudeau uses to describe, in part, his political philosophy. Here’s an explanation of the term from the Liberal Party of Canada’s website,

Canadians have often heard Prime Minister Justin Trudeau speak of Sir Wilfrid Laurier’s [Canadian Prime Minister from 1896-1911] sunny ways – a guiding philosophy that both men share. Like Laurier, the Prime Minister knows that politics can be a positive and powerful force for change. …

Wilfrid Laurier’s appeal for the “sunny way” in political discourse has its roots in the Manitoba Schools Question. When Manitoba became a province in 1870, a dual school system was established to reflect the province’s Protestant and largely English-speaking population, and its Catholic and predominantly French-speaking, residents.

“The sun’s warm rays prove more effective than the wind’s bluster.”

By 1890, the Anglophone population widely outnumbered the Francophones. Seeking to appeal to this growing population, the provincial government of Thomas Greenway attempted to abolish the dual school system. With the support of the federal Conservative government, Manitoba’s Catholic community launched a court challenge of the school law. The Judicial Committee of the Privy Council ruled that while the law was valid, the federal government could restore public funding to denominational schools. In 1895, despite it being deeply divisive, Prime Minister Mackenzie Bowell introduced legislation to force Manitoba to restore Catholic schools – a measure that was then postponed due to severe opposition within his own cabinet, ultimately leading to his resignation.

In contrast to Bowell’s heavy-handed approach, Liberal Leader Wilfrid Laurier proposed that a diplomatic “sunny way” would work better, using as an illustration Aesop’s fable in which the sun and the wind hold a contest to see who can remove a traveler’s coat. The sun’s warm rays prove more effective than the wind’s bluster.

While more than 120 years have passed, Prime Minister Trudeau shares Laurier’s belief that the “sunny way” remains essential to solving the complex problems facing our country.

Trudeau seems to have had remarkable luck with his ‘sunny ways’ which sometimes seem more like a form of teflon coating than an approach to diplomacy as per Sir Wilfred Laurier. At other times, Trudeau appears to have a magic touch where diplomacy is concerned. He is famously able to deal with the volatile US President, Donald Trump.

2017 proceedings for the Canadian Science Policy Conference

I received (via email) a December 11, 2017 notice from the Canadian Science Policy Centre that the 2017 Proceedings for the ninth annual conference (Nov. 1 – 3, 2017 in Ottawa, Canada) can now be accessed,

The Canadian Science Policy Centre is pleased to present you the Proceedings of CSPC 2017. Check out the reports and takeaways for each panel session, which have been carefully drafted by a group of professional writers. You can also listen to the audio recordings and watch the available videos. The proceedings page will provide you with the opportunity to immerse yourself in all of the discussions at the conference. Feel free to share the ones you like! Also, check out the CSPC 2017 reports, analyses, and stats in the proceedings.

Click here for the CSPC 2017 Proceedings

CSPC 2017 Interviews

Take a look at the 70+ one-on-one interviews with prominent figures of science policy. The interviews were conducted by the great team of CSPC 2017 volunteers. The interviews feature in-depth perspectives about the conference, panels, and new up and coming projects.

Click here for the CSPC 2017 interviews

Amongst many others, you can find a video of Governor General Julie Payette’s notorious remarks made at the opening ceremonies and which I highlighted in my November 3, 2017 posting about this year’s conference.

The proceedings are organized by day with links to individual pages for each session held that day. Here’s a sample of what is offered on Day 1: Artificial Intelligence and Discovery Science: Playing to Canada’s Strengths,

Artificial Intelligence and Discovery Science: Playing to Canada’s Strengths

Conference Day:
Day 1 – November 1st 2017

Organized by: Friends of the Canadian Institutes of Health Research

Keynote: Alan Bernstein, President and CEO, CIFAR, 2017 Henry G. Friesen International Prizewinner

Speakers: Brenda Andrews, Director, Andrew’s Lab, University of Toronto; Doina Precup, Associate Professor, McGill University; Dr Rémi Quirion, Chief Scientist of Quebec; Linda Rabeneck, Vice President, Prevention and Cancer Control, Cancer Care Ontario; Peter Zandstra, Director, School of Biomedical Engineering, University of British Columbia

Discussants: Henry Friesen, Professor Emeritus, University of Manitoba; Roderick McInnes, Acting President, Canadian Institutes of Health Research and Director, Lady Davis Institute, Jewish General Hospital, McGill University; Duncan J. Stewart, CEO and Scientific Director, Ottawa Hospital Research Institute; Vivek Goel, Vice President, Research and Innovation, University of Toronto

Moderators: Eric Meslin, President & CEO, Council of Canadian Academies; André Picard, Health Reporter and Columnist, The Globe and Mail

Takeaways and recommendations:

The opportunity for Canada

  • The potential impact of artificial intelligence (AI) could be as significant as the industrial revolution of the 19th century.
  • Canada’s global advantage in deep learning (a subset of machine learning) stems from the pioneering work of Geoffrey Hinton and early support from CIFAR and NSERC.
  • AI could mark a turning point in Canada’s innovation performance, fueled by the highest levels of venture capital financing in nearly a decade, and underpinned by publicly funded research at the federal, provincial and institutional levels.
  • The Canadian AI advantage can only be fully realized by developing and importing skilled talent, accessible markets, capital and companies willing to adopt new technologies into existing industries.
  • Canada leads in the combination of functional genomics and machine learning which is proving effective for predicting the functional variation in genomes.
  • AI promises advances in biomedical engineering by connecting chronic diseases – the largest health burden in Canada – to gene regulatory networks by understanding how stem cells make decisions.
  • AI can be effectively deployed to evaluate health and health systems in the general population.

The challenges

  • AI brings potential ethical and economic perils and requires a watchdog to oversee standards, engage in fact-based debate and prepare for the potential backlash over job losses to robots.
  • The ethical, environmental, economic, legal and social (GEL3S) aspects of genomics have been largely marginalized and it’s important not to make the same mistake with AI.
  • AI’s rapid scientific development makes it difficult to keep pace with safeguards and standards.
  • The fields of AI’s and pattern recognition are strongly connected but here is room for improvement.
  • Self-learning algorithms such as Alphaville could lead to the invention of new things that humans currently don’t know how to do. The field is developing rapidly, leading to some concern over the deployment of such systems.

Training future AI professionals

  • Young researchers must be given the oxygen to excel at AI if its potential is to be realized.
  • Students appreciate the breadth of training and additional resources they receive from researchers with ties to both academia and industry.
  • The importance of continuing fundamental research in AI is being challenged by companies such as Facebook, Google and Amazon which are hiring away key talent.
  • The explosion of AI is a powerful illustration of how the importance of fundamental research may only be recognized and exploited after 20 or 30 years. As a result, support for fundamental research, and the students working in areas related to AI, must continue.

A couple comments

To my knowledge, this is the first year the proceedings have been made so easily accessible. In fact, I can’t remember another year where they have been open access. Thank you!

Of course, I have to make a comment about the Day 2 session titled: Does Canada have a Science Culture? The answer is yes and it’s in the province of Ontario. Just take a look at the panel,

Organized by: Kirsten Vanstone, Royal Canadian Institute for Science and Reinhart Reithmeier, Professor, University of Toronto [in Ontario]

Speakers: Chantal Barriault, Director, Science Communication Graduate Program, Laurentian University [in Ontario] and Science North [in Ontario]; Maurice Bitran, CEO, Ontario Science Centre [take a wild guess as to where this institution is located?]; Kelly Bronson, Assistant Professor, Faculty of Social Sciences, University of Ottawa [in Ontario]; Marc LePage, President and CEO, Genome Canada [in Ontario]

Moderator: Ivan Semeniuk, Science Reporter, The Globe and Mail [in Ontario]

In fact, all of the institutions are in southern Ontario, even, the oddly named Science North.

I know from bitter experience it’s hard to put together panels but couldn’t someone from another province have participated?

Ah well, here’s hoping for 2018 and for a new location. After Ottawa as the CSPC site for three years in a row, please don’t make it a fourth year in a row.

The Canadian science scene and the 2017 Canadian federal budget

There’s not much happening in the 2017-18 budget in terms of new spending according to Paul Wells’ March 22, 2017 article for TheStar.com,

This is the 22nd or 23rd federal budget I’ve covered. And I’ve never seen the like of the one Bill Morneau introduced on Wednesday [March 22, 2017].

Not even in the last days of the Harper Conservatives did a budget provide for so little new spending — $1.3 billion in the current budget year, total, in all fields of government. That’s a little less than half of one per cent of all federal program spending for this year.

But times are tight. The future is a place where we can dream. So the dollars flow more freely in later years. In 2021-22, the budget’s fifth planning year, new spending peaks at $8.2 billion. Which will be about 2.4 per cent of all program spending.

He’s not alone in this 2017 federal budget analysis; CBC (Canadian Broadcasting Corporation) pundits, Chantal Hébert, Andrew Coyne, and Jennifer Ditchburn said much the same during their ‘At Issue’ segment of the March 22, 2017 broadcast of The National (news).

Before I focus on the science and technology budget, here are some general highlights from the CBC’s March 22, 2017 article on the 2017-18 budget announcement (Note: Links have been removed,

Here are highlights from the 2017 federal budget:

  • Deficit: $28.5 billion, up from $25.4 billion projected in the fall.
  • Trend: Deficits gradually decline over next five years — but still at $18.8 billion in 2021-22.
  • Housing: $11.2 billion over 11 years, already budgeted, will go to a national housing strategy.
  • Child care: $7 billion over 10 years, already budgeted, for new spaces, starting 2018-19.
  • Indigenous: $3.4 billion in new money over five years for infrastructure, health and education.
  • Defence: $8.4 billion in capital spending for equipment pushed forward to 2035.
  • Care givers: New care-giving benefit up to 15 weeks, starting next year.
  • Skills: New agency to research and measure skills development, starting 2018-19.
  • Innovation: $950 million over five years to support business-led “superclusters.”
  • Startups: $400 million over three years for a new venture capital catalyst initiative.
  • AI: $125 million to launch a pan-Canadian Artificial Intelligence Strategy.
  • Coding kids: $50 million over two years for initiatives to teach children to code.
  • Families: Option to extend parental leave up to 18 months.
  • Uber tax: GST to be collected on ride-sharing services.
  • Sin taxes: One cent more on a bottle of wine, five cents on 24 case of beer.
  • Bye-bye: No more Canada Savings Bonds.
  • Transit credit killed: 15 per cent non-refundable public transit tax credit phased out this year.

You can find the entire 2017-18 budget here.

Science and the 2017-18 budget

For anyone interested in the science news, you’ll find most of that in the 2017 budget’s Chapter 1 — Skills, Innovation and Middle Class jobs. As well, Wayne Kondro has written up a précis in his March 22, 2017 article for Science (magazine),

Finance officials, who speak on condition of anonymity during the budget lock-up, indicated the budgets of the granting councils, the main source of operational grants for university researchers, will be “static” until the government can assess recommendations that emerge from an expert panel formed in 2015 and headed by former University of Toronto President David Naylor to review basic science in Canada [highlighted in my June 15, 2016 posting ; $2M has been allocated for the advisor and associated secretariat]. Until then, the officials said, funding for the Natural Sciences and Engineering Research Council of Canada (NSERC) will remain at roughly $848 million, whereas that for the Canadian Institutes of Health Research (CIHR) will remain at $773 million, and for the Social Sciences and Humanities Research Council [SSHRC] at $547 million.

