Tag Archives: Natural Sciences and Engineering Research Council of Canada

Creating nanofibres from your old clothing (cotton waste)

Researchers at the University of British Columbia (UBC; Canada) have discovered a way to turn cotton waste into a potentially higher value product. An October 15, 2019 UBC news release makes the announcement (Note: Links have been removed),

In the materials engineering labs at UBC, surrounded by Bunsen burners, microscopes and spinning machines, professor Frank Ko and research scientist Addie Bahi have developed a simple process for converting waste cotton into much higher-value nanofibres.

These fibres are the building blocks of advanced products like surgical implants, antibacterial wound dressings and fuel cell batteries.

“More than 28 million tonnes of cotton are produced worldwide each year, but very little of that is actually recycled after its useful life,” explains Bahi, a materials engineer who previously worked on recycling waste in the United Kingdom. “We wanted to find a viable way to break down waste cotton and convert it into a value-added product. This is one of the first successful attempts to make nanofibres from fabric scraps – previous research has focused on using a ready cellulose base to make nanofibres.”

Compared to conventional fibres, nanofibres are extremely thin (a nanofibre can be 500 times smaller than the width of the human hair) and so have a high surface-to-volume ratio. This makes them ideal for use in applications ranging from sensors and filtration (think gas sensors and water filters) to protective clothing, tissue engineering and energy storage.
Ko and Bahi developed their process in collaboration with ecologyst, a B.C.-based company that manufactures sustainable outdoor apparel, and with the participation of materials engineering student Kosuke Ayama.

They chopped down waste cotton fabric supplied by ecologyst into tiny strips and soaked it in a chemical bath to remove all additives and artificial dyes from the fabric. The resulting gossamer-thin material was then fed to an electrospinning machine to produce very fine, smooth nanofibres. These can be further processed into various finished products.

“The process itself is relatively simple, but what we’re thrilled about is that we’ve proved you can extract a high-value product from something that would normally go to landfill, where it will eventually be incinerated. It’s estimated that only a fraction of cotton clothing is recycled. The more product we can re-process, the better it will be for the environment,” said lead researcher Frank Ko, a Canada Research Chair in advanced fibrous materials in UBC’s faculty of applied science.

The process Bahi and Ko developed is lab-scale, supported by a grant from the Natural Sciences and Engineering Research Council of Canada. In the future, the pair hope to refine and scale up their process and eventually share their methods with industry partners.

“We started with cotton because it’s one of the most popular fabrics for clothing,” said Bahi. “Once we’re able to develop the process further, we can look at converting other textiles into value-added materials. Achieving zero waste [emphasis mine] for the fashion and textile industries is extremely challenging – this is simply one of the many first steps towards that goal.”

The researchers have a 30 sec. video illustrating the need to recycle cotton materials,

You can find the researchers’ industrial partner, ecologyst here.

At the mention of ‘zero waste’, I was reminded of an upcoming conference, Oct. 30 -31, 2019 in Vancouver (Canada) where UBC is located. It’s called the 2019 Zero Waste Conference and, oddly,there’s no mention of Ko or Bahi or Ayama or ecologyst on the speakers’ list. Maybe I was looking at the wrong list or the organizers didn’t have enough lead time to add more speakers.

One final comment, I wish there was a little more science (i.e., more technical details) in the news release.

The mystifying physics of paint-on semiconductors

I was not expecting a Canadian connection but it seems we are heavily invested in this research at the Georgia Institute of Technology (Georgia Tech), from a March 19, 2018 news item on ScienceDaily,

Some novel materials that sound too good to be true turn out to be true and good. An emergent class of semiconductors, which could affordably light up our future with nuanced colors emanating from lasers, lamps, and even window glass, could be the latest example.

These materials are very radiant, easy to process from solution, and energy-efficient. The nagging question of whether hybrid organic-inorganic perovskites (HOIPs) could really work just received a very affirmative answer in a new international study led by physical chemists at the Georgia Institute of Technology.

A March 19,. 2018 Georgia Tech news release (also on EurekAlert), which originated the news item, provides more detail,

The researchers observed in an HOIP a “richness” of semiconducting physics created by what could be described as electrons dancing on chemical underpinnings that wobble like a funhouse floor in an earthquake. That bucks conventional wisdom because established semiconductors rely upon rigidly stable chemical foundations, that is to say, quieter molecular frameworks, to produce the desired quantum properties.

“We don’t know yet how it works to have these stable quantum properties in this intense molecular motion,” said first author Felix Thouin, a graduate research assistant at Georgia Tech. “It defies physics models we have to try to explain it. It’s like we need some new physics.”

Quantum properties surprise

Their gyrating jumbles have made HOIPs challenging to examine, but the team of researchers from a total of five research institutes in four countries succeeded in measuring a prototypical HOIP and found its quantum properties on par with those of established, molecularly rigid semiconductors, many of which are graphene-based.

“The properties were at least as good as in those materials and may be even better,” said Carlos Silva, a professor in Georgia Tech’s School of Chemistry and Biochemistry. Not all semiconductors also absorb and emit light well, but HOIPs do, making them optoelectronic and thus potentially useful in lasers, LEDs, other lighting applications, and also in photovoltaics.

The lack of molecular-level rigidity in HOIPs also plays into them being more flexibly produced and applied.

Silva co-led the study with physicist Ajay Ram Srimath Kandada. Their team published the results of their study on two-dimensional HOIPs on March 8, 2018, in the journal Physical Review Materials. Their research was funded by EU Horizon 2020, the Natural Sciences and Engineering Research Council of Canada, the Fond Québécois pour la Recherche, the [National] Research Council of Canada, and the National Research Foundation of Singapore. [emphases mine]

The ‘solution solution’

Commonly, semiconducting properties arise from static crystalline lattices of neatly interconnected atoms. In silicon, for example, which is used in most commercial solar cells, they are interconnected silicon atoms. The same principle applies to graphene-like semiconductors.

“These lattices are structurally not very complex,” Silva said. “They’re only one atom thin, and they have strict two-dimensional properties, so they’re much more rigid.”

“You forcefully limit these systems to two dimensions,” said Srimath Kandada, who is a Marie Curie International Fellow at Georgia Tech and the Italian Institute of Technology. “The atoms are arranged in infinitely expansive, flat sheets, and then these very interesting and desirable optoelectronic properties emerge.”

These proven materials impress. So, why pursue HOIPs, except to explore their baffling physics? Because they may be more practical in important ways.

“One of the compelling advantages is that they’re all made using low-temperature processing from solutions,” Silva said. “It takes much less energy to make them.”

By contrast, graphene-based materials are produced at high temperatures in small amounts that can be tedious to work with. “With this stuff (HOIPs), you can make big batches in solution and coat a whole window with it if you want to,” Silva said.

Funhouse in an earthquake

For all an HOIP’s wobbling, it’s also a very ordered lattice with its own kind of rigidity, though less limiting than in the customary two-dimensional materials.

“It’s not just a single layer,” Srimath Kandada said. “There is a very specific perovskite-like geometry.” Perovskite refers to the shape of an HOIPs crystal lattice, which is a layered scaffolding.

“The lattice self-assembles,” Srimath Kandada said, “and it does so in a three-dimensional stack made of layers of two-dimensional sheets. But HOIPs still preserve those desirable 2D quantum properties.”

Those sheets are held together by interspersed layers of another molecular structure that is a bit like a sheet of rubber bands. That makes the scaffolding wiggle like a funhouse floor.

“At room temperature, the molecules wiggle all over the place. That disrupts the lattice, which is where the electrons live. It’s really intense,” Silva said. “But surprisingly, the quantum properties are still really stable.”

Having quantum properties work at room temperature without requiring ultra-cooling is important for practical use as a semiconductor.

Going back to what HOIP stands for — hybrid organic-inorganic perovskites – this is how the experimental material fit into the HOIP chemical class: It was a hybrid of inorganic layers of a lead iodide (the rigid part) separated by organic layers (the rubber band-like parts) of phenylethylammonium (chemical formula (PEA)2PbI4).

The lead in this prototypical material could be swapped out for a metal safer for humans to handle before the development of an applicable material.

Electron choreography

HOIPs are great semiconductors because their electrons do an acrobatic square dance.

Usually, electrons live in an orbit around the nucleus of an atom or are shared by atoms in a chemical bond. But HOIP chemical lattices, like all semiconductors, are configured to share electrons more broadly.

Energy levels in a system can free the electrons to run around and participate in things like the flow of electricity and heat. The orbits, which are then empty, are called electron holes, and they want the electrons back.

“The hole is thought of as a positive charge, and of course, the electron has a negative charge,” Silva said. “So, hole and electron attract each other.”

The electrons and holes race around each other like dance partners pairing up to what physicists call an “exciton.” Excitons act and look a lot like particles themselves, though they’re not really particles.

Hopping biexciton light

In semiconductors, millions of excitons are correlated, or choreographed, with each other, which makes for desirable properties, when an energy source like electricity or laser light is applied. Additionally, excitons can pair up to form biexcitons, boosting the semiconductor’s energetic properties.

“In this material, we found that the biexciton binding energies were high,” Silva said. “That’s why we want to put this into lasers because the energy you input ends up to 80 or 90 percent as biexcitons.”

Biexcitons bump up energetically to absorb input energy. Then they contract energetically and pump out light. That would work not only in lasers but also in LEDs or other surfaces using the optoelectronic material.

“You can adjust the chemistry (of HOIPs) to control the width between biexciton states, and that controls the wavelength of the light given off,” Silva said. “And the adjustment can be very fine to give you any wavelength of light.”

That translates into any color of light the heart desires.

###

Coauthors of this paper were Stefanie Neutzner and Annamaria Petrozza from the Italian Institute of Technology (IIT); Daniele Cortecchia from IIT and Nanyang Technological University (NTU), Singapore; Cesare Soci from the Centre for Disruptive Photonic Technologies, Singapore; Teddy Salim and Yeng Ming Lam from NTU; and Vlad Dragomir and Richard Leonelli from the University of Montreal. …

Three Canadian science funding agencies plus European and Singaporean science funding agencies but not one from the US ? That’s a bit unusual for research undertaken at a US educational institution.

In any event, here’s a link to and a citation for the paper,

Stable biexcitons in two-dimensional metal-halide perovskites with strong dynamic lattice disorder by Félix Thouin, Stefanie Neutzner, Daniele Cortecchia, Vlad Alexandru Dragomir, Cesare Soci, Teddy Salim, Yeng Ming Lam, Richard Leonelli, Annamaria Petrozza, Ajay Ram Srimath Kandada, and Carlos Silva. Phys. Rev. Materials 2, 034001 – Published 8 March 2018

This paper is behind a paywall.

Robots in Vancouver and in Canada (two of two)

This is the second of a two-part posting about robots in Vancouver and Canada. The first part included a definition, a brief mention a robot ethics quandary, and sexbots. This part is all about the future. (Part one is here.)

Canadian Robotics Strategy

Meetings were held Sept. 28 – 29, 2017 in, surprisingly, Vancouver. (For those who don’t know, this is surprising because most of the robotics and AI research seems to be concentrated in eastern Canada. if you don’t believe me take a look at the speaker list for Day 2 or the ‘Canadian Stakeholder’ meeting day.) From the NSERC (Natural Sciences and Engineering Research Council) events page of the Canadian Robotics Network,

Join us as we gather robotics stakeholders from across the country to initiate the development of a national robotics strategy for Canada. Sponsored by the Natural Sciences and Engineering Research Council of Canada (NSERC), this two-day event coincides with the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017) in order to leverage the experience of international experts as we explore Canada’s need for a national robotics strategy.

