Tag Archives: TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics)

Leaning Out of Windows (LOoW): An Art and Physics Collaboration (2023 book) in Vancouver (Canada)

Be careful not to fall, is a familiar stricture when applied to ‘leaning out of windows’ supplying a frisson of danger to the ‘lean’ but in German, ‘aus dem Fenster lehnen’ or ‘lean out of the window’, is an expression for interdisciplinarity. It’s a nice touch for a book about an art/physics collaboration where it can feel ‘dangerous’ to move so far out of your comfort zone. The book is described this way in its Vancouver (Canada) Public Library catalogue entry,

Art and physics collide in this expansive exploration of how knowledge can be translated across disciplinary communities to activate new aesthetic and scientific perspectives.

Leaning Out of Windows shares findings from a six-year collaboration by a group of artists and physicists exploring the connections and differences between the language they use [emphasis mine], the means by which they develop knowledge, how that knowledge is visualized, and, ultimately, how they seek to understand the universe. Physicists from TRIUMF, Canada’s particle physics accelerator, presented key concepts in the physics of Antimatter, Emergence, and In/visible Forces to artists convened by Emily Carr University of Art + Design; the participants then generated conversations, process drawings, diagrams, field notes, and works of art. The “wondrous back-and-forth” of this process allowed both scientists and artists to, as Koenig [Ingrid Koenig] and Cutler [Randy Lee Cutler] describe, “lean out of our respective fields of inquiry and inhabit the infinite spaces of not knowing.”

From this leaning into uncertainty comes a rich array of work towards furthering the shared project of artists and scientists in shaping cultural understandings of the universe: Otoniya J. Okot Bitek reflects on the invisible forces of power; Jess H. Brewer contemplates emergence, free will, and magic; Mimi Gellman looks at the resonances between Indigenous Knowledge and physics; Jeff Derksen finds Hegelian dialectics within the matter-antimatter process; Sanem Güvenç considers the possibilities of the void; Nirmal Raj ponders the universe’s “special moment of light and visibility” we happen to inhabit; Sadira Rodrigues eschews the artificiality of the lab for a “boring berm of dirt”; and Marina Roy metaphorically turns beams of stable and radioactive gold particles into art of pigments, oils, liquid plastic, and wood. Combined with additional essays, diagrams, and artworks, these texts and artworks live in the intersection of disparate fields that nonetheless share a deep curiosity of the world and our place within it, and a dedication to building and sharing knowledges.

Self-published, “Leaning Out of Windows: An Art and Physics Collaboration” and edited by Ingrid Koenig & Randy Lee Cutler (who also wrote many of the essays) was produced through an entity known as Figure 1 (located in Vancouver). It can be purchased for $45 CAD here on the Figure 1 website or $41.71 (CAD?) on Amazon. (Weirdly, if you look at the back outside cover you’ll see a price of $45 USD.)

Kind of a book

“Leaning” functions as three kinds of books in one package. First, it is documentation for a six year project funded by the Social Sciences and Humanities Research Council of Canada (SSHRC), second, a collection of essays, and, third, a catalogue for three inter-related exhibitions. (Aside: my focus is primarily on the text for an informal book review.)

Like an art exhibition catalogue, this book is printed in a large, awkward to hold format, with shiny (coated) pages. It makes reading the essays and documentation a little challenging but perfect for a picture book/coffee table book where the images are supposed to look good.

I particularly liked the maps for the various phases of the project and the images for phase 1 showing what happens when an image is passed from one artist to the next, without explanation, asking for a new image to be produced and passed on to yet another artist and so on. There is no discussion amongst the artists about the initial impetus (the first artist in the stream of four met with physicists at a science symposium to talk about antimatter).

Ingrid Koenig, Antimatter Process Design (detail), 2017. This diagram shows the process design of five different streams of interactions, mapping out routes for 26 artists and 26 physicists, as well as an experimental class taught by Koenig at Emily Carr University of Art and Design. [downloaded from https://canadianart.ca/features/searching-for-the-language-of-the-universe/]

Unexpectedly, the documentation proved to be a highlight for me. BTW, you can find out more about the Leaning Out of Windows (LOoW) project (e.g. participants, phases, and art/science resources) on its website.

Koenig should be congratulated for getting as much publicity for the book as possible, given the topic and that there are no celebrities involved. CBC gave it a mention (May 8, 2023) on its Books: Leaning Out of Windows webpage. It also got a mention by Dana Gee in a May 12, 2023 ‘Books brief‘ posting on the Vancouver Sun website.

Plus, there were a couple of articles in an art magazine highlighting the art/science project while it was in progress featuring the few images I was about to access online for this project.

A January 6, 2020 article in Canadian Art Magazine by Randy Lee Cutler and Ingrid Koenig introduces the project (Note: I’ll revisit the “metaphor and analogy” mention in this article and throughout the LOoW book later in this post),

The disciplines of art and physics share certain critical perspectives: both deal with how metaphor and analogy inform creative processes. Additionally, artists and physicists address issues of the imagination, creative thinking and communication, and how meaning is made through theoretical research and process-based investigations. There are also important differences in these perspectives. Art brings an appreciation for abstract or non-representational practices. Physics research addresses complex problems relevant to understanding the study of matter and motion through space and time. Physicists also contribute knowledge about how the universe behaves. Together, the achievements of art and physics allow the possibility of a much richer understanding of the nature of reality than each field can contribute individually.

There’s a January 13, 2020 article in Canadian Art Magazine by Perrin Grauer featuring Mimi Gellman, Note: A link has been removed,

Artwork by artist and ECU Associate Professor Mimi Gellman was selected to appear on the cover of the current issue of Canadian Art magazine.

The gleaming, otherworldly image graces the magazine’s issue on antimatter —a subject which “presents a mirror world of abstract phenomena: time reversals, mutual annihilation, cosmic rays, cloud chambers, an infinite sea of sub-atomic particles that parallels our ‘real’ world of matter,” according to the issue’s editors.

Mimi describes her work as approaching some of the affinities between the biological, the perceptual, the cultural and the astronomical.

“My drawings do not explore the exterior world we perceive but rather what I call the ‘architecture of consciousness’ which permits us to perceive it,” she says.

“Recalling astronomical diagrams and reflecting the mixture of hybrid cultural worldviews in my background, they reveal deep similarities between the dimension explored by sub-atomic physics and the implicit interiority of contemporary art.”

I’m sorry I never saw any announcements for the project exhibitions, all of which seemed to have taken place at the Emily Carr University of Art + Design. There were three concepts each explored in three exhibitions, with different artists each time, titled: Antimatter, Emergence, and In/visible Forces, respectively.

A bouquet or two and a few nitpicks

Randy Lee Cutler and Ingrid Koenig have a wonderful quote from Karen Barad, physicist and philosopher, in their essay titled, “Collaborative Research between Artists and Physicists,”

Barad introduces the concept of intra-action and the fluidity of materialization through our bodily entanglements—through intra-action our bodies remain entangled with those around us. “Not only subjects but also objects are permeated through and through with their entangled kin, the other is not just in one’s skin, but in one’s bones, in one’s belly in one’s heart, in one’s nucleus, in one’s past and future.This is a true for electrons as it is for brittlestars as it is for the differentially constituted human.” As Barad asks herself, “How do I know where my physics begins and ends?” … [p. 13]

To the left of the page is a black and white photograph of entangled cables captioned, “GRIFFIN (Gamma Ray Infrastructure for Fundamental Investigations of Nuclei- TRIUMF.” It’s a nice touch and points to the difficulty of ‘illustrating’ or producing visual art in response to physics ideas such as quantum entanglement, something Einstein called, ‘spooky action at a distance’. From the Quantum entanglement Wikipedia entry, Note: Links have been removed,

Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others [[emphasis mine], including when the particles are separated by a large distance [emphasis mine]. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics.[1]

Some of the essays

One essay that stood out in LOoW, was “A Boring Berm of Dirt’ (pp. 141-7) by Sadira Rodrigues. She notes that dirt and soil are not the same; one is dead (dirt) and the other is living (soil) and that the berm has an important role at TRIUMF. If you want a more specific discussion of the difference between dirt and soil, see David Beaulieu’s February 23, 2023 essay (Soil vs. Dirt: What’s the Difference?) on The Spruce website.

Rodrigues’ essay (part of the Emergence concept) situates the work physically (word play alert: physics/physically) whereas all of the other work is based on ideas.

In “Boring Berm … ,” radioactivity is mentioned, a term which is largely taboo these days due its association with poisoning, bombs, and death. The eassy goes into fascinating detail about TRIUMF’s underground facility and how the facility deals with its nuclear waste and the role that the berm plays. (On a more fanciful note, the danger in the title of the book is given another dimension in this essay focused on nuclear topics.) Regardless, the essay was definitely an eye-opener.

Aside: The institution has been rebranded from: TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics) to: TRIUMF (Canada’s national particle accelerator centre). You can find a reference to the ‘nuclear’ name in my October 2, 2018 posting although the name was already changed, probably in the early to mid-2010s. There is no mention of the ‘nuclear’ name in TRIUMF’s Wikipedia entry, accessed August 22, 2023.

Gellman and language

Mimi Gellman’s essay, “Crossing No Divide: Mapping Affinities in Art and Science” evokes unity, as can be seen in the title. She’s one of the more ‘lyrical’ writers,

There is a place in our imagination where east or west, or large or small, or any other opposites cease to be productive contradictions. As an artist and educator, I have become interested in the non-binary and resonance between Indigenous Knowledge and physics, between art and science, and between traditional ways of considering cognition and thinking with the hand. [p. 33]

This is how Gellman is described for the January 13, 2020 article in Canadian Art Magazine, which is archived on the Emily Carr University of Art + Design (ECUAD) website,

Mimi Gellman is an Anishinaabe/Ashkenazi (Ojibway-Jewish Métis) visual artist and educator with a multi-streamed practice in architectural glass and conceptual installation. She is currently an Associate Professor in the Faculty of Culture + Community at Emily Carr University of Art + Design in Vancouver, Canada, and is completing her research praxis PhD in Cultural Studies at Queen’s University on the metaphysics of Indigenous mapping.