NSERC, though, will receive $8.1 million over 5 years to administer a PromoScience Program that introduces youth, particularly unrepresented groups like Aboriginal people and women, to science, technology, engineering, and mathematics through measures like “space camps and conservation projects.” CIHR, meanwhile, could receive modest amounts from separate plans to identify climate change health risks and to reduce drug and substance abuse, the officials added.

… Canada’s Innovation and Skills Plan, would funnel $600 million over 5 years allocated in 2016, and $112.5 million slated for public transit and green infrastructure, to create Silicon Valley–like “super clusters,” which the budget defined as “dense areas of business activity that contain large and small companies, post-secondary institutions and specialized talent and infrastructure.” …

… The Canadian Institute for Advanced Research will receive $93.7 million [emphasis mine] to “launch a Pan-Canadian Artificial Intelligence Strategy … (to) position Canada as a world-leading destination for companies seeking to invest in artificial intelligence and innovation.”

… Among more specific measures are vows to: Use $87.7 million in previous allocations to the Canada Research Chairs program to create 25 “Canada 150 Research Chairs” honoring the nation’s 150th year of existence, provide $1.5 million per year to support the operations of the office of the as-yet-unappointed national science adviser [see my Dec. 7, 2016 post for information about the job posting, which is now closed]; provide $165.7 million [emphasis mine] over 5 years for the nonprofit organization Mitacs to create roughly 6300 more co-op positions for university students and grads, and provide $60.7 million over five years for new Canadian Space Agency projects, particularly for Canadian participation in the National Aeronautics and Space Administration’s next Mars Orbiter Mission.

Kondros was either reading an earlier version of the budget or made an error regarding Mitacs (from the budget in the “A New, Ambitious Approach to Work-Integrated Learning” subsection),

Mitacs has set an ambitious goal of providing 10,000 work-integrated learning placements for Canadian post-secondary students and graduates each year—up from the current level of around 3,750 placements. Budget 2017 proposes to provide $221 million [emphasis mine] over five years, starting in 2017–18, to achieve this goal and provide relevant work experience to Canadian students.

As well, the budget item for the Pan-Canadian Artificial Intelligence Strategy is $125M.

Moving from Kondros’ précis, the budget (in the “Positioning National Research Council Canada Within the Innovation and Skills Plan” subsection) announces support for these specific areas of science,

Stem Cell Research

The Stem Cell Network, established in 2001, is a national not-for-profit organization that helps translate stem cell research into clinical applications, commercial products and public policy. Its research holds great promise, offering the potential for new therapies and medical treatments for respiratory and heart diseases, cancer, diabetes, spinal cord injury, multiple sclerosis, Crohn’s disease, auto-immune disorders and Parkinson’s disease. To support this important work, Budget 2017 proposes to provide the Stem Cell Network with renewed funding of $6 million in 2018–19.

Space Exploration

Canada has a long and proud history as a space-faring nation. As our international partners prepare to chart new missions, Budget 2017 proposes investments that will underscore Canada’s commitment to innovation and leadership in space. Budget 2017 proposes to provide $80.9 million on a cash basis over five years, starting in 2017–18, for new projects through the Canadian Space Agency that will demonstrate and utilize Canadian innovations in space, including in the field of quantum technology as well as for Mars surface observation. The latter project will enable Canada to join the National Aeronautics and Space Administration’s (NASA’s) next Mars Orbiter Mission.

Quantum Information

The development of new quantum technologies has the potential to transform markets, create new industries and produce leading-edge jobs. The Institute for Quantum Computing is a world-leading Canadian research facility that furthers our understanding of these innovative technologies. Budget 2017 proposes to provide the Institute with renewed funding of $10 million over two years, starting in 2017–18.

Social Innovation

Through community-college partnerships, the Community and College Social Innovation Fund fosters positive social outcomes, such as the integration of vulnerable populations into Canadian communities. Following the success of this pilot program, Budget 2017 proposes to invest $10 million over two years, starting in 2017–18, to continue this work.

International Research Collaborations

The Canadian Institute for Advanced Research (CIFAR) connects Canadian researchers with collaborative research networks led by eminent Canadian and international researchers on topics that touch all humanity. Past collaborations facilitated by CIFAR are credited with fostering Canada’s leadership in artificial intelligence and deep learning. Budget 2017 proposes to provide renewed and enhanced funding of $35 million over five years, starting in 2017–18.

Earlier this week, I highlighted Canada’s strength in the field of regenerative medicine, specifically stem cells in a March 21, 2017 posting. The $6M in the current budget doesn’t look like increased funding but rather a one-year extension. I’m sure they’re happy to receive it  but I imagine it’s a little hard to plan major research projects when you’re not sure how long your funding will last.

As for Canadian leadership in artificial intelligence, that was news to me. Here’s more from the budget,

Canada a Pioneer in Deep Learning in Machines and Brains

CIFAR’s Learning in Machines & Brains program has shaken up the field of artificial intelligence by pioneering a technique called “deep learning,” a computer technique inspired by the human brain and neural networks, which is now routinely used by the likes of Google and Facebook. The program brings together computer scientists, biologists, neuroscientists, psychologists and others, and the result is rich collaborations that have propelled artificial intelligence research forward. The program is co-directed by one of Canada’s foremost experts in artificial intelligence, the Université de Montréal’s Yoshua Bengio, and for his many contributions to the program, the University of Toronto’s Geoffrey Hinton, another Canadian leader in this field, was awarded the title of Distinguished Fellow by CIFAR in 2014.

Meanwhile, from chapter 1 of the budget in the subsection titled “Preparing for the Digital Economy,” there is this provision for children,

Providing educational opportunities for digital skills development to Canadian girls and boys—from kindergarten to grade 12—will give them the head start they need to find and keep good, well-paying, in-demand jobs. To help provide coding and digital skills education to more young Canadians, the Government intends to launch a competitive process through which digital skills training organizations can apply for funding. Budget 2017 proposes to provide $50 million over two years, starting in 2017–18, to support these teaching initiatives.

I wonder if BC Premier Christy Clark is heaving a sigh of relief. At the 2016 #BCTECH Summit, she announced that students in BC would learn to code at school and in newly enhanced coding camp programmes (see my Jan. 19, 2016 posting). Interestingly, there was no mention of additional funding to support her initiative. I guess this money from the federal government comes at a good time as we will have a provincial election later this spring where she can announce the initiative again and, this time, mention there’s money for it.

Attracting brains from afar

Ivan Semeniuk in his March 23, 2017 article (for the Globe and Mail) reads between the lines to analyze the budget’s possible impact on Canadian science,

But a between-the-lines reading of the budget document suggests the government also has another audience in mind: uneasy scientists from the United States and Britain.

The federal government showed its hand at the 2017 #BCTECH Summit. From a March 16, 2017 article by Meera Bains for the CBC news online,

At the B.C. tech summit, Navdeep Bains, Canada’s minister of innovation, said the government will act quickly to fast track work permits to attract highly skilled talent from other countries.

“We’re taking the processing time, which takes months, and reducing it to two weeks for immigration processing for individuals [who] need to come here to help companies grow and scale up,” Bains said.

“So this is a big deal. It’s a game changer.”

That change will happen through the Global Talent Stream, a new program under the federal government’s temporary foreign worker program.  It’s scheduled to begin on June 12, 2017.

U.S. companies are taking notice and a Canadian firm, True North, is offering to help them set up shop.

“What we suggest is that they think about moving their operations, or at least a chunk of their operations, to Vancouver, set up a Canadian subsidiary,” said the company’s founder, Michael Tippett.

“And that subsidiary would be able to house and accommodate those employees.”

Industry experts says while the future is unclear for the tech sector in the U.S., it’s clear high tech in B.C. is gearing up to take advantage.

US business attempts to take advantage of Canada’s relative stability and openness to immigration would seem to be the motive for at least one cross border initiative, the Cascadia Urban Analytics Cooperative. From my Feb. 28, 2017 posting,

There was some big news about the smallest version of the Cascadia region on Thursday, Feb. 23, 2017 when the University of British Columbia (UBC) , the University of Washington (state; UW), and Microsoft announced the launch of the Cascadia Urban Analytics Cooperative. From the joint Feb. 23, 2017 news release (read on the UBC website or read on the UW website),

In an expansion of regional cooperation, the University of British Columbia and the University of Washington today announced the establishment of the Cascadia Urban Analytics Cooperative to use data to help cities and communities address challenges from traffic to homelessness. The largest industry-funded research partnership between UBC and the UW, the collaborative will bring faculty, students and community stakeholders together to solve problems, and is made possible thanks to a $1-million gift from Microsoft.

Today’s announcement follows last September’s [2016] Emerging Cascadia Innovation Corridor Conference in Vancouver, B.C. The forum brought together regional leaders for the first time to identify concrete opportunities for partnerships in education, transportation, university research, human capital and other areas.

A Boston Consulting Group study unveiled at the conference showed the region between Seattle and Vancouver has “high potential to cultivate an innovation corridor” that competes on an international scale, but only if regional leaders work together. The study says that could be possible through sustained collaboration aided by an educated and skilled workforce, a vibrant network of research universities and a dynamic policy environment.

It gets better, it seems Microsoft has been positioning itself for a while if Matt Day’s analysis is correct (from my Feb. 28, 2017 posting),

Matt Day in a Feb. 23, 2017 article for the The Seattle Times provides additional perspective (Note: Links have been removed),

Microsoft’s effort to nudge Seattle and Vancouver, B.C., a bit closer together got an endorsement Thursday [Feb. 23, 2017] from the leading university in each city.

The partnership has its roots in a September [2016] conference in Vancouver organized by Microsoft’s public affairs and lobbying unit [emphasis mine.] That gathering was aimed at tying business, government and educational institutions in Microsoft’s home region in the Seattle area closer to its Canadian neighbor.

Microsoft last year [2016] opened an expanded office in downtown Vancouver with space for 750 employees, an outpost partly designed to draw to the Northwest more engineers than the company can get through the U.S. guest worker system [emphasis mine].

This was all prior to President Trump’s legislative moves in the US, which have at least one Canadian observer a little more gleeful than I’m comfortable with. From a March 21, 2017 article by Susan Lum  for CBC News online,

U.S. President Donald Trump’s efforts to limit travel into his country while simultaneously cutting money from science-based programs provides an opportunity for Canada’s science sector, says a leading Canadian researcher.

“This is Canada’s moment. I think it’s a time we should be bold,” said Alan Bernstein, president of CIFAR [which on March 22, 2017 was awarded $125M to launch the Pan Canada Artificial Intelligence Strategy in the Canadian federal budget announcement], a global research network that funds hundreds of scientists in 16 countries.