Where
Vancouver, BC, Canada

When
Thursday September 28 & Friday September 29, 2017 — Save the date!

Download the full agenda and speakers’ list here.

Objectives

The purpose of this two-day event is to gather members of the robotics ecosystem from across Canada to initiate the development of a national robotics strategy that builds on our strengths and capacities in robotics, and is uniquely tailored to address Canada’s economic needs and social values.

This event has been sponsored by the Natural Sciences and Engineering Research Council of Canada (NSERC) and is supported in kind by the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017) as an official Workshop of the conference.  The first of two days coincides with IROS 2017 – one of the premiere robotics conferences globally – in order to leverage the experience of international robotics experts as we explore Canada’s need for a national robotics strategy here at home.

Who should attend

Representatives from industry, research, government, startups, investment, education, policy, law, and ethics who are passionate about building a robust and world-class ecosystem for robotics in Canada.

Program Overview

Download the full agenda and speakers’ list here.

DAY ONE: IROS Workshop 

“Best practices in designing effective roadmaps for robotics innovation”

Thursday September 28, 2017 | 8:30am – 5:00pm | Vancouver Convention Centre

Morning Program:“Developing robotics innovation policy and establishing key performance indicators that are relevant to your region” Leading international experts share their experience designing robotics strategies and policy frameworks in their regions and explore international best practices. Opening Remarks by Prof. Hong Zhang, IROS 2017 Conference Chair.

Afternoon Program: “Understanding the Canadian robotics ecosystem” Canadian stakeholders from research, industry, investment, ethics and law provide a collective overview of the Canadian robotics ecosystem. Opening Remarks by Ryan Gariepy, CTO of Clearpath Robotics.

Thursday Evening Program: Sponsored by Clearpath Robotics  Workshop participants gather at a nearby restaurant to network and socialize.

Learn more about the IROS Workshop.

DAY TWO: NSERC-Sponsored Canadian Robotics Stakeholder Meeting
“Towards a national robotics strategy for Canada”

Friday September 29, 2017 | 8:30am – 5:00pm | University of British Columbia (UBC)

On the second day of the program, robotics stakeholders from across the country gather at UBC for a full day brainstorming session to identify Canada’s unique strengths and opportunities relative to the global competition, and to align on a strategic vision for robotics in Canada.

Friday Evening Program: Sponsored by NSERC Meeting participants gather at a nearby restaurant for the event’s closing dinner reception.

Learn more about the Canadian Robotics Stakeholder Meeting.

I was glad to see in the agenda that some of the international speakers represented research efforts from outside the usual Europe/US axis.

I have been in touch with one of the organizers (also mentioned in part one with regard to robot ethics), Ajung Moon (her website is here), who says that there will be a white paper available on the Canadian Robotics Network website at some point in the future. I’ll keep looking for it and, in the meantime, I wonder what the 2018 Canadian federal budget will offer robotics.

Robots and popular culture

For anyone living in Canada or the US, Westworld (television series) is probably the most recent and well known ‘robot’ drama to premiere in the last year.As for movies, I think Ex Machina from 2014 probably qualifies in that category. Interestingly, both Westworld and Ex Machina seem quite concerned with sex with Westworld adding significant doses of violence as another  concern.

I am going to focus on another robot story, the 2012 movie, Robot & Frank, which features a care robot and an older man,

Frank (played by Frank Langella), a former jewel thief, teaches a robot the skills necessary to rob some neighbours of their valuables. The ethical issue broached in the film isn’t whether or not the robot should learn the skills and assist Frank in his thieving ways although that’s touched on when Frank keeps pointing out that planning his heist requires he live more healthily. No, the problem arises afterward when the neighbour accuses Frank of the robbery and Frank removes what he believes is all the evidence. He believes he’s going successfully evade arrest until the robot notes that Frank will have to erase its memory in order to remove all of the evidence. The film ends without the robot’s fate being made explicit.

In a way, I find the ethics query (was the robot Frank’s friend or just a machine?) posed in the film more interesting than the one in Vikander’s story, an issue which does have a history. For example, care aides, nurses, and/or servants would have dealt with requests to give an alcoholic patient a drink. Wouldn’t there  already be established guidelines and practices which could be adapted for robots? Or, is this question made anew by something intrinsically different about robots?

To be clear, Vikander’s story is a good introduction and starting point for these kinds of discussions as is Moon’s ethical question. But they are starting points and I hope one day there’ll be a more extended discussion of the questions raised by Moon and noted in Vikander’s article (a two- or three-part series of articles? public discussions?).

How will humans react to robots?

Earlier there was the contention that intimate interactions with robots and sexbots would decrease empathy and the ability of human beings to interact with each other in caring ways. This sounds a bit like the argument about smartphones/cell phones and teenagers who don’t relate well to others in real life because most of their interactions are mediated through a screen, which many seem to prefer. It may be partially true but, arguably,, books too are an antisocial technology as noted in Walter J. Ong’s  influential 1982 book, ‘Orality and Literacy’,  (from the Walter J. Ong Wikipedia entry),

A major concern of Ong’s works is the impact that the shift from orality to literacy has had on culture and education. Writing is a technology like other technologies (fire, the steam engine, etc.) that, when introduced to a “primary oral culture” (which has never known writing) has extremely wide-ranging impacts in all areas of life. These include culture, economics, politics, art, and more. Furthermore, even a small amount of education in writing transforms people’s mentality from the holistic immersion of orality to interiorization and individuation. [emphases mine]

So, robotics and artificial intelligence would not be the first technologies to affect our brains and our social interactions.

There’s another area where human-robot interaction may have unintended personal consequences according to April Glaser’s Sept. 14, 2017 article on Slate.com (Note: Links have been removed),

The customer service industry is teeming with robots. From automated phone trees to touchscreens, software and machines answer customer questions, complete orders, send friendly reminders, and even handle money. For an industry that is, at its core, about human interaction, it’s increasingly being driven to a large extent by nonhuman automation.

But despite the dreams of science-fiction writers, few people enter a customer-service encounter hoping to talk to a robot. And when the robot malfunctions, as they so often do, it’s a human who is left to calm angry customers. It’s understandable that after navigating a string of automated phone menus and being put on hold for 20 minutes, a customer might take her frustration out on a customer service representative. Even if you know it’s not the customer service agent’s fault, there’s really no one else to get mad at. It’s not like a robot cares if you’re angry.

When human beings need help with something, says Madeleine Elish, an anthropologist and researcher at the Data and Society Institute who studies how humans interact with machines, they’re not only looking for the most efficient solution to a problem. They’re often looking for a kind of validation that a robot can’t give. “Usually you don’t just want the answer,” Elish explained. “You want sympathy, understanding, and to be heard”—none of which are things robots are particularly good at delivering. In a 2015 survey of over 1,300 people conducted by researchers at Boston University, over 90 percent of respondents said they start their customer service interaction hoping to speak to a real person, and 83 percent admitted that in their last customer service call they trotted through phone menus only to make their way to a human on the line at the end.

“People can get so angry that they have to go through all those automated messages,” said Brian Gnerer, a call center representative with AT&T in Bloomington, Minnesota. “They’ve been misrouted or been on hold forever or they pressed one, then two, then zero to speak to somebody, and they are not getting where they want.” And when people do finally get a human on the phone, “they just sigh and are like, ‘Thank God, finally there’s somebody I can speak to.’ ”

Even if robots don’t always make customers happy, more and more companies are making the leap to bring in machines to take over jobs that used to specifically necessitate human interaction. McDonald’s and Wendy’s both reportedly plan to add touchscreen self-ordering machines to restaurants this year. Facebook is saturated with thousands of customer service chatbots that can do anything from hail an Uber, retrieve movie times, to order flowers for loved ones. And of course, corporations prefer automated labor. As Andy Puzder, CEO of the fast-food chains Carl’s Jr. and Hardee’s and former Trump pick for labor secretary, bluntly put it in an interview with Business Insider last year, robots are “always polite, they always upsell, they never take a vacation, they never show up late, there’s never a slip-and-fall, or an age, sex, or race discrimination case.”

But those robots are backstopped by human beings. How does interacting with more automated technology affect the way we treat each other? …

“We know that people treat artificial entities like they’re alive, even when they’re aware of their inanimacy,” writes Kate Darling, a researcher at MIT who studies ethical relationships between humans and robots, in a recent paper on anthropomorphism in human-robot interaction. Sure, robots don’t have feelings and don’t feel pain (not yet, anyway). But as more robots rely on interaction that resembles human interaction, like voice assistants, the way we treat those machines will increasingly bleed into the way we treat each other.

It took me a while to realize that what Glaser is talking about are AI systems and not robots as such. (sigh) It’s so easy to conflate the concepts.

AI ethics (Toby Walsh and Suzanne Gildert)

Jack Stilgoe of the Guardian published a brief Oct. 9, 2017 introduction to his more substantive (30 mins.?) podcast interview with Dr. Toby Walsh where they discuss stupid AI amongst other topics (Note: A link has been removed),

Professor Toby Walsh has recently published a book – Android Dreams – giving a researcher’s perspective on the uncertainties and opportunities of artificial intelligence. Here, he explains to Jack Stilgoe that we should worry more about the short-term risks of stupid AI in self-driving cars and smartphones than the speculative risks of super-intelligence.

Professor Walsh discusses the effects that AI could have on our jobs, the shapes of our cities and our understandings of ourselves. As someone developing AI, he questions the hype surrounding the technology. He is scared by some drivers’ real-world experimentation with their not-quite-self-driving Teslas. And he thinks that Siri needs to start owning up to being a computer.

I found this discussion to cast a decidedly different light on the future of robotics and AI. Walsh is much more interested in discussing immediate issues like the problems posed by ‘self-driving’ cars. (Aside: Should we be calling them robot cars?)

One ethical issue Walsh raises is with data regarding accidents. He compares what’s happening with accident data from self-driving (robot) cars to how the aviation industry handles accidents. Hint: accident data involving air planes is shared. Would you like to guess who does not share their data?

Sharing and analyzing data and developing new safety techniques based on that data has made flying a remarkably safe transportation technology.. Walsh argues the same could be done for self-driving cars if companies like Tesla took the attitude that safety is in everyone’s best interests and shared their accident data in a scheme similar to the aviation industry’s.

In an Oct. 12, 2017 article by Matthew Braga for Canadian Broadcasting Corporation (CBC) news online another ethical issue is raised by Suzanne Gildert (a participant in the Canadian Robotics Roadmap/Strategy meetings mentioned earlier here), Note: Links have been removed,

… Suzanne Gildert, the co-founder and chief science officer of Vancouver-based robotics company Kindred. Since 2014, her company has been developing intelligent robots [emphasis mine] that can be taught by humans to perform automated tasks — for example, handling and sorting products in a warehouse.

The idea is that when one of Kindred’s robots encounters a scenario it can’t handle, a human pilot can take control. The human can see, feel and hear the same things the robot does, and the robot can learn from how the human pilot handles the problematic task.