She highlights some interesting observations about language and thinking,

The Ojibwe language, Anishinaabemowin, like many Indigenous languages is verb-based in contrast with Western languages’ noun-based constructions and these have deep implications for the development of one’s worldview. …

I suspect anyone who speaks more than one language can testify to the observation that language affects one’s worldview. More academically, it’s called linguistic relativity or the Sapir-Whorf hypothesis. I find it hard to believe that it’s considered a controversial idea but here goes from the Linguistic relativity Wikipedia entry, Note: Links have been removed,

The idea of linguistic relativity, also known as the Sapir–Whorf hypothesis /səˌpɪər ˈhwɔːrf/ sə-PEER WHORF, the Whorf hypothesis, or Whorfianism, is a principle suggesting that the structure of a language influences its speakers’ worldview or cognition, and thus individuals’ languages determine or shape their perceptions of the world.[1]

The hypothesis has long been controversial, and many different, often contradictory variations have existed throughout its history.[2] The strong hypothesis of linguistic relativity, now referred to as linguistic determinism, says that language determines thought and that linguistic categories limit and restrict cognitive categories. This was held by some of the early linguists before World War II,[3] but it is generally agreed to be false by modern linguists.[4] Nevertheless, research has produced positive empirical evidence supporting a weaker version of linguistic relativity:[4][3] that a language’s structures influence and shape a speaker’s perceptions, without strictly limiting or obstructing them.

Gettng back to Gellman, language, linguistic relativity, worldviews, and, adding physics/science, she quotes James (Sa’ke’j) Youngblood Henderson “a research fellow at the Native Law Centre of Canada, University of Saskatchewan College of Law. He was born to the Bear Clan of the Chickasaw Nation and Cheyenne Tribe in Oklahoma in 1944 and is married to Marie Battiste, a Mi’kmaw educator. In 1974, he received a juris doctorate in law from Harvard Law School,”

[at a 1993 dialogue between Western and Indigenous scientists …]

[Youngblood Henderson] We don’t have one god. You need a noun-based language to have one god. We have forces. All forces are equal and you are just the amplifier of the forces. The way you conduct your life and the dignity you give to other things gives you access to other forces. Even trees are verbs instead of nouns. The Mi’kmaq named their trees for the sound the wind makes when it blows through the trees during the autumn about an hour after the sunset, when the wind usually comes from a certain direction. So one might be like a ‘shu-shu’ something and another more like a ‘tinka-tinka’ something. Although physics in the western world has been essentially the quest for the smallest noun (which used to be a-tom, ‘that which cannot be further divided’), as they were inside the atom things weren’t acting like nouns anymore. The physicists were intrigued with the possibilities inherent in a language that didn’t depend on nouns but could move right to verbs when the circumstances were appropriate.3

This work from Gellman is a favourite of mine, and is featured in the January 13, 2020 article in Canadian Art Magazine and you’ll find it in the book,

Image courtesy Mimi Gellman. Mimi Gellman, ‘Invisible Landscapes,’ 2017. Conte on Japanese Obonai paper, 63.5 x 48.3 cm. [downloaded from https://www.ecuad.ca/news/2020/canadian-art-magazine-features-cover-artwork-by-mimi-gellman]

There are more LOoW images embedded in the January 6, 2020 article on the Canadian Art Magazine website.

Derksen and his poem

Karl Marx, Friedrich Engels, Theodor W. Adorno, and Georg Wilhelm Friedrich Hegel were unexpected guest stars in Derksen’s essay, “From Two to Another: The Anti-Matter Series,” given that he is an award-winning poet. These days he has this on his profile page on the Department of English, Simon Fraser University website, “Dean and Associate Provost, Graduate and Postdoctoral Studies.”

From LOoW,

Karl Marx and Friedrich Engels are well known as materialists, having helped define a materialist view of history, of economics and of capitalism. And both Marx and Engels aimed to develop Marxism as a science rather than a model based on naturalizing capitalism and “man.” … [p. 89]

Derksen includes a diagram/poem, for which I can’t find a digitized copy, but here’s what he had to say about it,

My mode of looking at this [antimatter] is through poetic research —which itself does not aim to arrive at a synthesis but instead looks for relational moments. In this I also see a poetic language emerge from both discourses [artistic/scientific]—matter-antimatter thought and dialectical thinking. For my contribution to Leaning Out of Windows, I have tried to combine the scientific aspect of dialectical thinking with the poetic aspect of matter-antimatter thought and experimentation. To do this, I have taken the diagrammatic rendering of Carl Anderson’s experiment which resulted in his 1932 paper … as a model to relate the dialectical thinking at the heart of Marxism and matter-antimatter thought. …

Towards the end of his essay, Derksen notes that he’s working (on what I would call) a real poem. I sent an email to Derksen on August 21, 2023 asking,

  • Have you written the poem or is still in progress?
  • If you have written it, has it been published or is it being readied for publication? I would be happy to mention where.
  • If you do have it ready and would like to ‘soft launch’ the poem, could you send it to me for inclusion in the post?

No response at this time.

Flashback to Alan Storey

I think it was 2002 or 2003 when I first heard about an artist at TRIUMF, Alan Storey. The ‘residency’ was the product of a joint effort between the Canada Council for the Arts (Canada Council) and the Natural Sciences and Engineering Council of Canada (NSERC).

I spoke with Storey towards the end of his ;residency; and he was a little disappointed because nothing much had come of it. Nobody really seemed to know what to do with an artist at a nuclear facility and he didn’t really didn’t seem to know either. (Alan Storey’s work can be seen in the City of Vancouver’s collection of public art works here and on his website.)

My guess is that someone had a great idea but didn’t think past the ‘let’s give money to science institutions so they can host some artists who will magically produce wonderful things for us’ stage of thinking. While there is no longer a Canada Council/NSERC programme, it’s clear from LOoW (funded by the Social Sciences and Humanities Research Council of Canada [SSHRC]) that lessons have been learned.

Kudos to David Morissey who acted as an interface and convenor for the artists and to Nigel Smith (Director 2021 – present) and Jonathan Bagger (Director 2014 – 2020) for supporting the project from the TRIUMF side and to Ingrid Koenig and Randy Lee Cutler who organized and facilitated LOoW from the artists’ side.

Now, for the nits

“Co-thought” is mentioned a number of times. What is it? According to my searches, it has something to do with gestures. Here’s one of the few reference I could find for co-thought,

Co-thought and co-speech gestures are generated by the same action generation process by Mingyuan Chu and Sotaro Kita. Exp Psychol Learn Mem Cogn. 2016 Feb;42(2):257-70. doi: 10.1037/xlm0000168. Epub 2015 Aug 3.

Abstract

People spontaneously gesture when they speak (co-speech gestures) and when they solve problems silently (co-thought gestures) [emphasis mine]. In this study, we first explored the relationship between these 2 types of gestures and found that individuals who produced co-thought gestures more frequently also produced co-speech gestures more frequently (Experiments 1 and 2). This suggests that the 2 types of gestures are generated from the same process. We then investigated whether both types of gestures can be generated from the representational use of the action generation process that also generates purposeful actions that have a direct physical impact on the world, such as manipulating an object or locomotion (the action generation hypothesis). To this end, we examined the effect of object affordances on the production of both types of gestures (Experiments 3 and 4). We found that individuals produced co-thought and co-speech gestures more often when the stimulus objects afforded action (objects with a smooth surface) than when they did not (objects with a spiky surface). These results support the action generation hypothesis for representational gestures. However, our findings are incompatible with the hypothesis that co-speech representational gestures are solely generated from the speech production process (the speech production hypothesis).

It would have been nice if Koenig and Cutler had noted they were borrowing a word ot coining a word and explaining how it was being used in the LOoW context.

Fruit, passports, and fishing trips

The editors/writers use the words or variants, metaphor, poetry, and analogy with great abandon.

“Fruitful bridge” (top of page) and “fruitful match-ups” (bottom of page) on p. 18 seemed a bit excessive as did the “metaphorical passport” on p. 5.

I choked a bit over this on p. 19, “… these artist/scientist interactions can be seen as ‘procedural metaphors’ that enact a thought experiment … .” Procedural metaphor? It seems a bit of a stretch.

A last example and it’s a pair: “metaphorical fishing trips whereby artist and scientists received whatever they might reel in …” on p. 42 (emphases mine). Fishing trips are mentioned in a later essay too, one of the few times there’s some sort of follow through on an analogy.

Maybe someone who wasn’t involved with the project should have taken a look at the text before it was sent to the printer.

Using the words, poetry, metaphor, and analogy can be tricky and, I want to emphasize that in my opinion, those words were not often put to good use in this book.

Moving on, arts and sciences together have a longstanding history.

*ETA October 3, 2023: Ooops! I had a comment about the use of the word ‘passports’ in the book but somewhere in all my edits, I cut it out. (huff)*

Poetry and physics

One of the giants of 19th century physics, James Clerk Maxwell was also known for his poetry. and some of the most evocative (poetic) text in the LOoW book can be found in the quotes from various physicists of the 20th century. The link between physicist and poetry is explicit in a September 17, 2018 posting (12 poignant poems (and one bizarre limerick) written by physicists about physics) by Colin Hunter for the Perimeter Institute for Theoretical Physics in Waterloo, Canada.

Going back further, there’s De rerum natura, a poem in six books, by Lucretius ((c. 99 BCE– c. 55 BCE). Amongst many other philosophical concerns (e.g., the nature of mind and soul, etc.), Lucretius also discussed atomism (“… a natural philosophy proposing that the physical universe is composed of fundamental indivisible components known as atoms; from the Atomism Wikipedia entry). So, poetry and physics have a long history.

Leaving aside Derksen’s diagram/poem, there’s a dearth of poetry in the book except for a suite of seven poems from TRIUMF physicist and professor at UBC, Jess Brewer following his “Emergence, Free Will and Magic” essay,

Emergence / An extremely brief history of one universe, expressed as a series of science fiction poems by Jess H. Brewer, June 29, 2019

Inspired by Dyson Freeman’s delightful lecture series , “Time Without End: Physics and Biology in an Open Universe,” Reviews of Modern Physics (51) 1979

1. Bang
Why not?
For reasons known only to itself,
the universe begins
The quantum foam of spacetime seethes
with effortless energies,
entering and exiting this continuum
with a turbulent intensity
transcending the superficially smooth
expanding cosmos
and yet it kens the glacial passage of “time”,
because it waits.
And kens the vast reaches of “space”,
because it watches,
Its own experiences has taught it that
from each iteration of complexity,
awareness will emerge.

… [p. 149]

My thanks to Brewer for the poetry and magic and my apologies for any mistakes I’ve introduced into his piece. I was trying to be especially careful with the punctuation as that can make quite a difference to how a piece is read.

While Muriel Rukeyser is not a physicist at TRIUMF or, indeed, alive, one of her poems leads the essay “Leaning into Language or the Universe is Made of Stories,” by Randy Lee Cutler and Ingrid Koenig,

Time comes into it
Say it. Say it.
The universe is made of stories,
not of atoms..
—Muriel Ruykeyser, Speed of Darkness, 1968

Before getting into the response that physicist, David Morrissey, had to the poem, here’s a little about the poet, from the Poetry Foundation’s Muriel Ruykeyser (1913-1980) webpage,

Muriel Rukeyser was a poet, playwright, biographer, children’s book author, and political activist. Indeed, for Rukeyser, these activities and forms of expression were linked. …

One of Rukeyser’s intentions behind writing biographies of nonliterary persons was to find a meeting place between science and poetry. [emphasis mine] In an analysis of Rukeyser’s The Life of Poetry, Virginia Terris argued that Rukeyser believed that in the West, poetry and science are wrongly considered to be in opposition to one another. Thus, writes Terris, “Rukeyser [set] forth her theoretical acceptance of science … [and pointed] out the many parallels between [poetry and science]—unity within themselves, symbolic language, selectivity, the use of the imagination in formulating concepts and in execution. [emphasis mine] Both, she believe[d], ultimately contribute to one another.”