Bernstein believes there are many reasons why Canada has become increasingly attractive to scientists around the world, including the political climate in the United States and the Trump administration’s travel bans.

Thankfully, Bernstein calms down a bit,

“It used to be if you were a bright young person anywhere in the world, you would want to go to Harvard or Berkeley or Stanford, or what have you. Now I think you should give pause to that,” he said. “We have pretty good universities here [emphasis mine]. We speak English. We’re a welcoming society for immigrants.”​

Bernstein cautions that Canada should not be seen to be poaching scientists from the United States — but there is an opportunity.

“It’s as if we’ve been in a choir of an opera in the back of the stage and all of a sudden the stars all left the stage. And the audience is expecting us to sing an aria. So we should sing,” Bernstein said.

Bernstein said the federal government, with this week’s so-called innovation budget, can help Canada hit the right notes.

“Innovation is built on fundamental science, so I’m looking to see if the government is willing to support, in a big way, fundamental science in the country.”

Pretty good universities, eh? Thank you, Dr. Bernstein, for keeping some of the boosterism in check. Let’s leave the chest thumping to President Trump and his cronies.

Ivan Semeniuk’s March 23, 2017 article (for the Globe and Mail) provides more details about the situation in the US and in Britain,

Last week, Donald Trump’s first budget request made clear the U.S. President would significantly reduce or entirely eliminate research funding in areas such as climate science and renewable energy if permitted by Congress. Even the National Institutes of Health, which spearheads medical research in the United States and is historically supported across party lines, was unexpectedly targeted for a $6-billion (U.S.) cut that the White House said could be achieved through “efficiencies.”

In Britain, a recent survey found that 42 per cent of academics were considering leaving the country over worries about a less welcoming environment and the loss of research money that a split with the European Union is expected to bring.

In contrast, Canada’s upbeat language about science in the budget makes a not-so-subtle pitch for diversity and talent from abroad, including $117.6-million to establish 25 research chairs with the aim of attracting “top-tier international scholars.”

For good measure, the budget also includes funding for science promotion and $2-million annually for Canada’s yet-to-be-hired Chief Science Advisor, whose duties will include ensuring that government researchers can speak freely about their work.

“What we’ve been hearing over the last few months is that Canada is seen as a beacon, for its openness and for its commitment to science,” said Ms. Duncan [Kirsty Duncan, Minister of Science], who did not refer directly to either the United States or Britain in her comments.

Providing a less optimistic note, Erica Alini in her March 22, 2017 online article for Global News mentions a perennial problem, the Canadian brain drain,

The budget includes a slew of proposed reforms and boosted funding for existing training programs, as well as new skills-development resources for unemployed and underemployed Canadians not covered under current EI-funded programs.

There are initiatives to help women and indigenous people get degrees or training in science, technology, engineering and mathematics (the so-called STEM subjects) and even to teach kids as young as kindergarten-age to code.

But there was no mention of how to make sure Canadians with the right skills remain in Canada, TD’s DePratto {Toronto Dominion Bank} Economics; TD is currently experiencing a scandal {March 13, 2017 Huffington Post news item}] told Global News.

Canada ranks in the middle of the pack compared to other advanced economies when it comes to its share of its graduates in STEM fields, but the U.S. doesn’t shine either, said DePratto [Brian DePratto, senior economist at TD .

The key difference between Canada and the U.S. is the ability to retain domestic talent and attract brains from all over the world, he noted.

To be blunt, there may be some opportunities for Canadian science but it does well to remember (a) US businesses have no particular loyalty to Canada and (b) all it takes is an election to change any perceived advantages to disadvantages.

Digital policy and intellectual property issues

Dubbed by some as the ‘innovation’ budget (official title:  Building a Strong Middle Class), there is an attempt to address a longstanding innovation issue (from a March 22, 2017 posting by Michael Geist on his eponymous blog (Note: Links have been removed),

The release of today’s [march 22, 2017] federal budget is expected to include a significant emphasis on innovation, with the government revealing how it plans to spend (or re-allocate) hundreds of millions of dollars that is intended to support innovation. Canada’s dismal innovation record needs attention, but spending our way to a more innovative economy is unlikely to yield the desired results. While Navdeep Bains, the Innovation, Science and Economic Development Minister, has talked for months about the importance of innovation, Toronto Star columnist Paul Wells today delivers a cutting but accurate assessment of those efforts:

“This government is the first with a minister for innovation! He’s Navdeep Bains. He frequently posts photos of his meetings on Twitter, with the hashtag “#innovation.” That’s how you know there is innovation going on. A year and a half after he became the minister for #innovation, it’s not clear what Bains’s plans are. It’s pretty clear that within the government he has less than complete control over #innovation. There’s an advisory council on economic growth, chaired by the McKinsey guru Dominic Barton, which periodically reports to the government urging more #innovation.

There’s a science advisory panel, chaired by former University of Toronto president David Naylor, that delivered a report to Science Minister Kirsty Duncan more than three months ago. That report has vanished. One presumes that’s because it offered some advice. Whatever Bains proposes, it will have company.”

Wells is right. Bains has been very visible with plenty of meetings and public photo shoots but no obvious innovation policy direction. This represents a missed opportunity since Bains has plenty of policy tools at his disposal that could advance Canada’s innovation framework without focusing on government spending.

For example, Canada’s communications system – wireless and broadband Internet access – falls directly within his portfolio and is crucial for both business and consumers. Yet Bains has been largely missing in action on the file. He gave approval for the Bell – MTS merger that virtually everyone concedes will increase prices in the province and make the communications market less competitive. There are potential policy measures that could bring new competitors into the market (MVNOs [mobile virtual network operators] and municipal broadband) and that could make it easier for consumers to switch providers (ban on unlocking devices). Some of this falls to the CRTC, but government direction and emphasis would make a difference.

Even more troubling has been his near total invisibility on issues relating to new fees or taxes on Internet access and digital services. Canadian Heritage Minister Mélanie Joly has taken control of the issue with the possibility that Canadians could face increased costs for their Internet access or digital services through mandatory fees to contribute to Canadian content.  Leaving aside the policy objections to such an approach (reducing affordable access and the fact that foreign sources now contribute more toward Canadian English language TV production than Canadian broadcasters and distributors), Internet access and e-commerce are supposed to be Bains’ issue and they have a direct connection to the innovation file. How is it possible for the Innovation, Science and Economic Development Minister to have remained silent for months on the issue?

Bains has been largely missing on trade related innovation issues as well. My Globe and Mail column today focuses on a digital-era NAFTA, pointing to likely U.S. demands on data localization, data transfers, e-commerce rules, and net neutrality.  These are all issues that fall under Bains’ portfolio and will impact investment in Canadian networks and digital services. There are innovation opportunities for Canada here, but Bains has been content to leave the policy issues to others, who will be willing to sacrifice potential gains in those areas.

Intellectual property policy is yet another area that falls directly under Bains’ mandate with an obvious link to innovation, but he has done little on the file. Canada won a huge NAFTA victory late last week involving the Canadian patent system, which was challenged by pharmaceutical giant Eli Lilly. Why has Bains not promoted the decision as an affirmation of how Canada’s intellectual property rules?

On the copyright front, the government is scheduled to conduct a review of the Copyright Act later this year, but it is not clear whether Bains will take the lead or again cede responsibility to Joly. The Copyright Act is statutorily under the Industry Minister and reform offers the chance to kickstart innovation. …

For anyone who’s not familiar with this area, innovation is often code for commercialization of science and technology research efforts. These days, digital service and access policies and intellectual property policies are all key to research and innovation efforts.

The country that’s most often (except in mainstream Canadian news media) held up as an example of leadership in innovation is Estonia. The Economist profiled the country in a July 31, 2013 article and a July 7, 2016 article on apolitical.co provides and update.

Conclusions

Science monies for the tri-council science funding agencies (NSERC, SSHRC, and CIHR) are more or less flat but there were a number of line items in the federal budget which qualify as science funding. The $221M over five years for Mitacs, the $125M for the Pan-Canadian Artificial Intelligence Strategy, additional funding for the Canada research chairs, and some of the digital funding could also be included as part of the overall haul. This is in line with the former government’s (Stephen Harper’s Conservatives) penchant for keeping the tri-council’s budgets under control while spreading largesse elsewhere (notably the Perimeter Institute, TRIUMF [Canada’s National Laboratory for Particle and Nuclear Physics], and, in the 2015 budget, $243.5-million towards the Thirty Metre Telescope (TMT) — a massive astronomical observatory to be constructed on the summit of Mauna Kea, Hawaii, a $1.5-billion project). This has lead to some hard feelings in the past with regard to ‘big science’ projects getting what some have felt is an undeserved boost in finances while the ‘small fish’ are left scrabbling for the ever-diminishing (due to budget cuts in years past and inflation) pittances available from the tri-council agencies.

Mitacs, which started life as a federally funded Network Centre for Excellence focused on mathematics, has since shifted focus to become an innovation ‘champion’. You can find Mitacs here and you can find the organization’s March 2016 budget submission to the House of Commons Standing Committee on Finance here. At the time, they did not request a specific amount of money; they just asked for more.

The amount Mitacs expects to receive this year is over $40M which represents more than double what they received from the federal government and almost of 1/2 of their total income in the 2015-16 fiscal year according to their 2015-16 annual report (see p. 327 for the Mitacs Statement of Operations to March 31, 2016). In fact, the federal government forked over $39,900,189. in the 2015-16 fiscal year to be their largest supporter while Mitacs’ total income (receipts) was $81,993,390.

It’s a strange thing but too much money, etc. can be as bad as too little. I wish the folks Mitacs nothing but good luck with their windfall.

I don’t see anything in the budget that encourages innovation and investment from the industrial sector in Canada.

Finallyl, innovation is a cultural issue as much as it is a financial issue and having worked with a number of developers and start-up companies, the most popular business model is to develop a successful business that will be acquired by a large enterprise thereby allowing the entrepreneurs to retire before the age of 30 (or 40 at the latest). I don’t see anything from the government acknowledging the problem let alone any attempts to tackle it.

All in all, it was a decent budget with nothing in it to seriously offend anyone.

Canada and its review of fundamental science

Big thanks to David Bruggeman’s June 14, 2016 post (on his Pasco Phronesis blog) for news of Canada’s Fundamental Science Review, which was launched on June 13, 2016 (Note: Links have been removed),

The panel’s mandate focuses on support for fundamental research, research facilities, and platform technologies.  This will include the three granting councils as well as other research organisations such as the Canada Foundation for Innovation. But it does not preclude the panel from considering and providing advice and recommendations on research matters outside of the mandate.  The plan is to make the panel’s work and recommendations readily accessible to the public, either online or through any report or reports the panel produces.  The panel’s recommendations to Minister Duncan are non-binding. …

As Ivan Semeniuk notes at The Globe and Mail [Canadian ‘national’ newspaper], the recent Nurse Review in the U.K., which led to the notable changes underway in the organization of that country’s research councils, seems comparable to this effort.  But I think it worth noting the differences in the research systems of the two countries, and the different political pressures in play.  It is not at all obvious to this writer that the Canadian review would necessarily lead to similar recommendations for a streamlining and reorganization of the Canadian research councils.