This process, called teleoperation, is one way to fast-track learning by manually showing the robot examples of what its trainers want it to do. But it also poses a potential moral and ethical quandary that will only grow more serious as robots become more intelligent.

“That AI is also learning my values,” Gildert explained during a talk on robot ethics at the Singularity University Canada Summit in Toronto on Wednesday [Oct. 11, 2017]. “Everything — my mannerisms, my behaviours — is all going into the AI.”

At its worst, everything from algorithms used in the U.S. to sentence criminals to image-recognition software has been found to inherit the racist and sexist biases of the data on which it was trained.

But just as bad habits can be learned, good habits can be learned too. The question is, if you’re building a warehouse robot like Kindred is, is it more effective to train those robots’ algorithms to reflect the personalities and behaviours of the humans who will be working alongside it? Or do you try to blend all the data from all the humans who might eventually train Kindred robots around the world into something that reflects the best strengths of all?

I notice Gildert distinguishes her robots as “intelligent robots” and then focuses on AI and issues with bias which have already arisen with regard to algorithms (see my May 24, 2017 posting about bias in machine learning, AI, and .Note: if you’re in Vancouver on Oct. 26, 2017 and interested in algorithms and bias), there’s a talk being given by Dr. Cathy O’Neil, author the Weapons of Math Destruction, on the topic of Gender and Bias in Algorithms. It’s not free but  tickets are here.)

Final comments

There is one more aspect I want to mention. Even as someone who usually deals with nanobots, it’s easy to start discussing robots as if the humanoid ones are the only ones that exist. To recapitulate, there are humanoid robots, utilitarian robots, intelligent robots, AI, nanobots, ‘microscopic bots, and more all of which raise questions about ethics and social impacts.

However, there is one more category I want to add to this list: cyborgs. They live amongst us now. Anyone who’s had a hip or knee replacement or a pacemaker or a deep brain stimulator or other such implanted device qualifies as a cyborg. Increasingly too, prosthetics are being introduced and made part of the body. My April 24, 2017 posting features this story,

This Case Western Reserve University (CRWU) video accompanies a March 28, 2017 CRWU news release, (h/t ScienceDaily March 28, 2017 news item)

Bill Kochevar grabbed a mug of water, drew it to his lips and drank through the straw.

His motions were slow and deliberate, but then Kochevar hadn’t moved his right arm or hand for eight years.

And it took some practice to reach and grasp just by thinking about it.

Kochevar, who was paralyzed below his shoulders in a bicycling accident, is believed to be the first person with quadriplegia in the world to have arm and hand movements restored with the help of two temporarily implanted technologies. [emphasis mine]

A brain-computer interface with recording electrodes under his skull, and a functional electrical stimulation (FES) system* activating his arm and hand, reconnect his brain to paralyzed muscles.

Does a brain-computer interface have an effect on human brain and, if so, what might that be?

In any discussion (assuming there is funding for it) about ethics and social impact, we might want to invite the broadest range of people possible at an ‘earlyish’ stage (although we’re already pretty far down the ‘automation road’) stage or as Jack Stilgoe and Toby Walsh note, technological determinism holds sway.

Once again here are links for the articles and information mentioned in this double posting,

That’s it!

ETA Oct. 16, 2017: Well, I guess that wasn’t quite ‘it’. BBC’s (British Broadcasting Corporation) Magazine published a thoughtful Oct. 15, 2017 piece titled: Can we teach robots ethics?

Why are jokes funny? There may be a quantum explanation

Some years ago a friend who’d attended a conference on humour told me I really shouldn’t talk about humour until I had a degree on the topic. I decided the best way to deal with that piece of advice was to avoid all mention of any theories about humour to that friend. I’m happy to say the strategy has worked well although this latest research may allow me to broach the topic once again. From a March 17, 2017 Frontiers (publishing) news release on EurekAlert (Note: A link has been removed),

Why was 6 afraid of 7? Because 789. Whether this pun makes you giggle or groan in pain, your reaction is a consequence of the ambiguity of the joke. Thus far, models have not been able to fully account for the complexity of humor or exactly why we find puns and jokes funny, but a research article recently published in Frontiers in Physics suggests a novel approach: quantum theory.

By the way, it took me forever to get the joke. I always blame these things on the fact that I learned French before English (although my English is now my strongest language). So, for anyone who may immediately grasp the pun: Why was 6 afraid of 7? Because 78 (ate) 9.

This news release was posted by Anna Sigurdsson on March 22, 2017 on the Frontiers blog,

Aiming to answer the question of what kind of formal theory is needed to model the cognitive representation of a joke, researchers suggest that a quantum theory approach might be a contender. In their paper, they outline a quantum inspired model of humor, hoping that this new approach may succeed at a more nuanced modeling of the cognition of humor than previous attempts and lead to the development of a full-fledged, formal quantum theory model of humor. This initial model was tested in a study where participants rated the funniness of verbal puns, as well as the funniness of variants of these jokes (e.g. the punchline on its own, the set-up on its own). The results indicate that apart from the delivery of information, something else is happening on a cognitive level that makes the joke as a whole funny whereas its deconstructed components are not, and which makes a quantum approach appropriate to study this phenomenon.

For decades, researchers from a range of different fields have tried to explain the phenomenon of humor and what happens on a cognitive level in the moment when we “get the joke”. Even within the field of psychology, the topic of humor has been studied using many different approaches, and although the last two decades have seen an upswing of the application of quantum models to the study of psychological phenomena, this is the first time that a quantum theory approach has been suggested as a way to better understand the complexity of humor.

Previous computational models of humor have suggested that the funny element of a joke may be explained by a word’s ability to hold two different meanings (bisociation), and the existence of multiple, but incompatible, ways of interpreting a statement or situation (incongruity). During the build-up of the joke, we interpret the situation one way, and once the punch line comes, there is a shift in our understanding of the situation, which gives it a new meaning and creates the comical effect.

However, the authors argue that it is not the shift of meaning, but rather our ability to perceive both meanings simultaneously, that makes a pun funny. This is where a quantum approach might be able to account for the complexity of humor in a way that earlier models cannot. “Quantum formalisms are highly useful for describing cognitive states that entail this form of ambiguity,” says Dr. Liane Gabora from the University of British Columbia, corresponding author of the paper. “Funniness is not a pre-existing ‘element of reality’ that can be measured; it emerges from an interaction between the underlying nature of the joke, the cognitive state of the listener, and other social and environmental factors. This makes the quantum formalism an excellent candidate for modeling humor,” says Dr. Liane Gabora.

Although much work and testing remains before the completion of a formal quantum theory model of humor to explain the cognitive aspects of reacting to a pun, these first findings provide an exciting first step and opens for the possibility of a more nuanced modeling of humor. “The cognitive process of “getting” a joke is a difficult process to model, and we consider the work in this paper to be an early first step toward an eventually more comprehensive theory of humor that includes predictive models. We believe that the approach promises an exciting step toward a formal theory of humor, and that future research will build upon this modest beginning,” concludes Dr. Liane Gabora.

Here’s a link to and a citation for the paper,

Toward a Quantum Theory of Humor by Liane Gabora and Kirsty Kitto. Front. Phys., 26 January 2017 | https://doi.org/10.3389/fphy.2016.00053

This paper has been published in an open access journal. In viewing the acknowledgements at the end of the paper I found what I found to be a surprising funding agency,

This work was supported by a grant (62R06523) from the Natural Sciences and Engineering Research Council of Canada. We are grateful to Samantha Thomson who assisted with the development of the questionnaire and the collection of the data for the study reported here.

While I’m at this, I might as well mention that Kirsty Katto is from the Queensland University of Technology (QUT) in Australia and, for those unfamiliar with the geography, the University of British Columbia is the the Canada’s province of British Columbia.

The Canadian science scene and the 2017 Canadian federal budget

There’s not much happening in the 2017-18 budget in terms of new spending according to Paul Wells’ March 22, 2017 article for TheStar.com,

This is the 22nd or 23rd federal budget I’ve covered. And I’ve never seen the like of the one Bill Morneau introduced on Wednesday [March 22, 2017].

Not even in the last days of the Harper Conservatives did a budget provide for so little new spending — $1.3 billion in the current budget year, total, in all fields of government. That’s a little less than half of one per cent of all federal program spending for this year.

But times are tight. The future is a place where we can dream. So the dollars flow more freely in later years. In 2021-22, the budget’s fifth planning year, new spending peaks at $8.2 billion. Which will be about 2.4 per cent of all program spending.

He’s not alone in this 2017 federal budget analysis; CBC (Canadian Broadcasting Corporation) pundits, Chantal Hébert, Andrew Coyne, and Jennifer Ditchburn said much the same during their ‘At Issue’ segment of the March 22, 2017 broadcast of The National (news).

Before I focus on the science and technology budget, here are some general highlights from the CBC’s March 22, 2017 article on the 2017-18 budget announcement (Note: Links have been removed,

Here are highlights from the 2017 federal budget:

  • Deficit: $28.5 billion, up from $25.4 billion projected in the fall.
  • Trend: Deficits gradually decline over next five years — but still at $18.8 billion in 2021-22.
  • Housing: $11.2 billion over 11 years, already budgeted, will go to a national housing strategy.
  • Child care: $7 billion over 10 years, already budgeted, for new spaces, starting 2018-19.
  • Indigenous: $3.4 billion in new money over five years for infrastructure, health and education.
  • Defence: $8.4 billion in capital spending for equipment pushed forward to 2035.
  • Care givers: New care-giving benefit up to 15 weeks, starting next year.
  • Skills: New agency to research and measure skills development, starting 2018-19.
  • Innovation: $950 million over five years to support business-led “superclusters.”
  • Startups: $400 million over three years for a new venture capital catalyst initiative.
  • AI: $125 million to launch a pan-Canadian Artificial Intelligence Strategy.
  • Coding kids: $50 million over two years for initiatives to teach children to code.
  • Families: Option to extend parental leave up to 18 months.
  • Uber tax: GST to be collected on ride-sharing services.
  • Sin taxes: One cent more on a bottle of wine, five cents on 24 case of beer.
  • Bye-bye: No more Canada Savings Bonds.
  • Transit credit killed: 15 per cent non-refundable public transit tax credit phased out this year.

You can find the entire 2017-18 budget here.

Science and the 2017-18 budget

For anyone interested in the science news, you’ll find most of that in the 2017 budget’s Chapter 1 — Skills, Innovation and Middle Class jobs. As well, Wayne Kondro has written up a précis in his March 22, 2017 article for Science (magazine),

Finance officials, who speak on condition of anonymity during the budget lock-up, indicated the budgets of the granting councils, the main source of operational grants for university researchers, will be “static” until the government can assess recommendations that emerge from an expert panel formed in 2015 and headed by former University of Toronto President David Naylor to review basic science in Canada [highlighted in my June 15, 2016 posting ; $2M has been allocated for the advisor and associated secretariat]. Until then, the officials said, funding for the Natural Sciences and Engineering Research Council of Canada (NSERC) will remain at roughly $848 million, whereas that for the Canadian Institutes of Health Research (CIHR) will remain at $773 million, and for the Social Sciences and Humanities Research Council [SSHRC] at $547 million.