Rokeyser’s poem raised a few questions. Is her poem a story? Or, is she using symbolic language, the poem, to poke fun at stories and atoms? Is she suggesting that atoms are really stories? I found the poem evocative especially with where it was placed in the book.

Morrissey takes a prosaic approach, from the essay “Leaning into Language or the Universe is Made of Stories,”

… [in response to Rukeyser’s claim about stories] Morrissey responded stating that “scientific theories are stories—but how we evaluate stories is important—they need to be true, but they do probe, and some are more popular than others, especially theories that we can’t measure.” He surprised us further when he said that wrong stories can also be useful—they may have elements in them that turn out to be useful for future research. … [pp. 205-6]

In general and throughout this project, it seems as if they (artists and physicists) tried but, for the most part, were never quite able to articulate in poetic, metaphoric, and analogical forms. They tended to fall back onto their preferred modes of scientific notations, prosaic language, and artworks.

Both sides of the knife blade cut

Everybody does it. Poets, academics, artists, scientists, etc. we all appropriate ideas and language, sometimes without understanding them very well. Take this for example, from the Canadian Broadcasting’s (CBC) Books “Elementary Particles” August 16, 2023 webpage,

Elementary Particles by Sneha Madhavan-Reese

A poetry collection about family history and scientific exploration

Through keen, quiet observation, Sneha Madhavan-Reese’s evocative new collection takes us from the wide expanse of rural India to the minute map of Michigan we carry on the palms of our hands. These poems contemplate ancestral language, the wonder and uncertainty of scientific discovery, the resilience of a dung beetle, the fleeting existence of frost flowers on the Arctic Ocean.

The collection is full of familiar characters, from Rosa Parks to Seamus Heaney to Corporal Nathan Cirillo, anchoring it in specific moments in time and place, but has the universality that comes from exploring the complex relationship between a child and her immigrant parents, and in turn, a mother and her children. Elementary Particles examines the building blocks of a life — the personal, family, and planetary histories, transformations, and losses we all experience. (From Brick Books)

Sneha Madhavan-Reese is a writer currently based in Ottawa. In 2015 she received Arc Poetry Magazine’s Diana Brebner Prize and was shortlisted for the Montreal International Poetry Prize. Her previous poetry collection is called Observing the Moon

As you can see, there’s no substantive mention of physics in this book description—it’s just a title. Puzzling since there’s this about the author on Asian Heritage Canada’s Sneha Madhavan-Reese webpage

Sneha Madhavan-Reese’s award winning poetry has been widely published in literary magazines in North America and Australia. She earned a bachelor’s degree in mechanical engineering from MIT in 2000, and a master’s degree in mechanical engineering from the University of Michigan in 2002. Madhavan-Reese currently lives in Ottawa, Ontario. [emphases mine]

It seems the mechanical engineer did not write up her book blurb because even though the poet’s scientific specialty is not physics as such, I’d expect a better description.

In the end, it seems art and science or poetry and science (in this case, physics) sells.

Alchemy, beauty, and Marx’s surprise connection to atomism

It was unexpected to see a TRIUMF physicist reference alchemy. The physicists haven’t turned lead into gold but they have changed one element into another. If memory holds it was one metallic atom being changed into another type of metallic atom. (Having had to return the book to the library, memory has serve.)

The few references to alchemy that I’ve stumbled across elsewhere in my readings of assorted science topics are derogatory, hence the surprise. Things may be changing; Princeton University Press published a November 7, 2018 posting by author William R. Newman about Newton and alchemy. First, here’s a bit about William Newman,

William R. Newman is Distinguished Professor and Ruth N. Halls Professor in the Department of History and Philosophy of Science and Medicine at Indiana University. His many books include Atoms and Alchemy: Chymistry and the Experimental Origins of the Scientific Revolution and Promethean Ambitions: Alchemy and the Quest to Perfect Nature. He lives in Bloomington, Indiana.

Now for Newman’s comments, from the November 7, 2018 posting,

People often say that Isaac Newton was not only a great physicist, but also an alchemist. This seems astonishing, given his huge role in the development of science. Is it true, and if so, what is the evidence for it?

WN: The astonishment that Newton was an alchemist stems mostly from the derisive opinion that many moderns hold of alchemy [emphasis mine]. How could the man who discovered the law of universal gravitation, who co-invented calculus, and who was the first to realize the compound nature of white light also engage in the seeming pseudo-science of alchemy? There are many ways to answer this question, but the first thing is to consider the evidence of Newton’s alchemical undertaking. We now know that at least a million words in Newton’s hand survive in which he addresses alchemical themes. Much of this material has been edited in the last decade, and is available on the Chymistry of Isaac Newton site at www.chymistry.org. Newton wrote synopses of alchemical texts, analyzed their content in the form of reading notes and commentaries, composed florilegia or anthologies made up of snippets from his sources, kept experimental laboratory notebooks that recorded his alchemical research over a period of decades, and even put together a succession of concordances called the Index chemicus in which he compared the sayings of different authors to one another. The extent of his dedication to alchemy was almost unprecedented. Newton was not just an alchemist, he was an alchemist’s alchemist. 

… 

Beauty

The ‘beauty’ essay by Ingrid Koenig was also a surprise. Beauty seems to be anathema to contemporary artists. I wrote this in an August 23, 2016 posting (Georgina Lohan, Bharti Kher, and Pablo Picasso: the beauty and the beastliness of art [in Vancouver]), “It seems when it comes to contemporary art, beauty is transgressive.”

Koenig describes it as irrelevant for contemporary artists and yet, beauty is an important attribute to physicists. Her thoughts on beauty in visual art and in physics were a welcome addition to the book.

Marx’s connection to atomism

This will take a minute.

De rerum natura, a six-volume poem by Lucretius (mentioned under the Poetry and physics subhead of this posting), helped to establish the concept of atomism. As it turns out, Lucretius got the idea from earlier thinkers, Epicurus and Democritus.

Karl Marx’s doctoral dissertation, which focused on Lucretius, Epicurus and more, suggests an interest in science that may have led to his desire to establish economics as a science. From Cambridge University Press’s “Approaches to Lucretius; Traditions and Innovations in Reading the De Rerum Natura,” Chapter 12 – A Tribute to a Hero: Marx’s Interpretation of Epicurus in his Dissertation,

Summary

This chapter turns to Karl Marx’s treatment of Epicureanism and Lucretius [emphasis mine] in his doctoral dissertation, and argues that the questions raised by Marx may be brought to bear on our own understanding of Epicurean philosophy, particularly in respect of a tension between determinism and individual self-consciousness in a universe governed by material causation. Following the contours of Marx’s dissertation [emphasis mine], the chapter focusses on three key topics: the difference between Democritus’ and Epicurus’ methods of philosophy; the swerve of the atom; and the so-called ‘meteors’, or heavenly bodies [emphasis mine]. Marx sought to develop Hegel’s understanding of Epicurus, in particular by elevating the principle of autonomous action to a first form of self-consciousness – a consideration largely mediated by Lucretius’ theorization of the atomic swerve and his poem’s overarching framework of liberating humans from the oppression of the gods.

Fascinating, eh? The rest of this is behind a paywall. For the interested, here’s a citation and link for the book,

Approaches to Lucretius; Traditions and Innovations in Reading the De Rerum Natura
Edited by Donncha O’Rourke, University of Edinburgh

Publisher: Cambridge University Press
Online publication date: June 2020
Print publication year: 2020
Online ISBN: 9781108379854

DOI: https://doi.org/10.1017/9781108379854

32.99 (USD) Digital access

It’s a little surprising Derksen doesn’t mention the connection in his essay.

Finally

It’s an interesting book if not an easy one. (By the way, I wish they’d included an index.) You can get a preview of some of the artwork in the January 6, 2020 article on the Canadian Art Magazine website.

I can’t rid myself of the feeling that LOoW (the book) is meant to function as a ‘proof of concept’ for someone wanting to start an art/science department or programme at the Emily Carr University of Art + Design, perhaps jointly with the University of British Columbia. It is highly unusual to see this sort of material in anything other than a research journal or as a final summary to the granting agency.

Should starting an art/science programme be the intention, I hope they are successful in getting such it together and, in the meantime, thank you to the physicists and artists for their work.

We should all ‘lean out of windows’ on occasion and, if it means, falling or encountering ‘dangerous, uncomfortable ideas’ then, that’s alright too.

Quantum Mechanics & Gravity conference (August 15 – 19, 2022) launches Vancouver (Canada)-based Quantum Gravity Institute and more

I received (via email) a July 21, 2022 news release about the launch of a quantum science initiative in Vancouver (BTW, I have more about the Canadian quantum scene later in this post),

World’s top physicists unite to tackle one of Science’s greatest
mysteries


Vancouver-based Quantum Gravity Society leads international quest to
discover Theory of Quantum Gravity

Vancouver, B.C. (July 21, 2022): More than two dozen of the world’s
top physicists, including three Nobel Prize winners, will gather in
Vancouver this August for a Quantum Gravity Conference that will host
the launch a Vancouver-based Quantum Gravity Institute (QGI) and a
new global research collaboration that could significantly advance our
understanding of physics and gravity and profoundly change the world as
we know it.

For roughly 100 years, the world’s understanding of physics has been
based on Albert Einstein’s General Theory of Relativity (GR), which
explored the theory of space, time and gravity, and quantum mechanics
(QM), which focuses on the behaviour of matter and light on the atomic
and subatomic scale. GR has given us a deep understanding of the cosmos,
leading to space travel and technology like atomic clocks, which govern
global GPS systems. QM is responsible for most of the equipment that
runs our world today, including the electronics, lasers, computers, cell
phones, plastics, and other technologies that support modern
transportation, communications, medicine, agriculture, energy systems
and more.

While each theory has led to countless scientific breakthroughs, in many
cases, they are incompatible and seemingly contradictory. Discovering a
unifying connection between these two fundamental theories, the elusive
Theory of Quantum Gravity, could provide the world with a deeper
understanding of time, gravity and matter and how to potentially control
them. It could also lead to new technologies that would affect most
aspects of daily life, including how we communicate, grow food, deliver
health care, transport people and goods, and produce energy.