Longtime observers of the Canadian science funding scene may recall an earlier review held under the auspices of the Steven Harper Conservative government known as the ‘Review of Federal Support to R&D’. In fact it was focused on streamlining government funding for innovation and commercialization of science. The result was the 2011 report, ‘Innovation Canada: A Call to Action’, known popularly as the ‘Jenkins report’ after the panel chair, Tom Jenkins. (More about the report and responses to it can be found in my Oct. 21, 2011 post).

It’s nice to see that fundamental science is being given its turn for attention.

A June 13, 2016 Innovation, Science and Economic Development Canada news release provides more detail about the review and the panel guiding the review,

The Government of Canada understands the role of science in maintaining a thriving, clean economy and in providing the evidence for sound policy decisions. To deliver on this role however, federal programs that support Canada’s research efforts must be aligned in such a way as to ensure they are strategic, effective and focused on meeting the needs of scientists first.

That is why the Honourable Kirsty Duncan, Minister of Science, today launched an independent review of federal funding for fundamental science. The review will assess the program machinery that is currently in place to support science and scientists in Canada. The scope of the review includes the three granting councils [Social Sciences and Humanities Research Council {SSHRC}, Natural Sciences and Engineering Research Council {NSERC}, Canadian Institutes of Health Research {CIHR}] along with certain federally funded organizations such as the Canada Foundation for Innovation [CFI].

The review will be led by an independent panel of distinguished research leaders and innovators including Dr. David Naylor, former president of the University of Toronto and chair of the panel. Other panelists include:

  • Dr. Robert Birgeneau, former chancellor, University of California, Berkeley
  • Dr. Martha Crago, Vice-President, Research, Dalhousie University
  • Mike Lazaridis, co-founder, Quantum Valley Investments
  • Dr. Claudia Malacrida, Associate Vice-President, Research, University of Lethbridge
  • Dr. Art McDonald, former director of the Sudbury Neutrino Laboratory, Nobel Laureate
  • Dr. Martha Piper, interim president, University of British Columbia
  • Dr. Rémi Quirion, Chief Scientist, Quebec
  • Dr. Anne Wilson, Canadian Institute for Advanced Research Successful Societies Fellow and professor of psychology, Wilfrid Laurier University

The panel will spend the next six months seeking input from the research community and Canadians on how to optimize support for fundamental science in Canada. The panel will also survey international best practices for funding science and examine whether emerging researchers face barriers that prevent them from achieving career goals. It will look at what must be done to address these barriers and what more can be done to encourage Canada’s scientists to take on bold new research challenges. In addition to collecting input from the research community, the panel will also invite Canadians to participate in the review [emphasis mine] through an online consultation.

Ivan Semeniuk in his June 13, 2016 article for The Globe and Mail provides some interesting commentary about the possible outcomes of this review,

Depending on how its recommendations are taken on board, the panel could trigger anything from minor tweaks to a major rebuild of Ottawa’s science-funding apparatus, which this year is expected to funnel more than $3-billion to Canadian researchers and their labs.

Asked what she most wanted the panel to address, Ms. Duncan cited, as an example, the plight of younger researchers who, in many cases, must wait until they are in their 40s to get federal support.

Another is the risk of losing the benefits of previous investments when funding rules become restrictive, such as a 14-year limit on how long the government can support one of its existing networks of centres of excellence, or the dependence of research projects that are in the national interest on funding streams that require support from provincial governments or private sources.

The current system for proposing and reviewing research grants has been criticized as cumbersome and fraught with biases that mean the best science is not always supported.

In a paper published on Friday in the research journal PLOS One, Trent University biologist Dennis Murray and colleagues combed through 13,526 grant proposals to the Natural Sciences and Engineering Research Council between 2011 and 2014 and found significant evidence that researchers at smaller universities have consistently lower success rates.

Dr. Murray advocates for a more quantitative and impartial system of review to keep such biases at bay.

“There are too many opportunities for human impressions — conscious or unconscious — to make their way into the current evaluation process,” Dr. Murray said.

More broadly, researchers say the time is right for a look at a system that has grown convoluted and less suited to a world in which science is increasingly cross-disciplinary, and international research collaborations are more important.

If you have time, I encourage you to take a look at Semeniuk’s entire article as for the paper he mentions, here’s a link to and a citation for it,

Bias in Research Grant Evaluation Has Dire Consequences for Small Universities by Dennis L. Murray, Douglas Morris, Claude Lavoie, Peter R. Leavitt, Hugh MacIsaac,  Michael E. J. Masson, & Marc-Andre Villard. PLOS http://dx.doi.org/10.1371/journal.pone.0155876  Published: June 3, 2016

This paper is open access.

Getting back to the review and more specifically, the panel, it’s good to see that four of the nine participants are women but other than that there doesn’t seem to be much diversity, i.e.,the majority (five) spring from the Ontario/Québec nexus of power and all the Canadians are from the southern part of country. Back to diversity, there is one business man, Mike Laziridis known primarily as the founder of Research in Motion (RIM or more popularly as the Blackberry company) making the panel not a wholly ivory tower affair. Still, I hope one day these panels will have members from the Canadian North and international members who come from somewhere other than the US, Great Britain, and/or if they’re having a particularly wild day, Germany. Here are some candidate countries for other places to look for panel members: Japan, Israel, China, South Korea, and India. Other possibilities include one of the South American countries, African countries, and/or the Middle Eastern countries.

Take the continent of Africa for example, where many countries seem to have successfully tackled one of the issues as we face. Specifically, the problem of encouraging young researchers. James Wilsdon notes some success in his April 9, 2016 post about Africa and science advice for the Guardian science blogs (Note: Links have been removed),

… some of the brightest talents and most exciting advances in African science were on display at the Next Einstein Forum. This landmark meeting, initiated by the African Institute of Mathematical Sciences, and held in Senegal, brought together almost 1000 researchers, entrepreneurs, businesses and policymakers from across Africa to celebrate and support the continent’s most promising early-career researchers.

A new cadre of fifteen Next Einstein Fellows and fifty-four ambassadors was announced, and the forum ended with an upbeat declaration of commitment to Africa’s role in world-leading, locally-relevant science. …

… UNESCO’s latest global audit of science, published at the end of 2015, concludes that African science is firmly on the rise. The number of journal articles published on the continent rose by sixty per cent from 2008 to 2014. Research investment rose from $12.9 billion in 2007 to $19.9 billion (US dollars) in 2013. Over the same period, R&D expenditure as a percentage of GDP nudged upwards from 0.36 per cent to 0.45 per cent, and the population of active researchers expanded from 150,000 to 190,000.

If you have the time, do read Wilsdon’s piece which covers some of the more difficult aspects facing the science communities in Africa and more.

In any event, it’s a bit late to bemoan the panel’s makeup but hopefully the government will take note for the future as I’m planning to include some of my critique in my comments to the panel in answer to their request for public comments.

You can find out more about Canada’s Fundamental Science Review here and you can easily participate here and/or go here to subscribe for updates.

Medical isotope team at TRIUMF (Canada’s national laboratory for particle and nuclear physics) wins award

I’ve written a few times about the development of a new means for producing medical isotopes that does not require nuclear materials. (my June 10, 2014 posting and my June 9, 2013 posting,) The breakthrough was made at TRIUMF, Canada’s national laboratory for particle and nuclear physics, which is located in Vancouver, and the team which made the breakthrough is being honoured. From a Feb. 17, 2015 TRIUMF news release,

For their outstanding teamwork in realizing a solution for safe and reliable isotope production for hospitals in Canada,interdisciplinary research team CycloMed99 will be receiving a prestigious national award at a ceremony in Ottawa today [Feb. 17, 2015]. The Honourable David Johnston, Governor General of Canada, will present the NSERC  [Natural Sciences and Engineering Research Council of Canada] Brockhouse Canada Prize for Interdisciplinary Research in Science and Engineering to the team in recognition of their seamless teamwork and successes.

Drawing from expertise in physics, chemistry, and nuclear medicine, the team set out five years ago to develop a reliable, alternative means of production for a key medical isotope in order to eliminate the threat of a supply shortage – a catastrophic healthcare crisis for patients around the world. Technetium-99m (Tc-99m) is the world standard for medical imaging to diagnose cancer and heart disease. Every day, 5,000 medical procedures in
Canada and 70,000 daily worldwide depend on this isotope. With funding support from NSERC, CIHR and Natural Resources Canada, the team developed technology that uses medical cyclotrons already installed and operational in major hospitals across Canada to produce enough Tc-99m on a daily basis.

This innovation is safer and more environmentally friendly than current technology because it eliminates the need for highly enriched uranium, also avoiding the generation
of highly radioactive waste. Canada’s healthcare system would save money by producing isotopes locally under a full-cost recovery model.

The project resulted in over a dozen scientific publications, several provisional patents and a training opportunity for more than 175 individuals.

Now, the research team is focused on working with the world’s major cyclotron manufacturers to add factory-supported Tc-99m production capability to their existing product lines so the technology will become standard in future machines.

CycloMed99 is also working with a Canadian start-up company to license, transfer and sell this technology around the world. This will allow hospitals and companies with cyclotrons to retrofit their existing infrastructure with a Made in Canada solution to produce this valuable material.

Congratulations to the CycloMed99 team, recipients of the Brockhouse Canada Prize:

• Dr. Paul Schaffer, a chemist by training and Division Head, Nuclear Medicine at TRIUMF; Adjunct Professor, Dept. of Chemistry at Simon Fraser University; and Professor, Dept. of Radiology at the University of British Columbia (UBC);

• Dr. François Bénard, a clinician by training and BC Leadership Chair in Functional Cancer Imaging at the BC Cancer Agency; and Professor, Dept. of Radiology at UBC;

• Dr. Anna Celler, a medical physicist by training and Professor, Dept. of Radiology at UBC;

• Dr. Michael Kovacs, a chemist by training; PET Radiochemistry Facility Imaging Scientist at Lawson Health Research Institute; Associate Professor at Western University;

• Dr. Thomas J. Ruth, a nuclear chemist by training and researcher emeritus at TRIUMF; and Professor emeritus at UBC, and;

• Dr. John Valliant, a chemist by training and Scientific Director and CEO of the Centre for Probe Development and Commercialization; and Professor at McMaster University.

There’s more information about TRIUMF and the business aspect of this breakthrough in a Jan. 16, 2015 article by Tyler Orton for Business in Vancouver.