NSERC, though, will receive $8.1 million over 5 years to administer a PromoScience Program that introduces youth, particularly unrepresented groups like Aboriginal people and women, to science, technology, engineering, and mathematics through measures like “space camps and conservation projects.” CIHR, meanwhile, could receive modest amounts from separate plans to identify climate change health risks and to reduce drug and substance abuse, the officials added.

… Canada’s Innovation and Skills Plan, would funnel $600 million over 5 years allocated in 2016, and $112.5 million slated for public transit and green infrastructure, to create Silicon Valley–like “super clusters,” which the budget defined as “dense areas of business activity that contain large and small companies, post-secondary institutions and specialized talent and infrastructure.” …

… The Canadian Institute for Advanced Research will receive $93.7 million [emphasis mine] to “launch a Pan-Canadian Artificial Intelligence Strategy … (to) position Canada as a world-leading destination for companies seeking to invest in artificial intelligence and innovation.”

… Among more specific measures are vows to: Use $87.7 million in previous allocations to the Canada Research Chairs program to create 25 “Canada 150 Research Chairs” honoring the nation’s 150th year of existence, provide $1.5 million per year to support the operations of the office of the as-yet-unappointed national science adviser [see my Dec. 7, 2016 post for information about the job posting, which is now closed]; provide $165.7 million [emphasis mine] over 5 years for the nonprofit organization Mitacs to create roughly 6300 more co-op positions for university students and grads, and provide $60.7 million over five years for new Canadian Space Agency projects, particularly for Canadian participation in the National Aeronautics and Space Administration’s next Mars Orbiter Mission.

Kondros was either reading an earlier version of the budget or made an error regarding Mitacs (from the budget in the “A New, Ambitious Approach to Work-Integrated Learning” subsection),

Mitacs has set an ambitious goal of providing 10,000 work-integrated learning placements for Canadian post-secondary students and graduates each year—up from the current level of around 3,750 placements. Budget 2017 proposes to provide $221 million [emphasis mine] over five years, starting in 2017–18, to achieve this goal and provide relevant work experience to Canadian students.

As well, the budget item for the Pan-Canadian Artificial Intelligence Strategy is $125M.

Moving from Kondros’ précis, the budget (in the “Positioning National Research Council Canada Within the Innovation and Skills Plan” subsection) announces support for these specific areas of science,

Stem Cell Research

The Stem Cell Network, established in 2001, is a national not-for-profit organization that helps translate stem cell research into clinical applications, commercial products and public policy. Its research holds great promise, offering the potential for new therapies and medical treatments for respiratory and heart diseases, cancer, diabetes, spinal cord injury, multiple sclerosis, Crohn’s disease, auto-immune disorders and Parkinson’s disease. To support this important work, Budget 2017 proposes to provide the Stem Cell Network with renewed funding of $6 million in 2018–19.

Space Exploration

Canada has a long and proud history as a space-faring nation. As our international partners prepare to chart new missions, Budget 2017 proposes investments that will underscore Canada’s commitment to innovation and leadership in space. Budget 2017 proposes to provide $80.9 million on a cash basis over five years, starting in 2017–18, for new projects through the Canadian Space Agency that will demonstrate and utilize Canadian innovations in space, including in the field of quantum technology as well as for Mars surface observation. The latter project will enable Canada to join the National Aeronautics and Space Administration’s (NASA’s) next Mars Orbiter Mission.

Quantum Information

The development of new quantum technologies has the potential to transform markets, create new industries and produce leading-edge jobs. The Institute for Quantum Computing is a world-leading Canadian research facility that furthers our understanding of these innovative technologies. Budget 2017 proposes to provide the Institute with renewed funding of $10 million over two years, starting in 2017–18.

Social Innovation

Through community-college partnerships, the Community and College Social Innovation Fund fosters positive social outcomes, such as the integration of vulnerable populations into Canadian communities. Following the success of this pilot program, Budget 2017 proposes to invest $10 million over two years, starting in 2017–18, to continue this work.

International Research Collaborations

The Canadian Institute for Advanced Research (CIFAR) connects Canadian researchers with collaborative research networks led by eminent Canadian and international researchers on topics that touch all humanity. Past collaborations facilitated by CIFAR are credited with fostering Canada’s leadership in artificial intelligence and deep learning. Budget 2017 proposes to provide renewed and enhanced funding of $35 million over five years, starting in 2017–18.

Earlier this week, I highlighted Canada’s strength in the field of regenerative medicine, specifically stem cells in a March 21, 2017 posting. The $6M in the current budget doesn’t look like increased funding but rather a one-year extension. I’m sure they’re happy to receive it  but I imagine it’s a little hard to plan major research projects when you’re not sure how long your funding will last.

As for Canadian leadership in artificial intelligence, that was news to me. Here’s more from the budget,

Canada a Pioneer in Deep Learning in Machines and Brains

CIFAR’s Learning in Machines & Brains program has shaken up the field of artificial intelligence by pioneering a technique called “deep learning,” a computer technique inspired by the human brain and neural networks, which is now routinely used by the likes of Google and Facebook. The program brings together computer scientists, biologists, neuroscientists, psychologists and others, and the result is rich collaborations that have propelled artificial intelligence research forward. The program is co-directed by one of Canada’s foremost experts in artificial intelligence, the Université de Montréal’s Yoshua Bengio, and for his many contributions to the program, the University of Toronto’s Geoffrey Hinton, another Canadian leader in this field, was awarded the title of Distinguished Fellow by CIFAR in 2014.

Meanwhile, from chapter 1 of the budget in the subsection titled “Preparing for the Digital Economy,” there is this provision for children,

Providing educational opportunities for digital skills development to Canadian girls and boys—from kindergarten to grade 12—will give them the head start they need to find and keep good, well-paying, in-demand jobs. To help provide coding and digital skills education to more young Canadians, the Government intends to launch a competitive process through which digital skills training organizations can apply for funding. Budget 2017 proposes to provide $50 million over two years, starting in 2017–18, to support these teaching initiatives.

I wonder if BC Premier Christy Clark is heaving a sigh of relief. At the 2016 #BCTECH Summit, she announced that students in BC would learn to code at school and in newly enhanced coding camp programmes (see my Jan. 19, 2016 posting). Interestingly, there was no mention of additional funding to support her initiative. I guess this money from the federal government comes at a good time as we will have a provincial election later this spring where she can announce the initiative again and, this time, mention there’s money for it.

Attracting brains from afar

Ivan Semeniuk in his March 23, 2017 article (for the Globe and Mail) reads between the lines to analyze the budget’s possible impact on Canadian science,

But a between-the-lines reading of the budget document suggests the government also has another audience in mind: uneasy scientists from the United States and Britain.

The federal government showed its hand at the 2017 #BCTECH Summit. From a March 16, 2017 article by Meera Bains for the CBC news online,

At the B.C. tech summit, Navdeep Bains, Canada’s minister of innovation, said the government will act quickly to fast track work permits to attract highly skilled talent from other countries.

“We’re taking the processing time, which takes months, and reducing it to two weeks for immigration processing for individuals [who] need to come here to help companies grow and scale up,” Bains said.

“So this is a big deal. It’s a game changer.”

That change will happen through the Global Talent Stream, a new program under the federal government’s temporary foreign worker program.  It’s scheduled to begin on June 12, 2017.

U.S. companies are taking notice and a Canadian firm, True North, is offering to help them set up shop.

“What we suggest is that they think about moving their operations, or at least a chunk of their operations, to Vancouver, set up a Canadian subsidiary,” said the company’s founder, Michael Tippett.

“And that subsidiary would be able to house and accommodate those employees.”

Industry experts says while the future is unclear for the tech sector in the U.S., it’s clear high tech in B.C. is gearing up to take advantage.

US business attempts to take advantage of Canada’s relative stability and openness to immigration would seem to be the motive for at least one cross border initiative, the Cascadia Urban Analytics Cooperative. From my Feb. 28, 2017 posting,

There was some big news about the smallest version of the Cascadia region on Thursday, Feb. 23, 2017 when the University of British Columbia (UBC) , the University of Washington (state; UW), and Microsoft announced the launch of the Cascadia Urban Analytics Cooperative. From the joint Feb. 23, 2017 news release (read on the UBC website or read on the UW website),

In an expansion of regional cooperation, the University of British Columbia and the University of Washington today announced the establishment of the Cascadia Urban Analytics Cooperative to use data to help cities and communities address challenges from traffic to homelessness. The largest industry-funded research partnership between UBC and the UW, the collaborative will bring faculty, students and community stakeholders together to solve problems, and is made possible thanks to a $1-million gift from Microsoft.

Today’s announcement follows last September’s [2016] Emerging Cascadia Innovation Corridor Conference in Vancouver, B.C. The forum brought together regional leaders for the first time to identify concrete opportunities for partnerships in education, transportation, university research, human capital and other areas.

A Boston Consulting Group study unveiled at the conference showed the region between Seattle and Vancouver has “high potential to cultivate an innovation corridor” that competes on an international scale, but only if regional leaders work together. The study says that could be possible through sustained collaboration aided by an educated and skilled workforce, a vibrant network of research universities and a dynamic policy environment.

It gets better, it seems Microsoft has been positioning itself for a while if Matt Day’s analysis is correct (from my Feb. 28, 2017 posting),

Matt Day in a Feb. 23, 2017 article for the The Seattle Times provides additional perspective (Note: Links have been removed),

Microsoft’s effort to nudge Seattle and Vancouver, B.C., a bit closer together got an endorsement Thursday [Feb. 23, 2017] from the leading university in each city.

The partnership has its roots in a September [2016] conference in Vancouver organized by Microsoft’s public affairs and lobbying unit [emphasis mine.] That gathering was aimed at tying business, government and educational institutions in Microsoft’s home region in the Seattle area closer to its Canadian neighbor.

Microsoft last year [2016] opened an expanded office in downtown Vancouver with space for 750 employees, an outpost partly designed to draw to the Northwest more engineers than the company can get through the U.S. guest worker system [emphasis mine].

This was all prior to President Trump’s legislative moves in the US, which have at least one Canadian observer a little more gleeful than I’m comfortable with. From a March 21, 2017 article by Susan Lum  for CBC News online,

U.S. President Donald Trump’s efforts to limit travel into his country while simultaneously cutting money from science-based programs provides an opportunity for Canada’s science sector, says a leading Canadian researcher.

“This is Canada’s moment. I think it’s a time we should be bold,” said Alan Bernstein, president of CIFAR [which on March 22, 2017 was awarded $125M to launch the Pan Canada Artificial Intelligence Strategy in the Canadian federal budget announcement], a global research network that funds hundreds of scientists in 16 countries.

Bernstein believes there are many reasons why Canada has become increasingly attractive to scientists around the world, including the political climate in the United States and the Trump administration’s travel bans.

Thankfully, Bernstein calms down a bit,

“It used to be if you were a bright young person anywhere in the world, you would want to go to Harvard or Berkeley or Stanford, or what have you. Now I think you should give pause to that,” he said. “We have pretty good universities here [emphasis mine]. We speak English. We’re a welcoming society for immigrants.”​

Bernstein cautions that Canada should not be seen to be poaching scientists from the United States — but there is an opportunity.