“Discovering the Theory of Quantum Gravity could lead to the
possibility of time travel, new quantum devices, or even massive new
energy resources that produce clean energy and help us address climate
change,” said Philip Stamp, Professor, Department of Physics and
Astronomy, University of British Columbia, and Visiting Associate in
Theoretical Astrophysics at Caltech [California Institute of Technology]. “The potential long-term ramifications of this discovery are so incredible that life on earth 100
years from now could look as miraculous to us now as today’s
technology would have seemed to people living 100 years ago.”

The new Quantum Gravity Institute and the conference were founded by the
Quantum Gravity Society, which was created in 2022 by a group of
Canadian technology, business and community leaders, and leading
physicists. Among its goals are to advance the science of physics and
facilitate research on the Theory of Quantum Gravity through initiatives
such as the conference and assembling the world’s leading archive of
scientific papers and lectures associated with the attempts to reconcile
these two theories over the past century.

Attending the Quantum Gravity Conference in Vancouver (August 15-19 [2022])
will be two dozen of the world’s top physicists, including Nobel
Laureates Kip Thorne, Jim Peebles and Sir Roger Penrose, as well as
physicists Baron Martin Rees, Markus Aspelmeyer, Viatcheslav Mukhanov
and Paul Steinhardt. On Wednesday, August 17, the conference will be
open to the public, providing them with a once-in-a-lifetime opportunity
to attend keynote addresses from the world’s pre-eminent physicists.
… A noon-hour discussion on the importance of the
research will be delivered by Kip Thorne, the former Feynman Professor
of physics at Caltech. Thorne is well known for his popular books, and
for developing the original idea for the 2014 film “Interstellar.” He
was also crucial to the development of the book “Contact” by Carl Sagan,
which was also made into a motion picture.

“We look forward to welcoming many of the world’s brightest minds to
Vancouver for our first Quantum Gravity Conference,” said Frank
Giustra, CEO Fiore Group and Co-Founder, Quantum Gravity Society. “One
of the goals of our Society will be to establish Vancouver as a
supportive home base for research and facilitate the scientific
collaboration that will be required to unlock this mystery that has
eluded some of the world’s most brilliant physicists for so long.”

“The format is key,” explains Terry Hui, UC Berkley Physics alumnus
and Co-Founder, Quantum Gravity Society [and CEO of Concord Pacific].
“Like the Solvay Conference nearly 100 years ago, the Quantum Gravity
Conference will bring top scientists together in salon-style gatherings. The
relaxed evening format following the conference will reduce barriers and
allow these great minds to freely exchange ideas. I hope this will help accelerate
the solution of this hundred-year bottleneck between theories relatively
soon.”

“As amazing as our journey of scientific discovery has been over the
past century, we still have so much to learn about how the universe
works on a macro, atomic and subatomic level,” added Paul Lee,
Managing Partner, Vanedge Capital, and Co-Founder, Quantum Gravity
Society. “New experiments and observations capable of advancing work
on this scientific challenge are becoming increasingly possible in
today’s physics labs and using new astronomical tools. The Quantum
Gravity Society looks forward to leveraging that growing technical
capacity with joint theory and experimental work that harnesses the
collective expertise of the world’s great physicists.”

About Quantum Gravity Society

Quantum Gravity Society was founded in Vancouver, Canada in 2020 by a
group of Canadian business, technology and community leaders, and
leading international physicists. The Society’s founding members
include Frank Giustra (Fiore Group), Terry Hui (Concord Pacific), Paul
Lee and Moe Kermani (Vanedge Capital) and Markus Frind (Frind Estate
Winery), along with renowned physicists Abhay Ashtekar, Sir Roger
Penrose, Philip Stamp, Bill Unruh and Birgitta Whaley. For more
information, visit Quantum Gravity Society.

About the Quantum Gravity Conference (Vancouver 2022)


The inaugural Quantum Gravity Conference (August 15-19 [2022]) is presented by
Quantum Gravity Society, Fiore Group, Vanedge Capital, Concord Pacific,
The Westin Bayshore, Vancouver and Frind Estate Winery. For conference
information, visit conference.quantumgravityinstitute.ca. To
register to attend the conference, visit Eventbrite.com.

The front page on the Quantum Gravity Society website is identical to the front page for the Quantum Mechanics & Gravity: Marrying Theory & Experiment conference website. It’s probable that will change with time.

This seems to be an in-person event only.

The site for the conference is in an exceptionally pretty location in Coal Harbour and it’s close to Stanley Park (a major tourist attraction),

The Westin Bayshore, Vancouver
1601 Bayshore Drive
Vancouver, BC V6G 2V4
View map

Assuming that most of my readers will be interested in the ‘public’ day, here’s more from the Wednesday, August 17, 2022 registration page on Eventbrite,

Tickets:

  • Corporate Table of 8 all day access – includes VIP Luncheon: $1,100
  • Ticket per person all day access – includes VIP Luncheon: $129
  • Ticket per person all day access (no VIP luncheon): $59
  • Student / Academia Ticket – all day access (no VIP luncheon): $30

Date:

Wednesday, August 17, 2022 @ 9:00 a.m. – 5:15 p.m. (PT)

Schedule:

  • Registration Opens: 8:00 a.m.
  • Morning Program: 9:00 a.m. – 12:30 p.m.
  • VIP Lunch: 12:30 p.m. – 2:30 p.m.
  • Afternoon Program: 2:30 p.m. – 4:20 p.m.
  • Public Discussion / Debate: 4:20 p.m. – 5:15 p.m.

Program:

9:00 a.m. Session 1: Beginning of the Universe

  • Viatcheslav Mukhanov – Theoretical Physicist and Cosmologist, University of Munich
  • Paul Steinhardt – Theoretical Physicist, Princeton University

Session 2: History of the Universe

  • Jim Peebles, 2019 Nobel Laureate, Princeton University
  • Baron Martin Rees – Cosmologist and Astrophysicist, University of Cambridge
  • Sir Roger Penrose, 2020 Nobel Laureate, University of Oxford (via zoom)

12:30 p.m. VIP Lunch Session: Quantum Gravity — Why Should We Care?

  • Kip Thorne – 2017 Nobel Laureate, Executive Producer of blockbuster film “Interstellar”

2:30 p.m. Session 3: What do Experiments Say?

  • Markus Aspelmeyer – Experimental Physicist, Quantum Optics and Optomechanics Leader, University of Vienna
  • Sir Roger Penrose – 2020 Nobel Laureate (via zoom)

Session 4: Time Travel

  • Kip Thorne – 2017 Nobel Laureate, Executive Producer of blockbuster film “Interstellar”

Event Partners

  • Quantum Gravity Society
  • Westin Bayshore
  • Fiore Group
  • Concord Pacific
  • VanEdge Capital
  • Frind Estate Winery

Marketing Partners

  • BC Business Council
  • Greater Vancouver Board of Trade

Please note that Sir Roger Penrose will be present via Zoom but all the others will be there in the room with you.

Given that Kip Thorne won his 2017 Nobel Prize in Physics (with Rainer Weiss and Barry Barish) for work on gravitational waves, it’s surprising there’s no mention of this in the publicity for a conference on quantum gravity. Finding gravitational waves in 2016 was a very big deal (see Josh Fischman’s and Steve Mirsky’s February 11, 2016 interview with Kip Thorne for Scientific American).

Some thoughts on this conference and the Canadian quantum scene

This conference has a fascinating collection of players. Even I recognized some of the names, e.g., Penrose, Rees, Thorne.

The academics were to be expected and every presenter is an academic, often with their own Wikipedia page. Weirdly, there’s no one from the Perimeter Institute Institute for Theoretical Physics or TRIUMF (a national physics laboratory and centre for particle acceleration) or from anywhere else in Canada, which may be due to their academic specialty rather than an attempt to freeze out Canadian physicists. In any event, the conference academics are largely from the US (a lot of them from CalTech and Stanford) and from the UK.

The business people are a bit of a surprise. The BC Business Council and the Greater Vancouver Board of Trade? Frank Giustra who first made his money with gold mines, then with Lionsgate Entertainment, and who continues to make a great deal of money with his equity investment company, Fiore Group? Terry Hui, Chief Executive Office of Concord Pacific, a real estate development company? VanEdge Capital, an early stage venture capital fund? A winery? Missing from this list is D-Wave Systems, Canada’s quantum calling card and local company. While their area of expertise is quantum computing, I’d still expect to see them present as sponsors. *ETA December 6, 2022: I just looked at the conference page again and D-Wave is now listed as a sponsor.*

The academics? These people are not cheap dates (flights, speaker’s fees, a room at the Bayshore, meals). This is a very expensive conference and $129 for lunch and a daypass is likely a heavily subsidized ticket.

Another surprise? No government money/sponsorship. I don’t recall seeing another academic conference held in Canada without any government participation.

Canadian quantum scene

A National Quantum Strategy was first announced in the 2021 Canadian federal budget and reannounced in the 2022 federal budget (see my April 19, 2022 posting for a few more budget details).. Or, you may find this National Quantum Strategy Consultations: What We Heard Report more informative. There’s also a webpage for general information about the National Quantum Strategy.

As evidence of action, the Natural Science and Engineering Research Council of Canada (NSERC) announced new grant programmes made possible by the National Quantum Strategy in a March 15, 2022 news release,

Quantum science and innovation are giving rise to promising advances in communications, computing, materials, sensing, health care, navigation and other key areas. The Government of Canada is committed to helping shape the future of quantum technology by supporting Canada’s quantum sector and establishing leadership in this emerging and transformative domain.

Today [March 15, 2022], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, is announcing an investment of $137.9 million through the Natural Sciences and Engineering Research Council of Canada’s (NSERC) Collaborative Research and Training Experience (CREATE) grants and Alliance grants. These grants are an important next step in advancing the National Quantum Strategy and will reinforce Canada’s research strengths in quantum science while also helping to develop a talent pipeline to support the growth of a strong quantum community.

Quick facts

Budget 2021 committed $360 million to build the foundation for a National Quantum Strategy, enabling the Government of Canada to build on previous investments in the sector to advance the emerging field of quantum technologies. The quantum sector is key to fuelling Canada’s economy, long-term resilience and growth, especially as technologies mature and more sectors harness quantum capabilities.

Development of quantum technologies offers job opportunities in research and science, software and hardware engineering and development, manufacturing, technical support, sales and marketing, business operations and other fields.

The Government of Canada also invested more than $1 billion in quantum research and science from 2009 to 2020—mainly through competitive granting agency programs, including Natural Sciences and Engineering Research Council of Canada programs and the Canada First Research Excellence Fund—to help establish Canada as a global leader in quantum science.

In addition, the government has invested in bringing new quantum technologies to market, including investments through Canada’s regional development agencies, the Strategic Innovation Fund and the National Research Council of Canada’s Industrial Research Assistance Program.