Grand Challenges Canada funds 83 projects to improve global health

For the third year in a row (as per my Dec. 22, 2011 posting and my Nov. 22, 2012 posting), I’m featuring Grand Challenges Canada funding for its ‘Stars in Global Health’ programme . From the Grand Challenges Canada (GCC) Nov. 21, 2013 news release,

Imaginative: 83 Bold Innovations to Improve Global Health Receive Grand Challenges Canada Funding

Among novel ideas to reduce disease, save lives in developing world:
Diagnostic diapers to detect deadly rotavirus; Rolling water barrel;
Special yogurt offsets pesticides, heavy metals, toxins in food;
Inventive shoe, boot material releases bug repellent when walking

50 innovators from low- and middle-income countries,
plus 33 from Canada, share $9.3 million in seed grants

Grand Challenges Canada, funded by the Government of Canada, today extends seed grants of $100,000 each to 83 inventive new ideas for addressing health problems in resource-poor countries.

The Grand Challenges Canada “Stars in Global Health” program seeks breakthrough and affordable innovations that could transform the way disease is treated in the developing world — innovations that may benefit the health of developed world citizens as well.

Of the 83 grants announced today, 50 are given to innovators in 15 low- and middle-income nations worldwide and 33 to Canadian-originated projects, to be implemented in a total of 30 countries throughout the developing world.

“Innovation powers development leading to better health and more jobs. I feel proud that Canada, through Grand Challenges Canada, has supported almost 300 bold ideas to date in our Stars in Global Health program,” says Dr. Peter A. Singer, Chief Executive Officer of Grand Challenges Canada.  “This is one of the largest pipelines of innovations in global health in the world today.”

Says the Honourable Christian Paradis, Canadian Minister of International Development and Minister for La Francophonie: “Grand Challenges Canada’s portfolio of projects shows how innovators with bold ideas have the potential to make a big impact on global health.  By connecting game-changing ideas with some of the most pressing global health challenges, these projects will lead to sustainable and affordable health solutions in low- and middle-income countries.”

The portfolio of 83 creative, out-of-the-box ideas, selected through independent peer review from 451 applications, includes projects submitted by social entrepreneurs, private sector companies and non-government organizations as well as university researchers.  Among them:

Diagnostics

  • A simple, portable, dry, yeast-based blood screening test (Belize, Jamaica).  WHO estimates almost half of 46 million blood donations in low-income countries are inadequately tested;  in Africa up to 10% of new HIV infections are caused by transfusions.  A University of Toronto-developed yeast-based blood screening tool will detect combinations of diseases. Like baking yeast, it can be stored dry, and can be grown locally with minimal equipment and training, improving accessibility in rural areas.
  • A bedside, Litmus paper-like test to detect bronchitis (Brazil, India). Being pioneered at McMaster University with international collaborators, a simple sputum test will detect infectious and allergic bronchitis in adults and children, reducing mis-diagnosis in developing countries and saving resources: time, steroids, antibiotics.

Water, sanitation, hygiene and general health

  • Special yogurts formulated to offset the harm to health caused by heavy metals, pesticides and other toxics in food (Africa).  Between 2006-2009 in Nairobi, only 17% of the total maize sampled and 5% of feed was fit for human and animal consumption respectively. University of Western Ontario researchers have developed novel yogurts containing a bacteria that, in the stomach, sequesters certain toxins and heavy metals and degrades some pesticides.
  • Addressing arsenic-laced groundwater. In Bangladesh, 1 in 5 deaths (600,000 per year) occur due to groundwater arsenic, dubbed by WHO as the largest mass poisoning in history, with some 77 million people at risk.  Project 1) Toronto-based PurifAid will deploy new filtration units via franchised villagers who will filter and deliver purified water, perform maintenance, acquire new filters and dispose of old ones, which can be used to produce biofuels.  Project 2) A project based at the University of Calgary, meanwhile, will work to increase the use of Western Canadian lentils in Bangladeshi diets.  The crop is rich in selenium, which can decrease arsenic levels and improve health.
  • “WaterWheel” (India, Kenya, Mongolia).  This simple, innovative device from India is a wheeled water container that enables the collection and transport of 3 to 5 times as much water as usual per trip, as well as hygienic storage, saving valuable time for productive activities and improving health.

Malaria

  • A vaccine based on a newly-discovered antibody in men that prevents malaria infection in the placenta (Benin, Colombia).  Colombian men exposed to malaria are found to have antibodies that can prevent infection in the placenta of a pregnant woman. This University of Alberta finding forms the basis for developing a novel vaccine against several forms of malaria, which cause 10,000 maternal deaths and 200,000 stillbirths annually.
  • Insect-repellent clothing, footwear and wall plaster (East Africa).  1) In Tanzania, the Africa Technical Research Institute will lead the design and manufacture of attractive, affordable insecticide-treated clothing while 2) the Ifakara Health Institute will develop anti-mosquito footwear material that slowly releases repellents from the friction of walking.  A key advantage: no compliance or change in habits required.  3) Uganda’s Med Biotech Laboratories, meanwhile, will produce a colorful, insecticide-infused ‘plaster’ for the outside walls of African village homes.

Maternal and child health

  • Mothers Telling Mothers: improving maternal health through storytelling (Uganda).  Work by Twezimbe Development Association has found that stories told by mothers in their own words and reflecting shared realities are most likely to increase the number of moms seeking skilled health care, and convince policymakers to improve healthcare access.  This project will capture 3 to 5 minutes stories to be shared through digital media platforms and health clinics.

Mobile technology

  • Digital African Health Library (Sub-Saharan Africa).  The University of Calgary-led project is creating an app to support bedside care by medical doctors in Africa: a smartphone-accessible resource providing evidence-based, locally-relevant decision support and health information.  A pilot involving 65 doctors in Rwanda showed point of care answers to patient questions more than tripled to 43%, with self-reported improvement in patient outcomes.

Health care

  • Simple sticker helps track clean surfaces in healthcare facilities (Philippines).  WHO estimates that 10% to 30% of all patients in developing country health care facilities acquire an infection.   An innovative sticker for hospital surfaces developed by Lunanos Inc. changes colour when a cleaner is applied and fades color after a predetermined period of time, helping staff track and ensure cleanliness of equipment and other frequently touched surfaces.
  • “Mystery clients” to assess and improve quality of TB care (India).  India accounts for 25% of global tuberculosis (TB) incidence.  To evaluate variations in practice quality, and identify ways to improve TB management in India, this project, led by Canada’s McGill University, will send researchers into clinics posing as a patient with standard TB symptoms.  The project builds on earlier work related to angina, asthma and dysentery, which revealed incorrect diagnoses and treatment.

And many more.

A complete set of 83 short project descriptions, with links to additional project details, available photos / video, and local contact information, is available in the full news release online here: http://bit.ly/HOLt5b

Here’s a video for the one of the projects (filtering arsenic out of Bangladesh’s water),

I chose this project somewhat haphazardly. It caught my attention as I have written more than once about purification efforts and as it turns out, this is a Canada-based project (with a Bangladeshi partner, BRAC) from the University of Toronto.

You may have heard the video’s narrator mention scotch whiskey, here’s why (from the YouTube page hosting the project video,page),

We plan to roll out a new generation of filtration units which run on an organic by-product of the beverage industry. The units address many of the failings of existing devices (they require no power or chemicals and are very low maintenance).

This project gets still more interesting (from the full project description page),

Device for the Remediation and Attenuation of Multiple Pollutants (DRAM) removes 95% of arsenic from contaminated water within 5 minutes of exposure. With an estimated 600,000 deaths directly attributable to arsenic poisoning every year, these units hold the potential to save millions of lives. Existing solutions are too complicated and suffer from significant usability issues (2012 UNICEF study).

We will deploy our units through a franchise business model. [emphasis mine] Local villagers will filter and deliver purified water, perform maintenance, acquire new media, and dispose spent media. The current market leader, the Sono Filter, has less than 20% uptake (according to UNICEF). DRAM costs only 25% of this solution, has lower maintenance requirements (4-6 month media cycle vs. 2 week media cycle), higher durability, and can be retrofitted onto existing tube wells villagers use thereby requiring no behavior change. The spent media (which must be replaced every 4-6 months) can be used to produce biofuels, giving PurifAid a decisive capability over competitors.

With the assistance of our local partner BRAC (ranked #1 on Global Journal’s list of top NGOs in 2012) we will retrofit our units onto existing tubewells. Contaminated water is pumped from the tubewell into the unit where it passes into the bottom of the unit, rising up through a bed of the organic filter media, binding the arsenic. Clean water is displaced and forced out of the top of the unit and out through the built-in tap. Our community based solution will begin with a proof-of-concept installation in the Mujibnagar District (pop. 1.3 million). BRAC will assist in testing our filter water quality on the ground and these results will be used to obtain regulatory approval for our technology. We will then operationalize our community-run DRAM systems. A council of local stakeholders will nominate prospective franchisees amongst villagers. These villagers will replace filter media in 4 month intervals and order annual delivery of new media. We are securing partnerships with nearby distilleries to locally source the filter media. [emphasis mine] Disposal will be handled by a local caretaker who will store spent media in bulk before transferring it for use as biofuel. Caretaker salary, media sourcing, and delivery costs will be paid by charging a levy on customer households. PurifAid will monitor behavioural and health indicators to ascertain DRAM’s immediate and long-term impact. To this end PurifAid has partnered with Ashalytics, a start-up global health analytics company, to report operational issues, measure impact, and communicate important metrics to key staff and stakeholders via mobile phones. This results in an environmentally-friendly value chain that uses beverage industry waste, maximizing positive impact. If the Bangladesh installations are a success then this system can be introduced across the Indian subcontinent and in west Africa, where arsenic in groundwater poses a serious health problem. DRAM has the potential to improve the lives of millions globally.

After 18 months we envisage having installed 15 DRAM systems supplying 45 liters of purified water per day to 2,700 households. In order to ensure maintenance, 15 paid caretakers will operate the pumps and a driver will supply the caretakers with fresh media every 4-6 months. Biannually, new bulk media will be provided to storage unit in the village, spent media will in turn be taken to a plant and converted to biofuel. Villagers will invest collectively to purchase, install and operate DRAM on pre-existing tube wells – thus no behavioral changes needed.

Our filters employ a new water filtration technology. Our franchise model involves social and business innovation, empowering communities to manage their own water treatment under the stewardship of a local partner that manages 17 social businesses with combined annual revenues of $93m in 2011.

(Aside: Don’t they ask for a ‘dram’ of whiskey in the movies?) This project is intended to do more than purify water; it’s designed to create jobs. Bravo!