“It’s as if we’ve been in a choir of an opera in the back of the stage and all of a sudden the stars all left the stage. And the audience is expecting us to sing an aria. So we should sing,” Bernstein said.

Bernstein said the federal government, with this week’s so-called innovation budget, can help Canada hit the right notes.

“Innovation is built on fundamental science, so I’m looking to see if the government is willing to support, in a big way, fundamental science in the country.”

Pretty good universities, eh? Thank you, Dr. Bernstein, for keeping some of the boosterism in check. Let’s leave the chest thumping to President Trump and his cronies.

Ivan Semeniuk’s March 23, 2017 article (for the Globe and Mail) provides more details about the situation in the US and in Britain,

Last week, Donald Trump’s first budget request made clear the U.S. President would significantly reduce or entirely eliminate research funding in areas such as climate science and renewable energy if permitted by Congress. Even the National Institutes of Health, which spearheads medical research in the United States and is historically supported across party lines, was unexpectedly targeted for a $6-billion (U.S.) cut that the White House said could be achieved through “efficiencies.”

In Britain, a recent survey found that 42 per cent of academics were considering leaving the country over worries about a less welcoming environment and the loss of research money that a split with the European Union is expected to bring.

In contrast, Canada’s upbeat language about science in the budget makes a not-so-subtle pitch for diversity and talent from abroad, including $117.6-million to establish 25 research chairs with the aim of attracting “top-tier international scholars.”

For good measure, the budget also includes funding for science promotion and $2-million annually for Canada’s yet-to-be-hired Chief Science Advisor, whose duties will include ensuring that government researchers can speak freely about their work.

“What we’ve been hearing over the last few months is that Canada is seen as a beacon, for its openness and for its commitment to science,” said Ms. Duncan [Kirsty Duncan, Minister of Science], who did not refer directly to either the United States or Britain in her comments.

Providing a less optimistic note, Erica Alini in her March 22, 2017 online article for Global News mentions a perennial problem, the Canadian brain drain,

The budget includes a slew of proposed reforms and boosted funding for existing training programs, as well as new skills-development resources for unemployed and underemployed Canadians not covered under current EI-funded programs.

There are initiatives to help women and indigenous people get degrees or training in science, technology, engineering and mathematics (the so-called STEM subjects) and even to teach kids as young as kindergarten-age to code.

But there was no mention of how to make sure Canadians with the right skills remain in Canada, TD’s DePratto {Toronto Dominion Bank} Economics; TD is currently experiencing a scandal {March 13, 2017 Huffington Post news item}] told Global News.

Canada ranks in the middle of the pack compared to other advanced economies when it comes to its share of its graduates in STEM fields, but the U.S. doesn’t shine either, said DePratto [Brian DePratto, senior economist at TD .

The key difference between Canada and the U.S. is the ability to retain domestic talent and attract brains from all over the world, he noted.

To be blunt, there may be some opportunities for Canadian science but it does well to remember (a) US businesses have no particular loyalty to Canada and (b) all it takes is an election to change any perceived advantages to disadvantages.

Digital policy and intellectual property issues

Dubbed by some as the ‘innovation’ budget (official title:  Building a Strong Middle Class), there is an attempt to address a longstanding innovation issue (from a March 22, 2017 posting by Michael Geist on his eponymous blog (Note: Links have been removed),

The release of today’s [march 22, 2017] federal budget is expected to include a significant emphasis on innovation, with the government revealing how it plans to spend (or re-allocate) hundreds of millions of dollars that is intended to support innovation. Canada’s dismal innovation record needs attention, but spending our way to a more innovative economy is unlikely to yield the desired results. While Navdeep Bains, the Innovation, Science and Economic Development Minister, has talked for months about the importance of innovation, Toronto Star columnist Paul Wells today delivers a cutting but accurate assessment of those efforts:

“This government is the first with a minister for innovation! He’s Navdeep Bains. He frequently posts photos of his meetings on Twitter, with the hashtag “#innovation.” That’s how you know there is innovation going on. A year and a half after he became the minister for #innovation, it’s not clear what Bains’s plans are. It’s pretty clear that within the government he has less than complete control over #innovation. There’s an advisory council on economic growth, chaired by the McKinsey guru Dominic Barton, which periodically reports to the government urging more #innovation.

There’s a science advisory panel, chaired by former University of Toronto president David Naylor, that delivered a report to Science Minister Kirsty Duncan more than three months ago. That report has vanished. One presumes that’s because it offered some advice. Whatever Bains proposes, it will have company.”

Wells is right. Bains has been very visible with plenty of meetings and public photo shoots but no obvious innovation policy direction. This represents a missed opportunity since Bains has plenty of policy tools at his disposal that could advance Canada’s innovation framework without focusing on government spending.

For example, Canada’s communications system – wireless and broadband Internet access – falls directly within his portfolio and is crucial for both business and consumers. Yet Bains has been largely missing in action on the file. He gave approval for the Bell – MTS merger that virtually everyone concedes will increase prices in the province and make the communications market less competitive. There are potential policy measures that could bring new competitors into the market (MVNOs [mobile virtual network operators] and municipal broadband) and that could make it easier for consumers to switch providers (ban on unlocking devices). Some of this falls to the CRTC, but government direction and emphasis would make a difference.

Even more troubling has been his near total invisibility on issues relating to new fees or taxes on Internet access and digital services. Canadian Heritage Minister Mélanie Joly has taken control of the issue with the possibility that Canadians could face increased costs for their Internet access or digital services through mandatory fees to contribute to Canadian content.  Leaving aside the policy objections to such an approach (reducing affordable access and the fact that foreign sources now contribute more toward Canadian English language TV production than Canadian broadcasters and distributors), Internet access and e-commerce are supposed to be Bains’ issue and they have a direct connection to the innovation file. How is it possible for the Innovation, Science and Economic Development Minister to have remained silent for months on the issue?

Bains has been largely missing on trade related innovation issues as well. My Globe and Mail column today focuses on a digital-era NAFTA, pointing to likely U.S. demands on data localization, data transfers, e-commerce rules, and net neutrality.  These are all issues that fall under Bains’ portfolio and will impact investment in Canadian networks and digital services. There are innovation opportunities for Canada here, but Bains has been content to leave the policy issues to others, who will be willing to sacrifice potential gains in those areas.

Intellectual property policy is yet another area that falls directly under Bains’ mandate with an obvious link to innovation, but he has done little on the file. Canada won a huge NAFTA victory late last week involving the Canadian patent system, which was challenged by pharmaceutical giant Eli Lilly. Why has Bains not promoted the decision as an affirmation of how Canada’s intellectual property rules?

On the copyright front, the government is scheduled to conduct a review of the Copyright Act later this year, but it is not clear whether Bains will take the lead or again cede responsibility to Joly. The Copyright Act is statutorily under the Industry Minister and reform offers the chance to kickstart innovation. …

For anyone who’s not familiar with this area, innovation is often code for commercialization of science and technology research efforts. These days, digital service and access policies and intellectual property policies are all key to research and innovation efforts.

The country that’s most often (except in mainstream Canadian news media) held up as an example of leadership in innovation is Estonia. The Economist profiled the country in a July 31, 2013 article and a July 7, 2016 article on apolitical.co provides and update.

Conclusions

Science monies for the tri-council science funding agencies (NSERC, SSHRC, and CIHR) are more or less flat but there were a number of line items in the federal budget which qualify as science funding. The $221M over five years for Mitacs, the $125M for the Pan-Canadian Artificial Intelligence Strategy, additional funding for the Canada research chairs, and some of the digital funding could also be included as part of the overall haul. This is in line with the former government’s (Stephen Harper’s Conservatives) penchant for keeping the tri-council’s budgets under control while spreading largesse elsewhere (notably the Perimeter Institute, TRIUMF [Canada’s National Laboratory for Particle and Nuclear Physics], and, in the 2015 budget, $243.5-million towards the Thirty Metre Telescope (TMT) — a massive astronomical observatory to be constructed on the summit of Mauna Kea, Hawaii, a $1.5-billion project). This has lead to some hard feelings in the past with regard to ‘big science’ projects getting what some have felt is an undeserved boost in finances while the ‘small fish’ are left scrabbling for the ever-diminishing (due to budget cuts in years past and inflation) pittances available from the tri-council agencies.

Mitacs, which started life as a federally funded Network Centre for Excellence focused on mathematics, has since shifted focus to become an innovation ‘champion’. You can find Mitacs here and you can find the organization’s March 2016 budget submission to the House of Commons Standing Committee on Finance here. At the time, they did not request a specific amount of money; they just asked for more.

The amount Mitacs expects to receive this year is over $40M which represents more than double what they received from the federal government and almost of 1/2 of their total income in the 2015-16 fiscal year according to their 2015-16 annual report (see p. 327 for the Mitacs Statement of Operations to March 31, 2016). In fact, the federal government forked over $39,900,189. in the 2015-16 fiscal year to be their largest supporter while Mitacs’ total income (receipts) was $81,993,390.

It’s a strange thing but too much money, etc. can be as bad as too little. I wish the folks Mitacs nothing but good luck with their windfall.

I don’t see anything in the budget that encourages innovation and investment from the industrial sector in Canada.

Finallyl, innovation is a cultural issue as much as it is a financial issue and having worked with a number of developers and start-up companies, the most popular business model is to develop a successful business that will be acquired by a large enterprise thereby allowing the entrepreneurs to retire before the age of 30 (or 40 at the latest). I don’t see anything from the government acknowledging the problem let alone any attempts to tackle it.

All in all, it was a decent budget with nothing in it to seriously offend anyone.

Are there any leaders in the ‘graphene race’?

Tom Eldridge, a director and co-founder of Fullerex, has written a Jan. 5, 2017 essay titled: Is China still leading the graphene race? for Nanotechnology Now. Before getting to the essay, here’s a bit more about Fullerex and Tom Eldridge’s qualifications. From Fullerex’s LinkedIn description,

Fullerex is a leading independent broker of nanomaterials and nano-intermediates. Our mission is to support the advancement of nanotechnology in creating radical, transformative and sustainable improvement to society. We are dedicated to achieving these aims by accelerating the commercialisation and usage of nanomaterials across industry and beyond. Fullerex is active in market development and physical trading of advanced materials. We generate demand for nanomaterials across synergistic markets by stimulating innovation with end-users and ensuring robust supply chains are in place to address the growing commercial trade interest. Our end-user markets include Polymers and Polymer Composites, Coatings, Tyre and Rubber, Cementitious Composites, 3D Printing and Printed Electronics, the Energy sector, Lubricating Oils and Functional Fluids. The materials we cover: Nanomaterials: Includes fullerenes, carbon nanotubes and graphene, metal and metal oxide nanoparticles, and organic-inorganic hybrids. Supplied as raw nanopowders or ready-to-use dispersions and concentrates. Nano-intermediates: Producer goods and semi-finished products such as nano-enabled coatings, polymer masterbatches, conductive inks, thermal interface materials and catalysts.

As for Tom Eldridge, here’s more about him, his brother, and the company from the Fullerex About page,

Fullerex was founded by Joe and Tom Eldridge, brothers with a keen interest in nanotechnology and the associated emerging market for nanomaterials.

Joe has a strong background in trading with nearly 10 years’ experience as a stockbroker, managing client accounts for European Equities and FX. At University he read Mathematics at Imperial College London gaining a BSc degree and has closely followed the markets for disruptive technologies and advanced materials for a number of years.