Bank of Canada, cryptocurrency, and quantum computing

My July 25, 2022 posting features a special project, Note: All emphases are mine,

… (from an April 14, 2022 HKA Marketing Communications news release on EurekAlert),

Multiverse Computing, a global leader in quantum computing solutions for the financial industry and beyond with offices in Toronto and Spain, today announced it has completed a proof-of-concept project with the Bank of Canada through which the parties used quantum computing to simulate the adoption of cryptocurrency as a method of payment by non-financial firms.

“We are proud to be a trusted partner of the first G7 central bank to explore modelling of complex networks and cryptocurrencies through the use of quantum computing,” said Sam Mugel, CTO [Chief Technical Officer] at Multiverse Computing. “The results of the simulation are very intriguing and insightful as stakeholders consider further research in the domain. Thanks to the algorithm we developed together with our partners at the Bank of Canada, we have been able to model a complex system reliably and accurately given the current state of quantum computing capabilities.”

Multiverse Computing conducted its innovative work related to applying quantum computing for modelling complex economic interactions in a research project with the Bank of Canada. The project explored quantum computing technology as a way to simulate complex economic behaviour that is otherwise very difficult to simulate using traditional computational techniques.

By implementing this solution using D-Wave’s annealing quantum computer, the simulation was able to tackle financial networks as large as 8-10 players, with up to 2^90 possible network configurations. Note that classical computing approaches cannot solve large networks of practical relevance as a 15-player network requires as many resources as there are atoms in the universe.

Quantum Technologies and the Council of Canadian Academies (CCA)

In a May 26, 2022 blog posting the CCA announced its Expert Panel on Quantum Technologies (they will be issuing a Quantum Technologies report),

The emergence of quantum technologies will impact all sectors of the Canadian economy, presenting significant opportunities but also risks. At the request of the National Research Council of Canada (NRC) and Innovation, Science and Economic Development Canada (ISED), the Council of Canadian Academies (CCA) has formed an Expert Panel to examine the impacts, opportunities, and challenges quantum technologies present for Canadian industry, governments, and Canadians. Raymond Laflamme, O.C., FRSC, Canada Research Chair in Quantum Information and Professor in the Department of Physics and Astronomy at the University of Waterloo, will serve as Chair of the Expert Panel.

“Quantum technologies have the potential to transform computing, sensing, communications, healthcare, navigation and many other areas,” said Dr. Laflamme. “But a close examination of the risks and vulnerabilities of these technologies is critical, and I look forward to undertaking this crucial work with the panel.”

As Chair, Dr. Laflamme will lead a multidisciplinary group with expertise in quantum technologies, economics, innovation, ethics, and legal and regulatory frameworks. The Panel will answer the following question:

In light of current trends affecting the evolution of quantum technologies, what impacts, opportunities and challenges do these present for Canadian industry, governments and Canadians more broadly?

The Expert Panel on Quantum Technologies:

Raymond Laflamme, O.C., FRSC (Chair), Canada Research Chair in Quantum Information; the Mike and Ophelia Lazaridis John von Neumann Chair in Quantum Information; Professor, Department of Physics and Astronomy, University of Waterloo

Sally Daub, Founder and Managing Partner, Pool Global Partners

Shohini Ghose, Professor, Physics and Computer Science, Wilfrid Laurier University; NSERC Chair for Women in Science and Engineering

Paul Gulyas, Senior Innovation Executive, IBM Canada

Mark W. Johnson, Senior Vice-President, Quantum Technologies and Systems Products, D-Wave Systems

Elham Kashefi, Professor of Quantum Computing, School of Informatics, University of Edinburgh; Directeur de recherche au CNRS, LIP6 Sorbonne Université

Mauritz Kop, Fellow and Visiting Scholar, Stanford Law School, Stanford University

Dominic Martin, Professor, Département d’organisation et de ressources humaines, École des sciences de la gestion, Université du Québec à Montréal

Darius Ornston, Associate Professor, Munk School of Global Affairs and Public Policy, University of Toronto

Barry Sanders, FRSC, Director, Institute for Quantum Science and Technology, University of Calgary

Eric Santor, Advisor to the Governor, Bank of Canada

Christian Sarra-Bournet, Quantum Strategy Director and Executive Director, Institut quantique, Université de Sherbrooke

Stephanie Simmons, Associate Professor, Canada Research Chair in Quantum Nanoelectronics, and CIFAR Quantum Information Science Fellow, Department of Physics, Simon Fraser University

Jacqueline Walsh, Instructor; Director, initio Technology & Innovation Law Clinic, Dalhousie University

You’ll note that both the Bank of Canada and D-Wave Systems are represented on this expert panel.

The CCA Quantum Technologies report (in progress) page can be found here.

Does it mean anything?

Since I only skim the top layer of information (disparagingly described as ‘high level’ by the technology types I used to work with), all I can say is there’s a remarkable level of interest from various groups who are self-organizing. (The interest is international as well. I found the International Society for Quantum Gravity [ISQG], which had its first meeting in 2021.)

I don’t know what the purpose is other than it seems the Canadian focus seems to be on money. The board of trade and business council have no interest in primary research and the federal government’s national quantum strategy is part of Innovation, Science and Economic Development (ISED) Canada’s mandate. You’ll notice ‘science’ is sandwiched between ‘innovation’, which is often code for business, and economic development.

The Bank of Canada’s monetary interests are quite obvious.

The Perimeter Institute mentioned earlier was founded by Mike Lazaridis (from his Wikipedia entry) Note: Links have been removed,

… a Canadian businessman [emphasis mine], investor in quantum computing technologies, and founder of BlackBerry, which created and manufactured the BlackBerry wireless handheld device. With an estimated net worth of US$800 million (as of June 2011), Lazaridis was ranked by Forbes as the 17th wealthiest Canadian and 651st in the world.[4]

In 2000, Lazaridis founded and donated more than $170 million to the Perimeter Institute for Theoretical Physics.[11][12] He and his wife Ophelia founded and donated more than $100 million to the Institute for Quantum Computing at the University of Waterloo in 2002.[8]

That Institute for Quantum Computing? There’s an interesting connection. Raymond Laflamme, the chair for the CCA expert panel, was its director for a number of years and he’s closely affiliated with the Perimeter Institute. (I’m not suggesting anything nefarious or dodgy. It’s a small community in Canada and relationships tend to be tightly interlaced.) I’m surprised he’s not part of the quantum mechanics and gravity conference but that could have something to do with scheduling.

One last interesting bit about Laflamme, from his Wikipedia entry, Note: Links have been removed)

As Stephen Hawking’s PhD student, he first became famous for convincing Hawking that time does not reverse in a contracting universe, along with Don Page. Hawking told the story of how this happened in his famous book A Brief History of Time in the chapter The Arrow of Time.[3] Later on Laflamme made a name for himself in quantum computing and quantum information theory, which is what he is famous for today.

Getting back to the Quantum Mechanics & Gravity: Marrying Theory & Experiment, the public day looks pretty interesting and when is the next time you’ll have a chance to hobnob with all those Nobel Laureates?

TRIUMF (Canada’s national particle accelerator centre) welcomes Nigel Smith as its new Chief Executive Officer (CEO) on May 17, 2021and some Hollywood news

I have two bits of news as noted in the headline. There’s news about TRIUMF located on the University of British Columbia (UBC) endowment lands and news about Dr. Suzanne Simard (UBC Forestry) and her memoir, Finding the Mother Tree: Discovering the Wisdom of the Fores.

Nigel Smith and TRIUMF (Canada’s national particle accelerator centre)

As soon as I saw his first name, Nigel, I bet myself he’d be from the UK (more about that later in this posting). This is TRIUMF’s third CEO since I started science blogging in May 2008. When I first started it was called TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics) but these days it’s TRIUMF (Canada’s national particle accelerator centre).

As for the organization’s latest CEO, here’s more from a TRIUMF February 12, 2021 announcement page ( the text is identical to TRIUMF’s February 12, 2021 press release),

Dr. Nigel Smith, Executive Director of SNOLAB, has been selected to serve as the next Director of TRIUMF.  

Succeeding Dr. Jonathan Bagger, who departed TRIUMF in January 2021 to become CEO of the American Physical Society, Dr. Smith’s appointment comes as the result of a highly competitive, six-month international search. Dr. Smith will begin his 5-year term as TRIUMF Director on May 17, 2021. 

“I am truly honoured to have been selected as the next Director of TRIUMF”, said Dr. Smith. “I have long been engaged with TRIUMF’s vibrant community and have been really impressed with the excellence of its science, capabilities and people. TRIUMF plays a unique and vital role in Canada’s research ecosystem and I look forward to help continue the legacy of excellence upheld by Dr. Jonathan Bagger and the previous TRIUMF Directors”.  

Describing what interested him in the position, Smith spoke to the breadth and impact of TRIUMF’s diverse science programs, stating “TRIUMF has an amazing portfolio of research covering fundamental and applied science that also delivers tangible societal impact through its range of medical and commercialisation initiatives. I am extremely excited to have the opportunity to lead a laboratory with such a broad and world-leading science program.” 

“Nigel brings all the necessary skills and background to the role of Director,” said Dr. Digvir Jayas, Interim Director of TRIUMF, Chair of the TRIUMF Board of Management, and Vice-President, Research and International at the University of Manitoba. “As Executive Director of SNOLAB, Dr. Smith is both a renowned researcher and experienced laboratory leader who offers a tremendous track record of success spanning the local, national, and international spheres. The Board of Management is thrilled to bring Nigel’s expertise to TRIUMF so he may help guide the laboratory through many of the exciting developments on the horizon.  

Dr. Smith joins TRIUMF at an important period in the laboratory’s history, moving into the second year of our current Five-Year Plan (2020-2025) and preparing to usher in a new era of science and innovation that will include the completion of the Advance Rare Isotope Laboratory (ARIEL) and the Institute for Advanced Medical Isotopes (IAMI) [not to be confused with Amii {Alberta Machine Intelligence Institute}]. This new infrastructure, alongside TRIUMF’s existing facilities and world-class research programs, will solidify Canada’s position as a global leader in both fundamental and applied research. 

Dr. Smith expressed his optimism for TRIUMF, saying “I am delighted to have this opportunity, and it will be a pleasure to lead the laboratory through this next exciting phase of our growth and evolution.” 

Smith is leaving what is probably one of the more unusual laboratories, at a depth of 2km, SNOLAB is the deepest, cleanest laboratory in the world. (more information either at SNOLAB or its Wikipedia entry.)

Is Smith from the UK? Some clues

I found my subsequent clues on SNOLAB’s ‘bio’ page for Dr. Nigel Smith,

Nigel Smith joined SNOLAB as Director during July 2009. He currently holds a full Professorship at Laurentian University, adjunct Professor status at Queen’s University, and a visiting Professorial chair at Imperial College, London. He received his Bachelor of Science in physics from Leeds University in the U.K. in 1985 and his Ph. D. in astrophysics from Leeds in 1991. He has served as a lecturer at Leeds University, a research associate at Imperial College London, group leader (dark matter) and deputy division head at the STFC Rutherford Appleton Laboratory, before relocating to Canada to oversee the SNOLAB deep underground facility.