Now back to the news release for details about the countries and agencies involved,

The global portfolio of grants, broken down by region and country:

30 projects based in 6 African countries (16 in Kenya, 5 in Tanzania, 5 in Uganda, 2 in Nigeria and 1 each in Senegal and Ghana)
17 projects based in 7 countries in Asia (7 in India, 2 in Pakistan 4 in Thailand and 1 each in Bangladesh, Cambodia, Mongolia and the Philippines)
Two projects based in South America (Peru) and one in Europe (Armenia)
33 projects based in 11 Canadian cities (14 in Toronto, 3 each in Calgary, Montreal and Vancouver, 2 each in Winnipeg, Edmonton and London, and 1 each in Halifax, Hamilton, Ottawa and Saskatoon)

The Canadian-based projects will be implemented worldwide (a majority of them implemented simultaneously in more than one country):

15 countries in Africa (5 in Kenya, 4 in Tanzania, 3 each in Uganda and Ethiopia, 2 each in Rwanda, Somalia, South Africa, South Sudan, and Zambia, and 1 each in Benin, Botswana, Ghana,  Malawi, Nigeria, and DR Congo)
8 countries in Asia (8 in India, 6 in Bangladesh, 1 each in Bhutan, China, Nepal, Pakistan, Philippines and Thailand)
5 countries in South and Latin America (Belize, Brazil, Colombia, Jamaica, Peru.) and
1 in the Middle East (Egypt)

Including today’s grants, total investments to date under the Grand Challenges Canada “Stars in Global Health” program is $32 million in 295 projects.

For full details: http://bit.ly/HOLt5b

* * * * *

About Grand Challenges Canada

Grand Challenges Canada is dedicated to supporting Bold Ideas with Big Impact in global

health. We are funded by the Government of Canada through the Development Innovation Fund announced in the 2008 Federal Budget. We fund innovators in low- and middle-income countries and Canada. Grand Challenges Canada works with the International Development Research Centre (IDRC), the Canadian Institutes of Health Research (CIHR), and other global health foundations and organizations to find sustainable, long-term solutions through Integrated Innovation − bold ideas that integrate science, technology, social and business innovation. Grand Challenges Canada is hosted at the Sandra Rotman Centre.

Please visit grandchallenges.ca  and look for us on Facebook, Twitter, YouTube and LinkedIn.

About Canada’s International Development Research Centre

The International Development Research Centre (IDRC) supports research in developing countries to promote growth and development. IDRC also encourages sharing this knowledge with policymakers, other researchers and communities around the world. The result is innovative, lasting local solutions that aim to bring choice and change to those who need it most. As the Government of Canada’s lead on the Development Innovation Fund, IDRC draws on decades of experience managing publicly funded research projects to administer the Development Innovation Fund. IDRC also ensures that developing country researchers and concerns are front and centre in this exciting new initiative.

www.idrc.ca

About Canadian Institutes of Health Research

The Canadian Institutes of Health Research (CIHR) is the Government of Canada’s health research investment agency. CIHR’s mission is to create new scientific knowledge and to enable its translation into improved health, more effective health services and products, and a strengthened Canadian health care system. Composed of 13 Institutes, CIHR provides leadership and support to more than 14,100 health researchers and trainees across Canada. CIHR will be responsible for the administration of international peer review, according to international standards of excellence. The results of CIHR-led peer reviews will guide the awarding of grants by Grand Challenges Canada from the Development Innovation Fund.

www.cihr-irsc.gc.ca

About the Department of Foreign Affairs, Trade and Development Canada

The mandate of Foreign Affairs, Trade and Development Canada is to manage Canada’s diplomatic and consular relations, to encourage the country’s international trade, and to lead Canada’s international development and humanitarian assistance.

www.international.gc.ca

About Sandra Rotman Centre

The Sandra Rotman Centre is based at University Health Network and the University of Toronto. We develop innovative global health solutions and help bring them to scale where they are most urgently needed. The Sandra Rotman Centre hosts Grand Challenges Canada.

www.srcglobal.org

I have found it confusing that there’s a Grand Challenges Canada and the Bill and Melinda Gates Foundation has a Grand Challenges programme, both of which making funding announcements at this time of year. I did make some further investigations which I noted in my Dec. 22, 2011 posting,

Last week, the Bill & Melinda Gates Foundation announced a $21.1 M grant over three years for research into point-of-care diagnostic tools for developing nations. A Canadian nongovermental organization (NGO) will be supplementing this amount with $10.8 M for a total of $31.9 M. (source: Dec. 16, 2011 AFP news item [Agence France-Presse] on MedicalXpress.com)

At this point, things get a little confusing. The Bill & Melinda Gates Foundation has a specific program called Grand Challenges in Global Health and this grant is part of that program. Plus, the Canadian NGO is called Grand Challenges Canada (couldn’t they have found a more distinctive name?), which is funded by a federal Canadian government initiative known as the Development Innovation Fund (DIF). …

Weirdly, no one consulted with me when they named the Bil & Melinda Gates Foundation programme or the Canadian NGO.

Science, women and gender in Canada (part 2 of 2)

The material in the executive summary for Strengthening Canada’s Research Capacity: The Gender Dimension; The Expert Panel on Women in University Research, which was released on Nov. 21, 2012 by the Council of Canadian Academies (CCA) is developed throughout the report. (Part 1 of my commentary is here.)

The passage about the economic importance of diversity supported by a quote from University of Alberta President Indira Samarasekera hearkens back to the executive summary,

From an economic perspective, the underrepresentation of female researchers in academia raises many potential problems, not least the effects of a labour pool that operates at considerably less than full capacity. University of Alberta President Indira Samarasekera noted:

“I think our society isn’t balanced if we don’t have the contribution of both genders, in addition to people of different ethnic origins and different racial backgrounds. We all know that diversity is a strength. That’s what you see in nature. So why would we rob ourselves of ensuring that we have it?” (in Smith, 2011).

U.S. researchers Hong and Page (2004) found that diverse groups tend to outperform homogeneous groups, even when the homogeneous groups are composed of the most talented problem solvers. They attribute this to the notion that individuals in homogeneous groups often think in similar ways, whereas diverse groups approach problems from multiple perspectives (Hong & Page, 2004). Considering that varied groups are “invariably more creative, innovative and productive” than homogeneous groups, the argument for encouraging women to be active in decision-making groups is similar to that for minority populations in general (Calnan & Valiquette, 2010). Similarly, the European Commission’s Expert Group on Structural Change (2011) analyzed a number of studies indicating that group creativity is fed by gender balance,25 and collective intelligence is positively correlated with the proportion of women in a group.26 As the McKinsey (2008) Report Women Matter 2 pointed out, since half of the talent pool is made up of women, it makes economic and social sense to bring the best minds of both sexes together to address the challenges that face society. (p. 60/1 PDF; p. 30/1 print)

One  of the more interesting aspects of this report is how the panel broke down the categories,

For the Panel’s analyses, fields of study were organized into three large categories: humanities, social sciences, and education (HSE); life sciences (LS); and physical sciences, computer science, mathematics and engineering (PCEM).31 The HSE, PCEM and LS categories are somewhat different from the categories commonly used in other reports, such as the well-known science, technology, engineering and mathematics classification (STEM);32 however, the Panel decided that the former classification was best suited to the Canadian context. For example, HSE, LS, and PCEM reflect the priorities of the three major Canadian granting agencies (SSHRC, CIHR, and NSERC). Considering the Tri-Council’s high level of involvement in funding available to researchers, it is logical to use a uniquely Canadian framework to define disciplines at the aggregate level. (pp. 68/9 PDF; pp. 38/9 print)

This categorization is not one I’ve seen before and I find it quite intriguing and compelling. Already noted in part 1 of my commentary is that the arts have no place in this report even though they are mentioned as an area of excellence in the State of Science and Technology in Canada, 2012 report released by the CCA in Sept. 2012.

The section following the description of the research categories is filled with data about salaries over time and across various fields of interest. Briefly, women have not done as well as men historically. While the gaps have narrowed in some ways, there is still a disparity today. There’s also a discussion about the difficulty of comparing numbers over time.

Given that women entered the academic sphere in serious numbers during the 1960s and each successive wave has dealt with different social imperatives, e.g. the drive to encourage women to study the science and mathematics in particular doesn’t gain momentum until decades after the 1960s. When a career timeframe (someone who entered an undergraduate programme in 2000 may have just finished their PhD in 2011 and, if lucky, would have started their career in the last 1.5 years) is added to this data, it becomes clear that we won’t understand the impact of higher enrollment and higher numbers of graduates for some years to come. From report,

The Panel recognizes that time is needed to see whether the higher numbers of women in the student population will translate into correspondingly higher numbers in tenure track or tenured positions. However, the Panel also questioned whether those changes would occur as quickly as one could expect considering the growth of female students among the general student population. Published by CAUT (2011), new appointment data on full-time university teachers38 from Statistics Canada and UCASS indicate that of the 2,361 new appointments in 2008–2009, 57.7 per cent were men, and 42.3 per cent were women. While this represents an increase from 2001–2002, when 62.7 per cent of the 2,634 new appointees were men and 37.3 per cent were women (CAUT, 2005), parity in new hires has not yet been achieved.39 (pp. 80/1 PDF; pp. 50/1 print)

Canada is not alone,

The higher one looks in university ranks, the fewer women are present in comparison to men. This trend is not unique to Canada. In general, the Canadian profile is similar to that found in other economically advanced nations including the U.S., and to the average profile seen in European Union (EU) countries. For example, in both Canada and the EU, women held slightly over 40 per cent of grade C45 research positions [approximately assistant professor level] and about 18 per cent of grade A46 positions [the highest research level] (Figure 3.8) in 2007 (Cacace, 2009).47 This global similarity reinforces the systemic nature of the under representation of women in academia. (p. 85 PDF; p. 55 print) Note:  The descriptions of grade C and grade A were taken from the footnotes.)

The difference is most striking when comparing C grade (assistant professor) to A grade (full professor) positions and their gendering,

The percentage of women at the Grade B level is generally lower than at the Grade C level, with the exception of Sweden (47 per cent) (please see also Figures A2.3 and A2.4 in Appendix 2). Finland also boasts a comparatively higher percentage of women at this rank, at 49 per cent. However, the greatest difference in women’s representation is noticeable between the ranks of associate professor and full professor. Again, there is some variation across countries (e.g., Finland at 23 per cent; Canada at 18 per cent; Germany at 12 per cent), which indicates that some nations have farther to go to achieve gender parity in research than others. In general though, the relatively low proportion of women at the full professor level suggests that the glass ceiling remains intact in Canada as well as in several comparator countries. (p. 87 PDF; p. 57 print) [emphasis mine]

In an earlier section of the report, there was discussion of  the impact that maternity, which forces an interruption, has on a career.  There was also discussion of the impact that stereotypes have,

The effects of stereotypes are cumulative. The desire for peer acceptance plus the influence of stereotypes make it difficult for anyone to escape powerful “cultural messages” (Etzkowitz et al., 2000). This is one of the reasons why gendered trends emerge in girls’ and boys’ choices and, combined with the lack of policy change, a reason why it is still difficult for women to advance in some university departments. Later on in the life course, these messages can make it harder for women’s professional experience to be valued in academia, as evidenced by findings that demonstrate that curricula vitae are evaluated differently based on whether the applicant’s name is male or female (Steinpreis et al., 1999), or that blind auditions increase the chances that women musicians will be hired in orchestras … (p. 95 PDF; p. 65 print)

What I find fascinating about stereotypes is that since we are all exposed to them, we are all inclined to discriminate along those stereotypical lines.  For example, I wrote about some research into wages for graduate students in a Sept. 24, 2012 posting where I pointed out that a female graduate student was better off seeking employment with a male professor, despite the fact that she would still be offered less money than her male counterpart,

I tracked down the paper (which is open access), Science faculty’s subtle gender biases favor male students by Corinne A. Moss-Racusin, John F. Dovidio, Victoria L. Bescroll, Mark J. Graham, and Jo Handelsman and found some figures in a table which I can’t reproduce here but suggest the saying ‘we women eat their own’ isn’t far off the mark. In it, you’ll see that while women faculty members will offer less to both genders, they offer significantly less to female applicants.