Tom worked in the City of London for 7 years in commercial roles throughout his professional career, with an expertise in market data, financial and regulatory news. In his academic background, he earned a BSc degree in Physics and Philosophy at Kings College London and is a member of the Institute of Physics.

As a result, Fullerex has the strong management composition that allows the company to support the growth of the nascent and highly promising nanomaterials industry. Fullerex is a flexible company with drive, enthusiasm and experience, committed to aiding the development of this market.

Getting back to the matter at hand, that’s a rather provocative title for Tom Eldridge’s essay,. given that he’s a Brit and (I believe) the Brits viewed themselves as leaders in the ‘graphene race’ but he offers a more nuanced analysis than might be expected from the title. First, the patent landscape (from Eldridge’s Jan. 5, 2017 essay),

As competition to exploit the “wonder material” has intensified around the world, detailed reports have so far been published which set out an in-depth depiction of the global patent landscape for graphene, notably from CambridgeIP and the UK Intellectual Property Office, in 2013 and 2015 respectively. Ostensibly the number of patents and patent applications both indicated that China was leading the innovation in graphene technology. However, on closer inspection it became less clear as to how closely the patent figures themselves reflect actual progress and whether this will translate into real economic impact. Some of the main reasons to be doubtful included:

– 98% of the Chinese patent applications only cover China, so therefore have no worldwide monopoly.
– A large number of the Chinese patents are filed in December, possibly due to demand to meet patent quotas. The implication being that the patent filings follow a politically driven agenda, rather than a purely innovation or commercially driven agenda.
– In general, inventors could be more likely to file for patent protection in some countries rather than others e.g. for tax purposes. Which therefore does not give a truly accurate picture of where all the actual research activity is based.
– Measuring the proportion of graphene related patents to overall patents is more indicative of graphene specialisation, which shows that Singapore has the largest proportion of graphene patents, followed by China, then South Korea.

(Intellectual Property Office, 2015), (Ellis, 2015), (CambridgeIP, 2013)

Then, there’s the question of production,

Following the recent launch of the latest edition of the Bulk Graphene Pricing Report, which is available exclusively through The Graphene Council, Fullerex has updated its comprehensive list of graphene producers worldwide, and below is a summary of the number of graphene producers by country in 2017.

Summary Table Showing the Number of Graphene Producers by Country and Region

The total number of graphene producers identified is 142, across 27 countries. This research expands upon previous surveys of the graphene industry, such as the big data analysis performed by Nesta in 2015 (Shapira, 2015). The study by Nesta [formerly  NESTA, National Endowment for Science, Technology and the Arts) is an independent charity that works to increase the innovation capacity of the UK; see Wikipedia here for more about NESTA] revealed 65 producers throughout 16 countries but was unable to glean accurate data on producers in Asia, particularly China.

As we can now see however from the data collected by Fullerex, China has the largest number of graphene producers, followed by the USA, and then the UK.

In addition to having more companies active in the production and sale of graphene than any other country, China also holds about 2/3rds of the global production capacity, according to Fullerex.

Eldridge goes on to note that the ‘graphene industry’ won’t truly grow and develop until there are substantive applications for the material. He also suggests taking another look at the production figures,

As with the patent landscape, rather than looking at the absolute figures, we can review the numbers in relative terms. For instance, if we normalise to account for the differences in the size of each country, by looking at the number of producers as a proportion of GDP, we see the following: Spain (7.18), UK (4.48), India (3.73), China (3.57), Canada (3.28) [emphasis mine], USA (1.79) (United Nations, 2013).

Unsurprisingly, each leading country has a national strategy for economic development which involves graphene prominently.

For instance, The Spanish Council for Scientific Research has lent 9 of its institutes along with 10 universities and other public R&D labs involved in coordinating graphene projects with industry.

The Natural Sciences and Engineering Research Council of Canada [NSERC] has placed graphene as one of five research topics in its target area of “Advanced Manufacturing” for Strategic Partnership Grants.

The UK government highlights advanced materials as one of its Eight Great Technologies, within which graphene is a major part of, having received investment for the NGI and GEIC buildings, along with EPSRC and Innovate UK projects. I wrote previously about the UK punching above its weight in terms of research, ( http://fullerex.com/index.php/articles/130-the-uk-needs-an-industrial-revolution-can-graphene-deliver/ ) but that R&D spending relative to GDP was too low compared to other developed nations. It is good to see that investment into graphene production in the UK is bucking that trend, and we should anticipate this will provide a positive economic outcome.

Yes, I’m  particularly interested in the fact Canada becomes more important as a producer when the numbers are relative but it is interesting to compare the chart with Eldridge’s text and to note how importance shifts depending on what numbers are being considered.

I recommend reading Eldridge’s piece in its entirety.

A few notes about graphene in Canada

By the way, the information in Eldridge’s essay about NSERC’s placement of graphene as a target area for grants is news to me. (As I have often noted here, I get more information about the Canadian nano scene from international sources than I do from our national sources.)

Happily I do get some home news such as a Jan. 5, 2017 email update from Lomiko Metals, a Canadian junior exploration company focused on graphite and lithium. The email provides the latest information from the company (as I’m not an expert in business or mining this is not an endorsement),

On December 13, 2016 we were excited to announce the completion of our drill program at the La Loutre flake graphite property. We received very positive results from our 1550 meter drilling program in 2015 in the area we are drilling now. In that release I stated, “”The intercepts of multiple zones of mineralization in the Refractory Zone where we have reported high grade intercepts previously is a very promising sign. The samples have been rushed to the ALS Laboratory for full assay testing,” We hope to have the results of those assays shortly.

December 16, 2016 Lomiko announced a 10:1 roll back of our shares. We believe that this roll back is important as we work towards securing long term equity financing for the company. Lomiko began trading on the basis of the roll back on December 19.

We believe that Graphite has a bright future because of the many new products that will rely on the material. I have attached a link to a video on Lomiko, Graphite and Graphene.  

https://youtu.be/Y–Y_Ub6oC4

January 3, 2017 Lomiko announced the extension and modification of its option agreements with Canadian Strategic Metals Inc. for the La Loutre and Lac des Iles properties. The effect of this extension is to give Lomiko additional time to complete the required work under the agreements.

Going forward Lomiko is in a much stronger position as the result of our share roll back. Potential equity funders who are very interested in our forthcoming assay results from La Loutre and the overall prospects of the company, have been reassured by our share consolidation.

Looking forward to 2017, we anticipate the assays of the La Loutre drilling to be delivered in the next 90 days, sooner we hope. We also anticipate additional equity funding will become available for the further exploration and delineation of the La Loutre and Lac des Iles properties and deposits.

More generally, we are confident that the market for large flake graphite will become firmer in 2017. Lomiko’s strategy of identifying near surface, ready to mine, graphite nodes puts us in the position to take advantage of improvements in the graphite price without having to commit large sums to massive mine development. As we identify and analyze the graphite nodes we are finding we increase the potential resources of the company. 2017 should see significantly improved resource estimates for Lomiko’s properties.

As I wasn’t familiar with the term ‘roll back of shares’, I looked it up and found this in an April 18, 2012 posting by Dudley Pierce Baker on kitco.com,

As a general rule, we hate to see an announcement of a share rollback, however, there exceptions which we cover below. Investors should always be aware that if a company has, say over 150 million shares outstanding, in our opinion, it is a potential candidate for a rollback and the announcement should not come as a surprise.

Weak markets, a low share price, a large number of shares outstanding, little or no cash and you have a company which is an idea candidate for a rollback.

The basic concept of a rollback or consolidation in a company’s shares is rather simple.

We are witnessing a few cases of rollbacks not with the purpose of raising more money but rather to facilitate the listing of the company’s shares on the NYSE [New York Stock Exchange] Amex.

I have no idea what situation Lomiko finds itself in but it should be noted that graphere research has been active since 2004 when the first graphene sheets were extracted from graphite. This is a relatively new field of endeavour and Lomiko (along with other companies) is in the position of pioneering the effort here in Canada. That said, there are many competitors to graphene and major international race to commercialize nanotechnology-enabled products.

Are there any leaders in the ‘graphene race?

Getting back to the question in the headline, I don’t think there are any leaders at the moment. No one seems to have what they used to call “a killer app,” that one application/product that everyone wants and which drive demand for graphene.

University of British Columbia gets $3.5M in funding for nanoscience and other sciences

One-third to one-half of the researchers getting grants are working on nanotechnology projects. From a March 1, 2016 University of British Columbia (UBC) news release (received via email),

Research into forest renewal, quantum computer nanotechnology, solar power, high-tech manufacturing, forestry products and the Subarctic ocean climate gained a boost today, with the announcement of $3.5 million in funding for six UBC projects from the Natural Sciences and Engineering Research Council of Canada (NSERC).

The funding comes from NSERC’s Strategic Partnership Grants, which support scientific partnerships to strengthen the Canadian economy, society and environment.

Konrad Walus, Associate Professor, Department of Electrical and Computer Engineering

A framework for embedding, simulation and design of computational nanotechnology using a quantum annealing processor [emphasis mine] — $394,500

This project will work with Quantum Silicon Inc. [emphasis mine] to conduct experiments that provide better insight into the potential of quantum computing, and will develop design rules for future designers of the technology.

Alireza Nojeh, Professor, Department of Electrical and Computer Engineering

Thermionic solar energy converter — $510,500

In close collaboration with four Canadian industrial partners, this project will establish a novel approach to solar electricity generation using recent discoveries in nanostructured materials.

With mention of quantum annealing, I would have expected their industrial partner to be D-Wave Systems, a Vancouver-based company which has gotten a lot of attention for its quantum annealing processor (a Dec. 16, 2015 post titled: Google announces research results after testing 1,097-qubit D-Wave 2X™ quantum computers is one of my most recent pieces about the company). The company mentioned, Quantum Silicon, is based in Alberta.

There is one project where I believe at least some of the work is being done at the nanoscale or less (from the March 1, 2016 news release0,

Harry Brumer, Professor, Michael Smith Laboratories at UBC

Biorefining of novel cellulosics from forest fibre resources — $532,812

Working with a Canadian forest products company, this project will use genomic and biochemical methods to develop new technology for wood-fibre modification.

And for the curious, here are the other projects (from the March 1, 2016 news release),

Suzanne Simard, Professor, Department of Forest and Conservation Sciences

Designing successful forest renewal practices for our changing climate — $929,000

This project will investigate novel forest renewal methods, and establish recommendations for best harvesting and regeneration practices under changing climate conditions.

Chadwick Sinclair, Professor, Faculty of Applied Science – Materials Engineering

Through-process modeling for optimized electron beam additive manufacturing — $484,400

Working in collaboration with Canadian electron-beam processor PAVAC Industries Inc. [emphasis mine], this project will develop a through-process model for additive manufacturing that will link machine control to material microstructure and properties.

Philippe Tortell, Professor, Department of Earth, Ocean and Atmospheric Sciences

Quantifying climate-dependent and anthropogenic impacts on ecosystem services in the Subarctic Pacific Ocean; State-of-the-art observational tools to inform policy and management — $707,100

University scientists and Fisheries and Oceans Canada will use field-based observations to generate satellite-based models of ecosystem productivity to examine fish yields and environmental variability.