The answer would seem to be yes, Nigel James Telfer Smith is originally from the UK.

I don’t know if this is going to be a trend but this is the second ‘Nigel” to lead TRIUMF. (The Nigels are now tied with the Johns and the Alans. Of course, the letter ‘j’ seems the most popular with four names, John, John, Jack, and Jonathan.) Here’s a list of TRIUMF’s previous CEOs (from the TRIUMF Wikipedia entry),

Since its inception, TRIUMF has had eight directors [now nine] overseeing its operations.

The first Nigel (Lockyer) is described as an American in his Wikipedia entry. He was born in Scotland and raised in Canada. However, he has spent the majority of his adult life in the US, other than the five or six years at TRIUMF. So, previous Nigel also started life in the UK.

Good luck to the new Nigel.

UBC forestry professor, Suzanne Simard’s memoir going to the movies?

Given that Simard’s memoir, Finding the Mother Tree: Discovering the Wisdom of the Forest, was published last week on May 4, 2021, this is very heady news,. From a May 12, 2021 article by Cassandra Gill for the Daily Hive (Note: Links have been removed),

Jake Gyllenhaal is bringing the story of a UBC professor to the big screen.

The Oscar nominee’s production company, Nine Stories, is producing a film based on Suzanne Simard’s memoir, Finding the Mother Tree.

Amy Adams is set to play Simard, who is a forest ecology expert renowned for her research on plants and fungi.

Adams is also co-producing the film with Gyllenhaal through her own company, Bond Group Entertainment.

The BC native [Simard] developed an interest in trees and the outdoors through her close relationship with her grandfather, who was a horse logger.

Her 30 year career and early life is documented in the memoir, which was released last week on May 4 [2021]. Simard explores how trees have evolved, have memories, and are the foundation of our planet’s ecosystem — along with her own personal experiences with grief.

The scientists’ [sic] influence has had influence in popular culture, notably in James Cameron’s 2009 film Avatar. The giant willow-like “Tree of Souls” was specifically inspired by Simard’s work.

No mention of a script and no mention of financing, so, it could be a while before we see the movie on Netflix, Apple+, HBO, or maybe a movie house (if they’re open by then).

I think the script may prove to the more challenging aspect of this project. Here’s the description of Simard’s memoir (from the Finding the Mother Tree webpage on suzannesimard.com)

From the world’s leading forest ecologist who forever changed how people view trees and their connections to one another and to other living things in the forest–a moving, deeply personal journey of discovery.

About the Book

In her first book, Simard brings us into her world, the intimate world of the trees, in which she brilliantly illuminates the fascinating and vital truths – that trees are not simply the source of timber or pulp, but are a complex, interdependent circle of life; that forests are social, cooperative creatures connected through underground networks by which trees communicate their vitality and vulnerabilities with communal lives not that different from our own.

Simard writes – in inspiring, illuminating, and accessible ways – how trees, living side by side for hundreds of years, have evolved, how they perceive one another, learn and adapt their behaviors, recognize neighbors, and remember the past; how they have agency about the future; elicit warnings and mount defenses, compete and cooperate with one another with sophistication, characteristics ascribed to human intelligence, traits that are the essence of civil societies – and at the center of it all, the Mother Trees: the mysterious, powerful forces that connect and sustain the others that surround them.

How does Simard’s process of understanding trees and conceptualizing a ‘mother tree’ get put into a script for a movie that’s not a documentary or an animation?

Movies are moving pictures, yes? How do you introduce movement and action in a script heavily focused on trees, which operate on a timescale that’s vastly different.

It’s an interesting problem and I look forward to seeing how it’s resolved. I wish them good luck.

Science and the 2019 Canadian federal government budget

There’s been a lot of noise about how the 2019 Canadian federal government budget is designed to please the various constituencies that helped bring the Liberal party back into power in 2015 and which the Liberals are hoping will help re-elect them later in 2019. I don’t care about that, for me, it’s all about the science.

In general, it seems the budget excitement is a bit milder than usual and some of that possibly due to the SNC-Lavalin (a huge Canadian engineering and construction firm) scandal resulting in the loss of two cabinet ministers, Trudeau’s top personal/political advisor, and Canada’s top bureaucrat; a 3rd reshuffling of Trudeau’s cabinet in less than three months; and the kind of political theatrics from the Liberals, the Conservatives, and the NDP (New Democratic Party) that I associate more strongly with our neighbours to the south. .

(As for the SNC-Lavalin mess which includes allegations of political interference on behalf of a company accused of various offences, you might find this brief March 11, 2019 article by David Ljunggren for Reuters insightful as it reviews the response from abroad, specifically, the OECD [Organization for Economic Cooperation and Development. For anyone who wants an overview and timeline of the crisis, there’s this March 10, 2019 news item on Huffington Post Canada and, for context, there’s this March 10, 2019 video report (roughly 3 mins.) on SNC-Lavalin’s long history of corruption by Daniel Tencer for Huffington Post Canada. )

In any event, it’s a been a very busy first quarter for 2019 and the science funding portion of the budget holds a few rays of light but in the main, the science funding portion suggests the government is treading water (term to describe a swimmer who is keeping their head above water and staying in place while being vertical). As for the rest of the 2019 budget, I leave to experience political pundits.

Let’s start with the sections that gladdened my heart, just a little.

Rays of light

We’re in Chapter 2 of the 2019 federal budget, in Part 5: Building a Nation of Innovators; Bringing Innovation to Regulations, and I’m happy to see this, as I think it’s absolutely essential that we become more innovative with regulations when emerging technologies pose new challenges at an ever increasing pace (Note: The formatting has been changed),

Simply put, regulations are rules that stipulate how businesses must operate. When they are effective, they contribute to the protection of health, safety, security and the environment. They also support innovation, productivity and competition by establishing the rules for fair markets and a predictable environment for businesses, reducing barriers to trade and fostering new investment. While the OECD [Organization for Economic Cooperation and Development] Regulatory Policy Outlook (2018) has again ranked Canada in the top five jurisdictions on many key measures of regulatory governance, recent reports from panels convened to advise the Government, such as the Advisory Council on Economic Growth and the Economic Strategy Tables, have called for Canada to take steps to change how we design and administer regulations. The Government is responding.

In Budget 2018, the Government announced its intention to review regulatory requirements and practices that impede innovation and growth in the following high-growth sectors:

Agri-food and aquaculture.
Health and bio-sciences.
Transportation and infrastructure.

The 2018 Fall Economic Statement continued this work, proposing additional ways to reform and modernize federal regulations, with an emphasis on making it easier for businesses to grow while continuing to protect Canadians’ health and safety and the environment. As a next step, Budget 2019 introduces the first three “Regulatory Roadmaps” to specifically address stakeholder issues and irritants in these sectors, informed by over 140 responses from businesses and Canadians across the country, as well as recommendations from the Economic Strategy Tables.

Introducing Regulatory Roadmaps

These Roadmaps lay out the Government’s plans to modernize regulatory frameworks, without compromising our strong health, safety, and environmental protections. They contain proposals for legislative and regulatory amendments as well as novel regulatory approaches to accommodate emerging technologies, including the use of regulatory sandboxes and pilot projects—better aligning our regulatory frameworks with industry realities.

Budget 2019 proposes the necessary funding and legislative revisions so that regulatory departments and agencies can move forward on the Roadmaps, including providing the Canadian Food Inspection Agency, Health Canada and Transport Canada with up to $219.1 million over five years, starting in 2019–20, (with $0.5 million in remaining amortization), and $3.1 million per year on an ongoing basis.

In the coming weeks, the Government will be releasing the full Regulatory Roadmaps for each of the reviews, as well as timelines for enacting specific initiatives, which can be grouped in the following three main areas:

What Is a Regulatory Sandbox? Regulatory sandboxes are controlled “safe spaces” in which innovative products, services, business models and delivery mechanisms can be tested without immediately being subject to all of the regulatory requirements.
– European Banking Authority, 2017

1. Creating a user-friendly regulatory system:
The Roadmaps propose a more user-friendly regulatory system, including the use of more digital services (e.g. online portals, electronic templates), and clearer guidance for industry so that innovative and safe products are available for Canadians more quickly.

2. Using novel or experimental approaches:
The Roadmaps propose greater exploration, innovation, and the use of sandboxes and pilot programs for new and innovative products. This will allow these products to be approved for use in a risk-based and flexible way—encouraging ongoing innovation while continuing to protect Canadians’ health and safety, and the environment.

3. Facilitating greater cooperation and reducing duplication:
The Roadmaps propose greater alignment and coordination within the federal government and across Canadian and international jurisdictions.

Real Improvements for Business

Digitizing Canadian Food Inspection Agency services
The Canadian Food Inspection Agency currently relies on a paper-based system for issuing export certificates. As a result, Canadian exporters are required to submit forms by mail and wait for those forms to be returned prior to exporting their products. When Canadian firms are allowed to complete the application process online and have their reviewed forms returned electronically, Canadian business owners will be able to export their products more rapidly.

Updating the Canadian grains legislative and regulatory frameworks
The Canada Grain Act has not been substantially updated in decades, and its requirements are not aligned with current market realities. A broad-based review of the Act, and of the operations of the Canadian Grain Commission, will be undertaken to address a number of issues raised by the Canadian grain industry, including redundant inspections and issues within the current grain classification process that unnecessarily restrict Canadian grain exporters.

Establishing a regulatory sandbox for new and innovative medical products
The regulatory approval system has not kept up with new medical technologies and processes. Health Canada proposes to modernize regulations to put in place a regulatory sandbox for new and innovative products, such as tissues developed through 3D printing, artificial intelligence, and gene therapies targeted to specific individuals.

Modernizing the regulation of clinical trials
Industry and academics have expressed concerns that regulations related to clinical trials are overly prescriptive and inconsistent. Health Canada proposes to implement a risk-based approach to clinical trials to reduce costs to industry and academics by removing unnecessary requirements for low-risk drugs and trials. The regulations will also provide the agri-food industry with the ability to carry out clinical trials within Canada on products such as food for special dietary use and novel foods.

Enhancing the road safety transfer payment program
Road safety and transportation requirements vary among Canadian provinces and territories, creating barriers and inefficiencies for businesses that transport goods by road. Transport Canada will support provinces and territories in working towards improved alignment of these requirements, including for the use of autonomous and connected vehicles. Funding would be made available to other stakeholders, such as academia and industry associations, to identify innovative road safety options, including for emerging technologies.