For a male applicant, here’s the salary offer,

Male Faculty               Female Faculty

30,520.82                    29, 333.33

For a female applicant, here’s the salary offer,

Male Faculty               Female Faculty

27,111.11                    25,000.00

To sum this up, the men offered approximately $3000 (9.25%) less to female applicants while the women offered approximately $4000 (14.6%) less. It’s uncomfortable to admit that women may be just as much or even more at fault as men where gender bias is concerned. However, it is necessary if the situation is ever going to change.

The researchers did not mention this aspect of the disparity in their news release nor (to my knowledge) was it mentioned in any of the subsequent coverage, other than on my blog.

Nowhere in this CCA report is there any hint that women discriminate against women. One is left with the impression, intentional or not, that discrimination against women will disappear once there are more women at higher levels in the worlds of academe and science. Given the one piece of research I’ve cited and much anecdotal evidence, I think that assumption should be tested.

Leaving aside which gender is ‘doing what to whom’, gender bias at home and at school has a great impact on who enters which field,

In sum, home and school environments, sociocultural attitudes, and beliefs regarding gender roles and the value of education affect gender differences in academic choice and performance. Self-confidence, test scores, and ultimately post-secondary and career choices are often by-products of these factors (UNESCO, 2007). The lack of women in science and engineering — and the lack of men in education studies and humanities — could be a result of gender bias during childhood and teen socialization (Vallès Peris & Caprile Elola-Olaso, 2009). (p. 97 PDF; p. 67 print) [emphasis mine]

I realize this report is focused on gender issues in the sciences, nonetheless, I find it striking there is no mention of social class (at home and at school) with regard to the impact that has on aspirations to a research career and, for that matter, any impact social class might have on gender roles.

Also, there is no substantive mention of age as a factor, which seems odd, since women are more likely to interrupt their careers for childbearing and childrearing purposes. This interruption means they are going to be older when they re-enter the workforce and an older woman is still perceived quite differently than an older man, irrespective of career accomplishments.

The Nov. 21, 2012 news release from the CCA summarizes the conclusions in this fashion,

“There is no single solution to remedy the underrepresentation of women in the highest ranks of academic research careers. The issue itself is a multifaceted one that is affected by social, cultural, economic, institutional, and political factors and contexts”, commented Panel Chair Dr. Lorna R. Marsden. “There has been significant progress in the representation of women in the academy since the 1970s, and there is much to be celebrated. However, as evidenced by the wide variation in women’s representation by discipline and rank, there are still challenges to overcome.”

The Expert Panel developed a baseline of information regarding the statistical profile of women researchers in Canada. The major findings from the statistical profile are:

  •       In general, the Canadian profile is similar to that of other economically advanced nations.
  •       Women’s progress in Canadian universities is uneven and dependent on discipline and rank.
  •        The higher the rank, the lower the percentage of women in comparison to men.

The Panel also identified key factors that affect the multiple career paths of women. These factors start early in life with stereotypes that define roles and expectations, followed by a lack of knowledge about requisites for potential career paths, and a lack of role models and mentors. These issues, combined with a rigid tenure track structure, challenges associated with the paid work-family life balance, and the importance of increased support and coordination amongst governments and institutions need to be examined if Canada is going to achieve a greater gender balance within academia.

There’s a lot of admire in this report. As noted in part 1 of this commentary, I particularly appreciate the inclusion of personal narrative (life-writing) with the usual literature surveys and data analyses; the discussion around the importance of innovation regarding the economy and the reference to research showing that innovation is enhanced by the inclusion of marginalized groups; and the way in which values fundamental to Canadian society were emphasized.

The photograph on the front cover was a misstep. The most serious criticism I have of this assessment is the failure to recognize that simply having more women in leadership positions will not necessarily address gender equity issues. Stereotypes about women and gender run deep in both men and women and that needs to be recognized and dealt with. I am also disappointed that they failed to mention in the conclusion the impact that leadership has on gender equity and the necessity of giving leaders a reason (carrot and/or stick) to care about it.

I cannot comment on the makeup of the expert panel as I’m largely unfamiliar with the individuals, other than to say that as expected, this panel was largely composed of women.

I recommend reading the report as I learned a lot from it not least that there are many science organizations in this country that I’d not heard of or encountered previously. One final appreciation, I thought deconstructing STEM (science, technology, engineering, and mathematics) to create HSE (humanities, social sciences, and education), LS (life sciences), and PCEM (physical sciences, computer science, engineering, and mathematics) so the designations more clearly reflected Canadian science funding realities was brilliant.

Science, women and gender in Canada (part 1 of 2)

Titled Strengthening Canada’s Research Capacity: The Gender Dimension; The Expert Panel on Women in University Research, the Council of Canadian Academies (CCA) released their assessment on Nov. 21, 2012, approximately 20 months after the incident which tangentially occasioned it (from the Strengthening … webpage) Note: I have added a reference and link to a report on CERC (Canada Excellence Research Chairs) gender issues in the following excerpt,

After the notable absence of female candidates in the Canada Excellence Research Chairs (CERC) program, the Minister of Industry, in March 2010, struck an ad-hoc panel to examine the program’s selection process. The ad-hoc panel found that the lack of female representation was not due to active choices made during the CERC selection process. [Dowdeswell, E., Fortier, S., & Samarasekera, I. (2010). Report to the Minister of Industry of the Ad Hoc Panel on CERC Gender Issues. Ottawa (ON):Industry Canada.] As a result, the Council of Canadian Academies received a request to undertake an assessment of the factors that influence university research careers of women, both in Canada and internationally.

To conduct the assessment, the Council convened an expert panel of 15 Canadian and international experts from diverse fields, which was chaired by Dr. Lorna Marsden, President emeritus and Professor, York University.

For anyone unfamiliar with the CERC programme,

The Canada Excellence Research Chairs (CERC) Program awards world-class researchers up to $10 million over seven years to establish ambitious research programs at Canadian universities.

My commentary is primarily focused on the assessment and not the preceding report from the ad hoc panel, as well, I am not commenting on every single aspect of the report. I focus on those elements of the report that caught my attention.

There is much to appreciate in this assessment/report unfortunately the cover image cannot be included. By choosing a photograph, the designer immediately entered shark-infested waters, metaphorically speaking. From a semiotic perspective, photographs are a rich and much studied means of criticism. Having a photograph of an attractive, middle-aged white woman with blonde hair (a MILF, depending on your tastes)  who’s surrounded by ‘adoring’ students (standing in for her children?) on the cover of this assessment suggests an obliviousness to nuance that is somewhat unexpected. Happily, the image is not reflective of the content.

The report lays out the basis for this assessment,

There are many reasons for concern at the lack of proportional representation of women in senior positions in all facets of our society, including politics, law, medicine, the arts, business, and academia. The underrepresentation of women in any of these areas is a concern considering the fundamental Canadian values of equality, fairness, and justice, as outlined in the Canadian Human Rights Act, the Canadian Charter of Rights and Freedoms, and the Employment Equity Act. This report focuses on women in academia: the 11,064 women with PhDs who are employed full-time in degree-granting institutions. In comparison, there are 22,875 men in this category (see Table 3.1).1 Besides educating millions of students, these researchers and innovators are working to address the major issues Canada faces in the 21st century, including climate change, demographic shifts, healthcare, social inequality, sustainable natural resources management, cultural survival, as well as the role Canada plays as an international actor. These contributions are in addition to the basic, or knowledge discovery, research that is one of the main duties of academic researchers. In the knowledge economy, a talent pool of Canada’s top thinkers, researchers and innovators is needed to help secure and build Canada’s economic edge. The wider the pool is from which to draw, the more perspectives, experiences, and ideas will be brought to the creative process. [emphasis mine] Arguments for fully including women in research careers range from addressing skills shortages and increasing innovation potential by accessing wider talent pools, to greater market development, stronger financial performance, better returns on human resource investments, and developing a better point from which to compete in the intensifying global talent race. (p. 15 PDF; p. xiii print)

I appreciate the reference to fundamental values in Canadian society as it is important but I suspect the portion I’ve highlighted contains the seeds of an argument that is far more persuasive for power brokers. It was a very smart move.

It is possible to skim this report by simply reading the executive summary and reading the Key Messages page included after each chapter heading, save the final chapter. They’ve done a good job of making this report easy to read if you don’t have too much time but prefer to view the complete assessment rather than an abridged version.

The Chapter 1 Key Messages are,

Chapter Key Messages

• While many reports have focused specifically on women in science, technology, engineering, and mathematics careers, this assessment employs comparative analyses to examine the career trajectories of women researchers across a variety of disciplines. The Panel was able to respond to the charge using a combination of research methods, but their analyses were sometimes hindered by a paucity of key data sets.

• In an attempt not to simply repeat numerous studies of the past on women in research careers, the Panel used a life course model to examine the data from a new perspective. This conceptual framework enabled the Panel to consider the multidimensional nature of human lives as well as the effects of external influences on the career trajectories of women researchers.

• Women are now present in all areas of research, including those areas from which they have previously been absent. Over time, institutions have become more inclusive, and Canadian governments have created policies and legislation to encourage more gender equity. Collective bargaining has contributed to this process. Clearly, the advancement of women in research positions relies on the contributions of individuals, institutions and government.

• Since the 1970s, there has been major progress such that women have been obtaining PhDs and entering the academy as students and faculty at increasing rates. However, women remain underrepresented at the highest levels of academia, as demonstrated by their low numbers in the Canada Research Chairs (CRC) program, and their absence from the Canada Excellence Research Chairs (CERC) program. There is considerable room for improvement in women’s representation as faculty.