PAVAC Industries is headquartered in Richmond, BC, Canada,.

Congratulations to the researchers!

Promising new technique for controlled fabrication of nanowires

This research is the result of a collaboration between French, Italian, Australian, and Canadian researchers. From a Jan. 5, 2016 news item on *phys.org,

An international team of researchers including Professor Federico Rosei and members of his group at INRS (Institut national de la recherche scientifique) has developed a new strategy for fabricating atomically controlled carbon nanostructures used in molecular carbon-based electronics. An article just published in the prestigious journal Nature Communications presents their findings: the complete electronic structure of a conjugated organic polymer, and the influence of the substrate on its electronic properties.

A Jan. 5, 2016 INRS news release by Gisèle Bolduc, which originated the news item, indicates this is the beginning rather than an endpoint (Note: A link has been removed),

The researchers combined two procedures previously developed in Professor Rosei’s lab—molecular self-assembly and chain polymerization—to produce a network of long-range poly(para-phenylene) (PPP) nanowires on a copper (Cu) surface. Using advanced technologies such as scanning tunneling microscopy and photoelectron spectroscopy as well as theoretical models, they were able to describe the morphology and electronic structure of these nanostructures.

“We provide a complete description of the band structure and also highlight the strong interaction between the polymer and the substrate, which explains both the decreased bandgap and the metallic nature of the new chains. Even with this hybridization, the PPP bands display a quasi one-dimensional dispersion in conductive polymeric nanowires,” said Professor Federico Rosei, one of the authors of the study.

Although further research is needed to fully describe the electronic properties of these nanostructures, the polymer’s dispersion provides a spectroscopic record of the polymerization process of certain types of molecules on gold, silver, copper, and other surfaces. It’s a promising approach for similar semiconductor studies—an essential step in the development of actual devices.

The results of the study could be used in designing organic nanostructures, with significant potential applications in nanoelectronics, including photovoltaic devices, field-effect transistors, light-emitting diodes, and sensors.

About the article

This study was designed by Yannick Fagot-Revurat and Daniel Malterre of Université de Lorraine/CNRS, Federico Rosei of INRS, Josh Lipton-Duffin of the Institute for Future Environments (Australia), Giorgio Contini of the Italian National Research Council, and Dmytro F. Perepichka of McGill University. […]The researchers were generously supported by Conseil Franco-Québécois de coopération universitaire, the France–Italy International Program for Scientific Cooperation, the Natural Sciences and Engineering Research Council of Canada, Fonds québécois de recherche – Nature et technologies, and a Québec MEIE grant (in collaboration with Belgium).

Here’s a link to and a citation for the paper,

Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires by Guillaume Vasseur, Yannick Fagot-Revurat, Muriel Sicot, Bertrand Kierren, Luc Moreau, Daniel Malterre, Luis Cardenas, Gianluca Galeotti, Josh Lipton-Duffin, Federico Rosei, Marco Di Giovannantonio, Giorgio Contini, Patrick Le Fèvre, François Bertran, Liangbo Liang, Vincent Meunier, Dmitrii F. Perepichka. Nature Communications 7, Article number:  10235 doi:10.1038/ncomms10235 Published 04 January 2016

This is an open access paper.

*’ScienceDaily’ corrected to ‘phys.org’ on Tues., Jan. 5, 2016 at 1615 PST.

Suggestions for the new Canadian government regarding science and a Chief Science Officer (Advisor)

I wasn’t the only *one* writing about the new cabinet. In my Nov. 4, 2015 posting I included a roundup of early responses to the election *(oops, the roundup of responses is in my Nov. 2, 2015 posting)* and what that might mean for science and I also speculated on what the new government’s first ‘science’ move might be.

I missed John Dupuis’  (Confessions of a Science Librarian) posting where he provides a roster of the new ministers with some science or technology responsibilities in their portfolios in his Nov. 4, 2015 posting (Note:  Links have been removed),

But Canada has a new government, a new prime minister in Justin Trudeau and a new cabinet. Kirsty Duncan, an actual scientist who worked on the IPPC [Intergovernmental Panel on Climate Change], has been appointed Science Minister. Come to think of it, we have a Science Minister. [Note: Canada has had a Minister of State (Science and Technology) for a number of years. This was considered a junior ministry and the junior minister reported to the Minister of Industry Canada, a ministry which seems to have been changed to Innovation, Science and Economic Development.]

The roster of ministers in other science and technology-related portfolios is also very strong. Navdeep Singh Bains at Innovation, Science and Economic Development. Lawrence MacAulay at Agriculture and Agri-Food. Jane Philpott at Health. Marc Garneau at Transport. Jim Carr at Natural Resources. Hunter Tootoo at Fisheries and Oceans, and Canadian Coast Guard. Catherine McKenna at Environment and Climate Change. And yes, we have a Minister of Climate Change. And Mélanie Joly at Heritage, in charge of Libraries and Archives Canada. [emphasis mine]

Bit of a surprise to see Libraries and Archives Canada listed there but it makes sense when you follow the reasoning (from Dupuis’ Nov. 4, 2015 posting; Note: A link has been removed),

What hasn’t really appeared on any of the lists [of recommendations for what the new government should be addressing] I’ve seen is fixing the damage that the previous Conservative government did to the science library infrastructure in Canada, most prominently to the Department of Fisheries and Oceans library system but also to the systems at Environment Canada and others.

While those libraries were being closed and consolidated, we were assured that the collections were properly merged and weeded, that new scanning and document delivery procedures were being implemented that would effectively replace the local staff and collections and that researchers would see no difference in the level of service. The Federal government did announce an extensive re-visioning of it’s science library infrastructure. Which looks good on paper.

But it’s safe to say that basically no one believed the Conservatives were up to the challenge of doing a good job of this. All the evidence that we were able to see indicated that the merging and consolidation of collections was rushed, haphazard and devoid of planning at best and willfully destructive at worst. As far as I can tell, we have nothing but the previous government’s word that the scanning and document delivery services that were rushed into the breach are anywhere near sufficient. Nor did we see real evidence that they were truly committed to the revisioning.

For more about the depredations to the Fisheries and Oceans libraries along with other government science libraries see my Jan. 30, 2014 posting. In it I note there are issues with digitizing material (there were claims the books weren’t needed as they’d been digitized) and accessing that information in the future.

Getting back to Dupuis, do read his post in its entirety to find out what his suggestions are for a renaissance of a science library system in Canada.

Suggestions for a Chief Science Officer/Advisor

I haven’t seen anyone making suggestions for this office and while I feel the choice of Ted Hsu would be too partisan given that he was a Liberal Member of Parliament and the party’s science critic in the last government, there are other possibilities such as Arvind Gupta (computer scientist) and Lynnd Quarmby (molecular biology).

Gupta who recently and unexpectedly resigned as president of the University of British Columbia (UBC; there’s more about the resignation in my Nov. 4, 2015 posting) has moved, temporarily at least, to the University of Toronto. From 2000 to 2014, Gupta had a enviable reputation as the CEO [Chief Executive Officer] and scientific director of Mitacs Canada, a non-profit that worked with federal and provincial governments and industry to fund student researchers. He was also a member of the Conservative government’s Science, Technology and Innovation Council and was involved in a review of government funding for science (aka, Review of Support to R&D [Research and Development]) resulting in what was known as the Jenkins report or by its formal title: Innovation Canada: A Call to Action (published in 2011).

Lynne Quarmby who recently ran for election as a member of the Green Party has had her research recognized by the Natural Sciences and Engineering Research Council of Canada (NSERC) with a 2011 Discovery Accelerator Supplement, a funding program reserved for researchers who show strong potential to become international leaders within their field. She is an advocate in a number of areas including gender equality for women in science and technology, as well as, science and climate issues.

Truthfully, I’d like to see Gupta and Quarmby share the position.

Also, I’d like to find out who you’d suggest take on the role* of Canada’s Chief Science Officer/Advisor. Please let me know your recommendations in the comments section.

*This correction made to the first sentence ‘one’ and this correction made to the first paragraph ‘(oops, the roundup of responses is in my Nov. 2, 2015 posting)’ Nov. 5, 2015 at 1145 hours PST.

*’rold’ corrected to ‘role’ on Nov. 16, 2015.

Frogs: monitoring them, finding new species, and research about the golden ones in Panama

I have three frog-oriented items and while they’re not strictly speaking in my usual range of topics, given this blog’s name and the fact I haven’t posted a frog piece in quite a while, it seems this is a good moment to address that lack.

Monitoring frogs and amphibians at Trent University (Ontario, Canada)

From a March 23, 2015 Trent University news release,

With the decline of amphibian populations around the world, a team of researchers led by Trent University’s Dr. Dennis Murray will seek to establish environmental DNA (eDNA) monitoring of amphibian occupancy and aquatic ecosystem risk assessment with the help of a significant grant of over $596,000 from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Awarded to Professor Murray, a Canada research chair in integrative wildlife conservation, bioinformatics, and ecological modelling and professor at Trent University along with colleagues Dr. Craig Brunetti of the Biology department, and Dr. Chris Kyle of the Forensic Science program, and partners at Laurentian University, University of Toronto, McGill University, Ontario Ministry of Natural Resources and Forestry and Environment Canada, the grant will support the development of tools that will promote a cleaner aquatic environment.

The project will use amphibian DNA found in natural breeding habitats to determine the presence and abundance of amphibians as well as their pathogens. This new technology capitalizes on Trent University’s expertise and infrastructure in the areas of wildlife DNA and water quality.

“We’re honoured to have received the grant to help us drive the project forward,” said Prof. Murray. “Our plan is to place Canada, and Trent, in a leadership position with respect to aquatic wildlife monitoring and amphibian conservation.”

Amphibian populations are declining worldwide, yet in Canada, amphibian numbers are not monitored closely, meaning changes in their distribution or abundance may be unnoticeable. Amphibian monitoring in Canada is conducted by citizen scientists who record frog breeding calls when visiting bodies of water during the spring. However, the lack of formalized amphibian surveys leaves Canada in a vulnerable position regarding the status of its diverse amphibian community.

Prof. Murray believes that the protocols developed from this project could revolutionize how amphibian populations are monitored in Canada and in turn lead to new insights regarding the population trends for several amphibian species across the country.

Here’s more about NSERC and Trent University from the news release,

About NSERC

NSERC is a federal agency that helps make Canada a country of discoverers and innovators. The agency supports almost 30,000 post-secondary students and postdoctoral fellows in their advanced studies. NSERC promotes discovery by funding approximately 12,000 professors every year and fosters innovation by encouraging over 2,400 Canadian companies to participate and invest in post-secondary research projects.

The NSERC Strategic Project Grants aim to increase research and training in areas that could strongly influence Canada’s economy, society or environment in the next 10 years in four target areas: environmental science and technologies; information and communications technologies; manufacturing; and natural resources and energy.