Introducing a regulatory sandbox for dangerous goods electronic shipping documents
Currently, shipments of dangerous goods in Canada must be accompanied by paper documentation which can be burdensome and inefficient for businesses. Under this initiative, Transport Canada would work with industry, American counterparts and provincial/territorial jurisdictions to identify options for the sharing of shipping documents by electronic means, based on existing technologies.

Removing federal barriers to the interprovincial trade of alcohol
To facilitate internal trade, the Government intends to remove the federal requirement that alcohol moving from one province to another be sold or consigned to a provincial liquor authority. Provinces and territories would continue to be able to regulate the sale and distribution of alcohol within their boundaries.

To ensure that these Roadmaps can be implemented in a timely manner, Budget 2019 proposes to provide up to $67.8 million over five years, starting in 2019–20, for Justice Canada resources. These funds will strengthen the Government’s capacity to draft the legislative and regulatory changes needed to facilitate a new approach to regulations in these sectors and others.

Harmonizing Regulations
When regulations are more consistent between jurisdictions, Canadian companies are better able to trade within Canada and beyond, while also giving Canadian consumers greater choice. The Government is working with provinces and territories to better harmonize regulations across provincial and territorial boundaries, opening up the door to more seamless internal trade. Canada also has an opportunity to harmonize regulations with its international trading partners, making Canada an even more attractive place to invest in and grow a business. The Government does this through a number of regulatory cooperation bodies, for example, the Canadian Free Trade Agreement Regulatory Reconciliation and Cooperation Table, the Canada-U.S. Regulatory Cooperation Council and the Regulatory Cooperation Forum of the Canada-European Union Comprehensive Economic and Trade Agreement.  

Budget 2019 proposes to provide $3.1 million per year in ongoing funding to the Treasury Board Secretariat, starting in 2020–21, to support its leadership of the Government’s regulatory cooperation priorities at home and abroad.

Modernizing Regulations
In the 2018 Fall Economic Statement, the Government announced its plan to introduce an annual modernization bill consisting of legislative amendments to various statutes to help eliminate outdated federal regulations and better keep existing regulations up to date. In Budget 2019, the Government proposes to introduce legislation to begin this work. Work also continues to identify opportunities to make regulatory efficiency and economic growth a permanent part of regulators’ mandates, while continuing to prioritize health and safety and environmental responsibilities.

As part of these ongoing efforts, the President of Treasury Board will announce shortly the establishment of an External Advisory Committee on Regulatory Competitiveness, which will bring together business leaders, academics and consumer representatives from across the country, to help identify opportunities to streamline regulations and for novel regulatory approaches as well as to advise the Government on other sectors for consideration in the next round of regulatory reviews. 

Safe Food for Canadians Regulations
A recent regulatory modernization success is related to the coming into force of the new Safe Food for Canadians Regulations in January 2019.These modern regulations apply across all sectors and have introduced an outcomes-based approach to food safety regulations.

The other ‘ray of light’ concerns high speed internet access. Interestingly, some of the text about high speed access echoes faintly echoes descriptions of Estonia’s perspective on this issue. (Note: Canada’s Treasury Board signed a memorandum of understanding with Estonia in May 2018 as per this May 29, 2018 article by Silver Tambur for estonian world (how estonians see it),

Canada and Estonia have signed a memorandum of understanding on digital cooperation, aiming to work together on joint projects.

The new partnership was signed during the Estonian prime minister, Jüri Ratas’s, visit to Ottawa on 28 May [2018]. Welcomed by his Canadian counterpart, Justin Trudeau, Ratas became the first Estonian prime minister to make an official visit to Canada.

Both countries already share a membership of Digital 7 – a network of leading digital governments, currently comprising Canada, Estonia, Israel, New Zealand, South Korea, United Kingdom and Uruguay. The group is seeking to harness digital technology and improve digital services for the benefit of its citizens.[emphasis mine]

Under the new cooperation agreement between Canada and Estonia, both countries will work together on joint projects, the exchange of experts and other ways to share good practices as well as concrete digital solutions to advance these priorities.

Of course, there’s no point to improving digital services for citizens who do not have high speed internet or much of any kind of connectivity, as the Estonians must have realized fairly early on. This excerpt from an Estonian tourist website has a scrap of text that bears a resemblance to text in the Canadian 2019 budget (from the homepage of visit estonia),

“e-Estonia”, the E is for electronic, has become the go to tag to describe Estonia’s immensely successful love affair with all things networked and digitised.

Country wide enthusiasm for the efficiency of E has enthralled both citizens and policymakers alike. Estonian programmers have been behind the creation of digital brands such as Skype, Hotmail and more recently Transferwise (a online currency converter which has attracted investment from the likes of Richard Branson). Estonia has declared internet access a human right, [emphasis mine] it has a thriving IT start up culture and has digitally streamlined an unprecedented number of public services for citizens and businesses.

The roots of this revolution began in 1991, the year of Estonian independence, Estonian policy makers were given the rare gift of a bureaucratic clean slate. Placing their faith in the burgeoning possibilities of the internet and value of innovation, they steered the country into a position where it could leapfrog to become one of the most advanced e-societies in the world.

Now, here’s what the 2019 federal budget had to say bout connectivity in Canada (from Chapter 2; Part 3: Connecting Canadians), Note: Formatting has been changed),

Access to High-Speed Internet for All Canadians

In 2019, fast and reliable internet access is no longer a luxury—it’s a necessity. [emphasis mine]

For public institutions, entrepreneurs, and businesses of all sizes, quality high-speed internet is essential to participating in the digital economy—opening doors to customers who live just down the street or on the other side of the world. It is also important in the lives of Canadians. It lets students and young people do their homework, stay in touch with their friends, and apply for their very first jobs. It helps busy families register for recreational programs, shop online and pay their bills and access essential services. For many seniors, the internet is a way to stay up on current events and stay connected to distant family members and friends.

Canadians have a strong tradition of embracing new technologies, and using them to help generate long-term economic growth and drive social progress. In recent years, Canada and Canadian companies built mobile wireless networks that are among the fastest in the world and made investments that are delivering next-generation digital technologies and services to people and communities across the country. Yet, unfortunately, many Canadians still remain without reliable, high-speed internet access. In this time in the 21st Century, this is unacceptable.

How We Will Achieve a Fully Connected Canada

Delivering universal high-speed internet to every Canadian in the quickest and most cost-effective way will require a coordinated effort involving partners in the private sector and across all levels of government. To meet this commitment, Budget 2019 is proposing a new, coordinated plan that would deliver $5 billion to $6 billion in new investments in rural broadband over the next 10 years:

Support through the Accelerated Investment Incentive to encourage greater investments in rural high-speed internet from the private sector.
Greater coordination with provinces, territories, and federal arm’s-length institutions, such as the CRTC and its $750 million rural/remote broadband fund.
Securing advanced Low Earth Orbit satellite capacity to serve the most rural and remote regions of Canada.
New investments in the Connect to Innovate program and introduction of the Government’s new Universal Broadband Fund.
New investments by the Canada Infrastructure Bank to further leverage private sector investment.

Or, you could describe internet access as a human right. Whether you like it or not, it seems, short of a planetary disaster, internet access will be almost as important as food, water, and air.

This next ‘ray of light’ is a bit of a mixed bag, from Paul Wells’s March 19, 2019 article for Maclean’s,

… There’s $2.2 billion, refreshingly free of attached strings, in “much needed infrastructure funds” right now, this year.

Why infrastructure funds would still be “much needed,” four years into the tenure of the third prime minister in a row to make infrastructure spending a personal priority, is an interesting question for another day.

I’m hoping that at least some of this money is going to address the government’s digital infrastructure and I don’t understand any more than Paul Wells does as to why we’d still be talking about infrastructure. Stephen Harper’s Conservative government was in place for almost 10 years and Trudeau’s government for almost four years now (I don’t include Paul Martin’s government as that was fairly short lived) and with both of these prime ministers touting infrastructure, what’s taking so much time?

I hope some of this money is being dedicated to replacing the government’s dangerously aging digital infrastructure. I included some excerpts from an excellent article by James Bagnall on the state of the government’s digital infrastructure in my March 19, 2019 posting (scroll down about 15% of the way), which is a commentary on the Chief Science Advisor’s Office (CSO) 2018 annual report. Bagnall’s description is shocking and when I looked at the CSO’s 2018 report and saw that approximately 80% of the digital infrastructure for government science is conducted facilities that are between 50 and 25 years old with, presumably, similarly aged hardware and software, I couldn’t help but wonder when the Canadian government digital armageddon would occur.

I dug further into the 2019 budget and in Chapter Four, Part Six: Better Government found no mention of their digital infrastructure or of monies allocated to replacing any or all of the digital infrastructure. (sigh)

More happily, there was some reference to the Phoenix payroll system debacle and attempts to rectify the situation,

Ensuring Proper Payment for Public Servants

Canada’s public servants work hard in service of all Canadians and deserve to be paid properly and on time for their important work. The Phoenix pay system for federal public servants was originally intended to save money, however, since its launch it has resulted in unacceptable pay inaccuracies—resulting in hardships for public servants across the country. Serious issues and challenges with the pay system continue, and too many of Canada’s public servants are not being properly paid, or are waiting for their pay issues to be resolved.

To continue progress on stabilizing the current pay system, Budget 2019 provides an additional $21.7 million in 2018–19 to address urgent pay administration pressures (partially sourced from existing departmental funds), and proposes to invest an additional $523.3 million over five years, starting in 2019–20, to ensure that adequate resources are dedicated to addressing payroll errors. This investment will also support system improvements, to reduce the likelihood of errors occurring in the first place.

To ensure that the Canada Revenue Agency is able to quickly and accurately process income tax reassessments for federal government employees that are required due to Phoenix pay issues, and to support related telephone enquiries, Budget 2019 proposes to provide the Agency with an additional $9.2 million in 2019–20.

While the Phoenix pay system has been underpaying some public servants, it has also been paying others too much. Under current legislation, any employee who received an overpayment in a previous year is required to pay back the gross amount of this overpayment to their employer. The employee must recover from the Canada Revenue Agency the excess income tax, Canada Pension Plan contributions and Employment Insurance premiums that were deducted by their employer when the overpayment was made. On January 15, 2019, the Government proposed legislative amendments that would allow overpaid employees working in both the public and private sectors to repay their employer only the net amount they received after these deductions. The proposed amendments are intended to alleviate the burden faced by employees who were required to make repayments larger than the amounts they received from their employer, creating uncertainty and potential financial hardship.

Moving Toward the Next Generation Pay System for the Federal Public Service

In Budget 2018, the Government announced its intention to move away from the Phoenix pay system toward one better aligned to the complexity of the Government’s pay structure and to the future needs of Canada’s world-class public service.

Working cooperatively with experts, federal public sector unions, employees, pay specialists and technology providers, the Treasury Board Secretariat (TBS) launched a process to review lessons learned, and identify options for a next-generation pay solution.