• Higher education research and development funding has nearly doubled in the past decade. However, the amount of funding allocated to core grants and scholarship programs varies among the tri-council agencies [SSHRC, Social Science and Humantities Research Council; NSERC, Natural Science and Engineering Research Council; and CIHR, Canadian Institutes of Health Research], with the majority of funds available to researchers sponsored by NSERC and CIHR. This pattern is generally replicated in the Canada Research Chairs and the Canada Excellence Research Chairs programs. As noted in the 2003 Human Rights Complaint regarding the Canada Research Chairs program, women are least represented in the areas of research that are the best funded.  (p. 33 PDF; p. 3 print) [emphasis mine]

This panel in response to the issue of women being least represented in the best funded areas of research elected to do this,

The Panel noted that many reports have focused on women in science, technology, and engineering research careers (due in part to the fact that women have been significantly underrepresented in these fields) yet relatively little attention has been paid to women researchers in the humanities, social sciences, and education. This is despite the fact that 58.6 per cent of doctoral students in these disciplines are women (see Chapter 3), and that their research contributions have profoundly affected the study of poverty, violence, the welfare state, popular culture, and literature, to note only a few examples. Considering this, the Panel’s assessment incorporates a comparative, interdisciplinary analysis, with a focus on the broader category of women in university research. In order to identify the areas where women are the most and least represented, Panellists compiled data and research that describe where Canadian female researchers are — and are not — in terms of both discipline and rank. Where possible, this study also analyzes the situation of women researchers outside of academia so as to paint a clearer picture of female researchers’ career trajectories. (pp. 37/8 PDF; pp. 7/8 print) [emphases mine]

Bringing together all kinds of research where women are both over and under represented and including research undertaken outside the academic environment was thoughtful. I also particularly liked this passage,

American research suggests that holding organizational leaders accountable for implementing equity practices is a particularly effective way of enhancing the diversity of employees (Kalev et al., 2006), indicating that reporting and monitoring mechanisms are key to success. [emphasis mine] The Panel observed that meeting these commitments requires the proper implementation of accountability mechanisms, such as reporting and monitoring schemes. (p. 44 PDF; p. 14 print)

Juxtaposing the comment about leaders being held accountable for equity practices and the  comment I emphasized earlier ” … a talent pool of Canada’s top thinkers, researchers and innovators is needed to help secure and build Canada’s economic edge …” could suggest an emergent theme about leadership and the current discourse about innovation.

To get a sense of which disciplines and what research areas are rewarded within the Canada Research Chair programme read this from the assessment,

Similarly, while 80 per cent of Canada Research Chairs are distributed among researchers in NSERC and CIHR disciplines, SSHRC Chairs represent only 20 per cent of the total — despite the fact that the majority (60 per cent) of the Canadian professoriate come from SSHRC disciplines (Grant & Drakich, 2010). Box 1.1 describes the gendered implications of this distribution, as well as the history of the program. (p. 45 PDF; p. 15 print)

What I find intriguing here isn’t just the disparity. 60% of the researchers are chasing after 20% of the funds (yes, physical sciences are more expensive but those percentages still seem out of line), but that social sciences and the humanities are not really included in the innovation rubric except here in this assessment. Still, despite the inclusion of the visual and performing arts in the State of Science and Technology in Canada, 2012 report issued by the CCA in Sept. 2013 (part 1 of my commentary on that assessment is in this Dec. 28, 2012 posting; part 2 of my commentary is in this Dec. 28, 2012 posting) there is no mention of them in this assessment/report of gender and science.

I did particularly like how the panel approached data collection and analysis,

Coming from a variety of disciplinary backgrounds, Panellists brought with them a range of methodological expertise and preferences. Through a combination of quantitative and qualitative data, the Panel was able to identify and analyze factors that affect the career trajectories of women researchers in Canada (see Appendix 1 for full details). In addition to an extensive literature review of the national and international research and evidence related to the topic, the Panel collected information in the form of data sets and statistics, heard from expert witnesses, conducted interviews with certain stakeholders from academia and industry, and analyzed interview and survey results from their secondary analysis of Canada Research Chairs data (see Appendix 5 for a full description of methodology and results). Together, these methods contributed to the balanced approach that the Panel used to understand the status of women in Canadian university research careers.

In addition, the Panel took an innovative approach to painting a more vibrant picture of the experience of women professors by incorporating examples from academic “life-writing.” Life-writing is the generic name given to a variety of forms of personal narrative — autobiography, biography, personal essays, letters, diaries, and memoirs. Publishing personal testimony is a vital strategy for marginalized groups to claim their voices and tell their own stories, and academic women’s life-writing adds vital evidence to a study of women in university careers (Robbins et al., 2011). The first study of academic life-writing appeared in the U.S. in 2008 (Goodall, 2008); as yet, none exists for Canada.16 Recognizing the benefits of this approach, which focuses on the importance of women’s voices and stories, the Panel chose to weave personal narrative from women academics throughout the body of the report to illuminate the subject matter. As with the data gleaned from the Panel’s secondary analysis of Canada Research Chairs data, these cases highlight the experience of an articulate and determined minority of women who are prepared and positioned to speak out about structural and personal inequities. More comprehensive surveys are required to establish the precise extent of the problems they so effectively illustrate. (pp. 49/50 PDF; pp. 19/20 print)

Nice to note that they include a very broad range of information as evidence. After all, evidence can take many forms and not all evidence can be contained in a table of data nor is all data necessarily evidence. That said there were some other issues with data and evidence,

Despite the extensive literature on the subject, the Panel identified some data limitations. While these limitations made some analyses difficult, the Panel was able to effectively respond to the charge by using the combination of research methods described above. Data limitations identified by the Panel include:

• relatively little research specific to the Canadian context;

• lack of longitudinal data;

• relatively few studies (both quantitative and qualitative) dealing with fields such as the humanities and social sciences;

• lack of data on diversity in Canadian academia, including intersectional data;

• lack of comprehensive data and evidence from the private and government sectors; and

• difficulty in comparing some international data due to differences in disciplinary classifications. (p. 50 PDF; p. 20 print)

I think this does it for part 1 of my commentary.

Montréal Neuro and one of Europe’s biggest research enterprises, the Human Brain Project

Its official title is the Montréal Neurological Institute and Hospital (Montréal Neuro) which is and has been, for several decades, an international centre for cutting edge neurological research. From the Jan. 28, 2013 news release on EurekAlert,

The Neuro

The Montreal Neurological Institute and Hospital — The Neuro, is a unique academic medical centre dedicated to neuroscience. Founded in 1934 by the renowned Dr. Wilder Penfield, The Neuro is recognized internationally for integrating research, compassionate patient care and advanced training, all key to advances in science and medicine. The Neuro is a research and teaching institute of McGill University and forms the basis for the Neuroscience Mission of the McGill University Health Centre.

Neuro researchers are world leaders in cellular and molecular neuroscience, brain imaging, cognitive neuroscience and the study and treatment of epilepsy, multiple sclerosis and neuromuscular disorders. For more information, visit theneuro.com.

Nonetheless, it was a little surprising to see that ‘The Neuro’ is part one of the biggest research projects in history since it’s the European Union, which is bankrolling the project (see my posting about the Jan. 28, 2013 announcement of the winning FET Flagship Initatives). Here’s more information about the project, its lead researchers, and Canada’s role, from the news release,

The goal of the Human Brain Project is to pull together all our existing knowledge about the human brain and to reconstruct the brain, piece by piece, in supercomputer-based models and simulations. The models offer the prospect of a new understanding of the human brain and its diseases and of completely new computing and robotic technologies. On January 28 [2013], the European Commission supported this vision, announcing that it has selected the HBP as one of two projects to be funded through the new FET [Future and Emerging Technologies] Flagship Program.

Federating more than 80 European and international research institutions, the Human Brain Project is planned to last ten years (2013-2023). The cost is estimated at 1.19 billion euros. The project will also associate some important North American and Japanese partners. It will be coordinated at the Ecole Polytechnique Fédérale de Lausanne (EPFL) in Switzerland, by neuroscientist Henry Markram with co-directors Karlheinz Meier of Heidelberg University, Germany, and Richard Frackowiak of Centre Hospitalier Universitaire Vaudois (CHUV) and the University of Lausanne (UNIL).

Canada’s role in this international project is through Dr. Alan Evans of the Montreal Neurological Institute (MNI) at McGill University. His group has developed a high-performance computational platform for neuroscience (CBRAIN) and multi-site databasing technologies that will be used to assemble brain imaging data across the HBP. He is also collaborating with European scientists on the creation of ultra high-resolution 3D brain maps. «This ambitious project will integrate data across all scales, from molecules to whole-brain organization. It will have profound implications for our understanding of brain development in children and normal brain function, as well as for combatting brain disorders such as Alzheimer’s Disease,» said Dr. Evans. “The MNI’s pioneering work on brain imaging technology has led to significant advances in our understanding of the brain and neurological disorders,” says Dr. Guy Rouleau, Director of the MNI. “I am proud that our expertise is a key contributor to this international program focused on improving quality of life worldwide.”

“The Canadian Institutes of Health Research (CIHR) is delighted to acknowledge the outstanding contributions of Dr. Evans and his team. Their work on the CBRAIN infrastructure and this leading-edge HBP will allow the integration of Canadian neuroscientists into an eventual global brain project,” said Dr. Anthony Phillips, Scientific Director for the CIHR Institute of Neurosciences, Mental Health and Addiction. “Congratulations to the Canadian and European researchers who will be working collaboratively towards the same goal which is to provide insights into neuroscience that will ultimately improve people’s health.”

“From mapping the sensory and motor cortices of the brain to pioneering work on the mechanisms of memory, McGill University has long been synonymous with world-class neuroscience research,” says Dr. Rose Goldstein, Vice-Principal (Research and International Relations). “The research of Dr. Evans and his team marks an exciting new chapter in our collective pursuit to unlock the potential of the human brain and the entire nervous system – a critical step that would not be possible without the generous support of the European Commission and the FET Flagship Program.”

Canada is not the only non-European Union country making an announcement about its role in this extraordinary project. There’s a Jan. 28, 2013 news release on EurekAlert touting Israel’s role,

The European Commission has chosen the Human Brain Project, in which the Hebrew University of Jerusalem is participating, as one of two Future and Emerging Technologies Flagship topics. The enterprise will receive funding of 1.19 billion euros over the next decade.

The project will bring together top scientists from around the world who will work on one of the great challenges of modern science: understanding the human brain. Participating from Israel will a team of eight scientists, led by Prof. Idan Segev of the Edmond and Lily Safra Center for Brain Sciences (ELSC) at the Hebrew University, Prof. Yadin Dudai of the Weizmann Institute of Science, and Dr. Mira Marcus-Kalish of Tel Aviv University.

More than 80 universities and research institutions in Europe and the world will be involved in the ten-year Human Brain Project, which will commence later this year and operate until the year 2023. The project will be centered at the Ecole Polytechnique Federale de Lausanne (EPFL) in Switzerland, headed by Prof. Henry Markram, a former Israeli who was recruited ten years ago to the EPFL.

The participation of the Israeli scientists testifies to the leading role that Israeli brain research occupies in the world, said Israeli President Shimon Peres. “Israel has put brain research at the heart of its efforts for the coming decade, and our country is already spearheading the global effort towards the betterment of our understanding of mankind. I am confident that the forthcoming discoveries will benefit a wide range of domains, from health to industry, as well as our society as a whole,” Peres said.

“The human brain is the most complex and amazing structure in the universe, yet we are very far from understanding it. In a way, we are strangers to ourselves. Unraveling the mysteries of the brain will help us understand our functioning, our choices, and ultimately ourselves. I congratulate the European Commission for its vision in selecting the Human Brain Project as a Flagship Mission for the forthcoming decade,” said Peres.

What’s amusing is that as various officials and interested parties (such as myself) wax lyrical about these projects, most of the rest of the world is serenely oblivious to it all.