About Trent University

One of Canada’s top universities, Trent University was founded on the ideal of interactive learning that’s personal, purposeful and transformative. Consistently recognized nationally for leadership in teaching, research and student satisfaction, Trent attracts excellent students from across the country and around the world. Here, undergraduate and graduate students connect and collaborate with faculty, staff and their peers through diverse communities that span residential colleges, classrooms, disciplines, hands-on research, co-curricular and community-based activities. Across all disciplines, Trent brings critical, integrative thinking to life every day. As the University celebrates its 50th anniversary in 2014/15, Trent’s unique approach to personal development through supportive, collaborative community engagement is in more demand than ever. Students lead the way by co-creating experiences rooted in dialogue, diverse perspectives and collaboration. In a learning environment that builds life-long passion for inclusion, leadership and social change, Trent’s students, alumni, faculty and staff are engaged global citizens who are catalysts in developing sustainable solutions to complex issues. Trent’s Peterborough campus boasts award-winning architecture in a breathtaking natural setting on the banks of the Otonabee River, just 90 minutes from downtown Toronto, while Trent University Durham delivers a distinct mix of programming in the GTA.

Trent University’s expertise in water quality could be traced to its proximity to Canada’s Experimental Lakes Area (ELA), a much beleaguered research environment due to federal political imperatives. You can read more about the area and the politics in this Wikipedia entry. BTW, I am delighted to learn that it still exists under the auspices of the International Institute for Sustainable Development (IISD),

Taking this post into nanotechnology territory while mentioning the ELA, Trent University published a Dec. 8, 2014 news release about research into silver nanoparticles,

For several years, Trent University’s Dr. Chris Metcalfe and Dr. Maggie Xenopoulos have dedicated countless hours to the study of aquatic contaminants and the threat they pose to our environment.

Now, through the efforts of the International Institute for Sustainable Development (IISD), their research is reaching a wider audience thanks to a new video (Note: A link has been removed).

The video is one of a five-part series being released by the IISD that looks into environmental issues in Canada. The video entitled “Distilling Science at the Experimental Lakes Area: Nanosilver” and featuring Professors Metcalfe and Xenopoulos profiles their research around nanomaterials at the Experimental Lakes Area.

Prof. Xenopolous’ involvement in the project falls in line with other environmental issues she has tackled. In the past, her research has examined how human activities – including climate change, eutrophication and land use – affect ecosystem structure and function in lakes and rivers. She has also taken an interest in how land use affects the material exported and processed in aquatic ecosystems.

Prof. Metcalfe’s ongoing research on the fate and distribution of pharmaceutical and personal care products in the environment has generated considerable attention both nationally and internationally.

Together, their research into nanomaterials is getting some attention. Nanomaterials are submicroscopic particles whose physical and chemical properties make them useful for a variety of everyday applications. They can be found in certain pieces of clothing, home appliances, paint, and kitchenware. Initial laboratory research conducted at Trent University showed that nanosilver could strongly affect aquatic organisms at the bottom of the food chain, such as bacteria, algae and zooplankton.

To further examine these effects in a real ecosystem, a team of researchers from Trent University, Fisheries and Oceans Canada and Environment Canada has been conducting studies at undisclosed lakes in northwestern Ontario. The Lake Ecosystem Nanosilver (LENS) project has been monitoring changes in the lakes’ ecosystem that occur after the addition of nanosilver.

“In our particular case, we will be able to study and understand the effects of only nanosilver because that is the only variable that is going to change,” says Prof. Xenopoulos. “It’s really the only place in the world where we can do that.”

The knowledge gained from the study will help policy-makers make decisions about whether nanomaterials can be a threat to aquatic ecosystems and whether regulatory action is required to control their release into the environment.

You can find the 13 mins. video here: https://www.youtube.com/watch?v=_nJai_B4YH0#action=share

Shapeshifting frogs, a new species in Ecuador

Caption: This image shows skin texture variation in one individual frog (Pristimantis mutabilis) from Reserva Las Gralarias. Note how skin texture shifts from highly tubercular to almost smooth; also note the relative size of the tubercles on the eyelid, lower lip, dorsum and limbs. Credit: Zoological Journal of the Linnean Society

Caption: This image shows skin texture variation in one individual frog (Pristimantis mutabilis) from Reserva Las Gralarias. Note how skin texture shifts from highly tubercular to almost smooth; also note the relative size of the tubercles on the eyelid, lower lip, dorsum and limbs.
Credit: Zoological Journal of the Linnean Society

Here’s more about the shapeshifting and how the scientists figured out what the frogs were doing (from a March 23, 2015 Case Western Research University news release on EurekAlert; Note: A link has been removed),

A frog in Ecuador’s western Andean cloud forest changes skin texture in minutes, appearing to mimic the texture it sits on.

Originally discovered by a Case Western Reserve University PhD student and her husband, a projects manager at Cleveland Metroparks’ Natural Resources Division, the amphibian is believed to be the first known to have this shape-shifting capability.

But the new species, called Pristimantis mutabilis, or mutable rainfrog, has company. Colleagues working with the couple recently found that a known relative of the frog shares the same texture-changing quality–but it was never reported before.

The frogs are found at Reserva Las Gralarias, a nature reserve originally created to protect endangered birds in the Parish of Mindo, in north-central Ecuador.

The researchers, Katherine and Tim Krynak, and colleagues from Universidad Indoamérica and Tropical Herping (Ecuador) co-authored a manuscript describing the new animal and skin texture plasticity in the Zoological Journal of the Linnean Society this week. They believe their findings have broad implications for how species are and have been identified. The process may now require photographs and longer observations in the field to ensure the one species is not mistakenly perceived as two because at least two species of rain frogs can change their appearance.

Katherine Krynak believes the ability to change skin texture to reflect its surroundings may enable P. mutabilis to help camouflage itself from birds and other predators.

The Krynaks originally spotted the small, spiny frog, nearly the width of a marble, sitting on a moss-covered leaf about a yard off the ground on a misty July night in 2009. The Krynaks had never seen this animal before, though Tim had surveyed animals on annual trips to Las Gralarias since 2001, and Katherine since 2005.

They captured the little frog and tucked it into a cup with a lid before resuming their nightly search for wildlife. They nicknamed it “punk rocker” because of the thorn-like spines covering its body.

The next day, Katherine Krynak pulled the frog from the cup and set it on a smooth white sheet of plastic for Tim to photograph. It wasn’t “punk “–it was smooth-skinned. They assumed that, much to her dismay, she must have picked up the wrong frog.

“I then put the frog back in the cup and added some moss,” she said. “The spines came back… we simply couldn’t believe our eyes, our frog changed skin texture!

“I put the frog back on the smooth white background. Its skin became smooth.”

“The spines and coloration help them blend into mossy habitats, making it hard for us to see them,” she said. “But whether the texture really helps them elude predators still needs to be tested.”

During the next three years, a team of fellow biologists studied the frogs. They found the animals shift skin texture in a little more than three minutes.

Juan M. Guayasamin, from Universidad Tecnológica Indoamérica, Ecuador, the manuscript’s first author, performed morphological and genetic analyses showing that P. mutabilis was a unique and undescribed species. Carl R. Hutter, from the University of Kansas, studied the frog’s calls, finding three songs the species uses, which differentiate them from relatives. The fifth author of the paper, Jamie Culebras, assisted with fieldwork and was able to locate a second population of the species. Culebras is a member of Tropical Herping, an organization committed to discovering, and studying reptiles and amphibians.

Guayasamin and Hutter discovered that Prismantis sobetes, a relative with similar markings but about twice the size of P. mutabilis, has the same trait when they placed a spiny specimen on a sheet and watched its skin turn smooth. P. sobetes is the only relative that has been tested so far.

Because the appearance of animals has long been one of the keys to identifying them as a certain species, the researchers believe their find challenges the system, particularly for species identified by one or just a few preserved specimens. With those, there was and is no way to know if the appearance is changeable.

The Krynaks, who helped form Las Gralarias Foundation to support the conservation efforts of the reserve, plan to return to continue surveying for mutable rain frogs and to work with fellow researchers to further document their behaviors, lifecycle and texture shifting, and estimate their population, all in effort to improve our knowledge and subsequent ability to conserve this paradigm shifting species.

Further, they hope to discern whether more relatives have the ability to shift skin texture and if that trait comes from a common ancestor. If P. mutabilis and P. sobetes are the only species within this branch of Pristimantis frogs to have this capability, they hope to learn whether they retained it from an ancestor while relatives did not, or whether the trait evolved independently in each species.

Golden frog of Panama and its skin microbiome

Caption: Researchers studied microbial communities on the skin of Panamanian golden frogs to learn more about amphibian disease resistance. Panamanian golden frogs live only in captivity. Continued studies may help restore them back to the wild. Credit: B. Gratwicke/Smithsonian Conservation Biology Institute

Caption: Researchers studied microbial communities on the skin of Panamanian golden frogs to learn more about amphibian disease resistance. Panamanian golden frogs live only in captivity. Continued studies may help restore them back to the wild.
Credit: B. Gratwicke/Smithsonian Conservation Biology Institute

Among many of the pressures on frog populations, there’s a lethal fungus which has affected some 200 species of frogs. A March 23, 2015 news item on ScienceDaily describes some recent research into the bacterial communities present on frog skin,

A team of scientists including Virginia Tech researchers is one step closer to understanding how bacteria on a frog’s skin affects its likelihood of contracting disease.

A frog-killing fungus known as Batrachochytrium dendrobatidis, or Bd, has already led to the decline of more than 200 amphibian species including the now extinct-in-the-wild Panamanian golden frog.

In a recent study, the research team attempted to apply beneficial bacteria found on the skin of various Bd-resistant wild Panamanian frog species to Panamanian golden frogs in captivity, to see if this would stimulate a defense against the disease.

A March 23, 2015 Virginia Tech University news release on EurekAlert, which originated the news item, provides a twist and a turn in the story (Note: Links have been removed),

They found that while the treatment with beneficial bacteria was not successful due to its inability to stick to the skin, there were some frogs that survived exposure to the fungus.

These survivors actually had unique bacterial communities on their skin before the experiments started.

The next step is to explore these new bacterial communities.

“We were disappointed that the treatment didn’t work, but glad to have discovered new information about the relationship between these symbiotic microbial communities and amphibian disease resistance,” said Lisa Belden, an associate professor of biological sciences in the College of Science, a Fralin Life Science Institute affiliate, and a faculty member with the new Global Change Center at Virginia Tech. “Every bit of information gets us closer to getting these frogs back into nature.”

Studying the microbial communities of Panamanian golden frogs was the dissertation focus of Belden’s former graduate student Matthew Becker, who graduated with a Ph.D. in biological sciences from Virginia Tech in 2014 and is now a fellow at the Smithsonian Conservation Biology Institute.

“Anything that can help us predict resistance to this disease is very useful because the ultimate goal of this research is to establish healthy populations of golden frogs in their native habitat,” Becker told Smithsonian Science News. “I think identifying alternative probiotic treatment methods that optimize dosages and exposure times will be key for moving forward with the use of probiotics to mitigate chytridiomycosis.”

Here’s a link to and a citation for the paper,

Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus by Matthew H. Becker , Jenifer B. Walke , Shawna Cikanek , Anna E. Savage , Nichole Mattheus , Celina N. Santiago , Kevin P. C. Minbiole , Reid N. Harris , Lisa K. Belden , Brian Gratwicke. April 2015 Volume: 282 Issue: 1805 DOI: 10.1098/rspb.2014.2881 Published 18 March 2015

This is an open access paper.

For anyone curious about the article in the Smithsonian mentioned in the news release, you can find it here.