As part of this process, pay system suppliers were invited to demonstrate possible solutions, which were directly tested with users. Based on feedback from users and participating stakeholders, TBS has been able to identify options with the potential to successfully replace the Phoenix pay system. As a next step, the Government will work with suppliers and stakeholders to develop the best options, including pilot projects that will allow for further testing with select departments and agencies, while assessing the ability of suppliers to deliver.

Finally, TBS will continue to engage public servants throughout this process, to ensure that their feedback is fully reflected in any future solution.

Interestingly, at the time of James Bagnoll’s article (excerpt in my March 19, 2019 posting), the only government data centre being replaced was Revenue Canada’s. It suggests that anything else can fall to pieces but the government should always be able to collect tax.

Getting back to my more cheerful and optimistic self, on balance, it’s encouraging to see thoughtful approaches to modernizing our regulatory system.

Treading water

There’s more to the’ 2019 commitment to science (from the 2019 budget’s Chapter 2; Part 6: Building Research Excellence in Canada: Support for Science, Research and Technology Organizations),

Canada is home to world-leading non-profit organizations that undertake research and bring together experts from diverse backgrounds to make discoveries, accelerate innovation and tackle health challenges. The Government helps support these collaborative efforts with targeted investments that return real economic and social benefits for Canadians.
Budget 2019 proposes to make additional investments in support of the following organizations:
Stem Cell Network: Stem cell research—pioneered by two Canadians in the 1960s—holds great promise for new therapies and medical treatments for respiratory and heart diseases, spinal cord injury, cancer, and many other diseases and disorders. The Stem Cell Network is a national not-for-profit organization that helps translate stem cell research into clinical applications and commercial products. To support this important work and foster Canada’s leadership in stem cell research, Budget 2019 proposes to provide the Stem Cell Network with renewed funding of $18 million over three years, starting in 2019–20.
Brain Canada Foundation: The Brain Canada Foundation is a national charitable organization that raises funds to foster advances in neuroscience discovery research, with the aim of improving health care for people affected by neurological injury and disease. To help the medical community better understand the brain and brain health, Budget 2019 proposes to provide the Brain Canada Foundation’s Canada Brain Research Fund with up to $40 million over two years, starting in 2020–21. This investment will be matched by funds raised from other non-government partners of the Brain Canada Foundation.
Terry Fox Research Institute: The Terry Fox Research Institute manages the cancer research investments of the Terry Fox Foundation. Budget 2019 proposes to provide the Terry Fox Research Institute with up to $150 million over five years, starting in 2019–20, to help establish a national Marathon of Hope Cancer Centres Network. The Institute would seek matching funding through a combination of its own resources and contributions that it would seek from other organizations,, including hospital and research foundations.
Ovarian Cancer Canada: Ovarian Cancer Canada supports women living with the disease and their families, raises awareness and funds research. Budget 2019 proposes to provide Ovarian Cancer Canada with $10 million over five years beginning in 2019–20 to help address existing gaps in knowledge about effective prevention, screening, and treatment options for ovarian cancer.
Genome Canada: The insights derived from genomics—the study of the entire genetic information of living things encoded in their DNA and related molecules and proteins—hold the potential for breakthroughs that can improve the lives of Canadians and drive innovation and economic growth. Genome Canada is a not-for-profit organization dedicated to advancing genomics science and technology in order to create economic and social benefits for Canadians. To support Genome Canada’s operations, Budget 2019 proposes to provide Genome Canada with $100.5 million over five years, starting in 2020–21. This investment will also enable Genome Canada to launch new large-scale research competitions and projects, in collaboration with external partners, ensuring that Canada’s research community continues to have access to the resources needed to make transformative scientific breakthroughs and translate these discoveries into real-world applications.
Let’s Talk Science: Science, technology, engineering and math (STEM) are not just things we study in school—together, they are transforming all aspects of our lives, and redefining the skills and knowledge people need to succeed in a changing world. Let’s Talk Science engages youth in hands-on STEM activities and learning programs, such as science experiments, helping youth develop critical thinking skills and opening up doors to future study and work in these fields. It also helps ensure more girls—and other groups that are underrepresented in STEM—gain and maintain interest in STEM from an early age. Budget 2019 proposes to provide Let’s Talk Science with $10 million over two years, starting in 2020–21, to support this important work.

There’s nothing earth shattering on that list. Five of these organizations could be described as focused on medical research and I have seen at least three of them mentioned in previous federal budgets. The last organization, Let’s Talk Science (established in 1993), focused on science promotion for children and youth, is being mentioned for the first time in a budget (as far as I know).

In the next section, the budget blesses physics or more specifically, TRIUMF. From the 2019 budget’s Chapter 2; Part 6: Building Research Excellence in Canada: Strengthening Canada’s World-Class physics research,

TRIUMF is a world-class sub-atomic physics research laboratory located in British Columbia, and home to the world’s largest cyclotron particle accelerator. TRIUMF has played a leading role in many medical breakthroughs—such as developing alongside Canadian industrial partners new approaches to the medical imaging of diseases—and brings together industry partners, leading academic researchers and scientists, and graduate students from across Canada and around the world to advance medical isotope production, drug development, cancer therapy, clinical imaging, and radiopharmaceutical research.

Budget 2019 proposes to provide TRIUMF with $195.9 million over five years, starting in 2019–20, to build on its strong track record of achievements. Combined with an additional $96.8 million from the existing resources of the National Research Council, federal support for TRIUMF will total $292.7 million over this five-year period.

When are the folks at the Canadian Light Source (our synchrotron) going to get some love? Year after year it’s either TRIUMF or the Perimeter Institute getting a major infusion of cash. I exaggerate but only mildly.You can find some of my comments on the 2018 federal budget in this March 16, 2018 posting and my comments on the 2017 federal budget in this March 24, 2017 posting.

Maybe one day a ray of light?

Here’s something new but I imagine you’ll quickly see what makes this an odd addition to the budget (from the 2019 budget’s Chapter 2; Part 6: Building Research Excellence in Canada: Taking a new approach With the Strategic Science Fund),

To make federal investments in third-party science and research more effective, Budget 2019 proposes to establish a new Strategic Science Fund. This new Fund will respond to recommendations that arose during consultations with third-party science and research organizations. It will operate using a principles-based framework for allocating federal funding that includes competitive, transparent processes. This will help protect and promote research excellence.

Under the Fund, the principles-based framework will be applied by an independent panel of experts, including scientists and innovators, who will provide advice for the consideration of the Government on approaches to allocating funding for third-party science and research organizations.

Budget 2019 proposes to establish and operate the Strategic Science Fund starting in 2022–23.

This Strategic Science Fund will be the Government’s key new tool to support third-party science and research organizations. Going forward, the selection of recipient organizations and corresponding level of support will be determined through the Fund’s competitive allocation process, with advice from the expert panel and informed by the Minister of Science’s overall strategy. The Minister of Science will provide more detail on the Fund over the coming months.

No money until 2022, eh? That’s interesting given that would be a year before the election (2023) after this one later in 2019. And, it’s anyone’s guess as to which government will be in power. Crossing my fingers again, I hope these good intention bear fruit in light of Daniel Banks’s (of the Canadian Neutron Beam Centre] March 21, 2019 essay (on the Canadian Science Policy Centre website) about the potential new oversight (Note: Prepare yourself for some alphabet soup; the man loves initialisms and sees no reason to include full names),

From a science policy perspective, which is about how science is managed, as well as funded, the biggest change may be one item that had no dollar amount attached.

Budget 2019 announces a “new approach” for funding so-called “third-party science and research.” The Fundamental Science Review defined “third-party science entities” as those operating outside the jurisdiction of NSERC, CIHR, SSHRC, CFI. Genome Canada, Mitacs, and Brain Canada are a few examples.

The Review raised concerns, not with the quality of these organizations’ output, but with how they are each governed as one-offs, via term-limited contribution agreements with ISED. Ad hoc governance arrangements have been needed until now because these organizations don’t fit within the existing programs of the granting councils. Lack of a suitable program required scientists to lobby for funds, rather than participate in peer-reviewed competitions. Over time, the Review warned, this approach could “allow select groups of researchers to sidestep the intensity of peer review competitions, and facilitate unchecked mission drift as third-party partner organizations shift their mandates to justify their continuation.”

The Strategic Science Fund could be a precedent for another portion of the science community that faces similar challenges: so-called Big Science, or Major Research Facilities (MRFs), such as TRIUMF, SNOLAB, Ocean Networks Canada, the Canadian Light Source, and large facilities for astronomy or neutron scattering. In the absence of a systematic means of overseeing Canada’s portfolio of these shared national resources, an array of oversight mechanisms have been created for these facilities on an ad hoc basis, much like the case for third-party research organizations. The Fundamental Science Review was the latest in a string of reports that have pointed problems with this ad hoc approach, stretching back at least 20 years.

Stewardship of Canada’s MRFs has improved following the introduction of the CFI’s Major Science Initiatives Fund in 2012, and the expansion of its mandate to include more facilities under its program in 2014. Nonetheless, there are still many facilities that are not covered by this Fund. No agency has responsibility for the entire portfolio of MRFs to allow it to plan for the creation of new MRFs as others wind-down, or provide predictable funding over the life-cycle of an MRF. Other MRFs still fall through jurisdictional cracks, where no federal agency is clearly responsible for them. Such jurisdictional cracks were one contributing factor in the loss of Canada’s neutron scattering facilities in 2018.

it’s one of the things I’ve found most difficult about following the Canadian science scene, it’s very scattered. In his essay, Banks explains, in part, why this situation exists.Let’s hope that one government or another addresses it.

On balance, it’s encouraging to see thoughtful approaches to modernizing our regulatory system and to better integrating the various agencies that serve our science initiatives. As for infrastructure and the Strategic Science Fund, I have, as previously noted, my fingers crossed. Let’s hope they manage it this time.

ARPICO November 13, 2018 event in Vancouver (Canada): The Mysterious Dark-Side of the Universe: From Quarks to the Big Bang with Dark Matter

The Society of Italian Researchers and Professionals in Western Canada (ARPICO) is hosting a physics event for those of us who don’t have Phd’s in physics. From an October 24, 2018 ARPICO announcement (received via email),

The second event of ARPICO’s fall 2018 activity will take place on Tuesday, November 13th, 2018 at the Roundhouse Community Centre (Room B). Our speaker will be Dr. Pietro Giampa, a physicist who recently joined the ranks of the TRIUMF laboratories [Canada’s particle accelerator centre and, formerly, Canada’s National Laboratory for Particle and Nuclear Physics] here in Vancouver. Dr. Giampa will give us an intriguing and, importantly, layperson-intelligible overview on the state of our knowledge of the universe especially in regards to so-called dark matter, a chapter of physics that the most complete theoretical model to-date cannot explain. We will learn, among other things, about an ambitious experiment (set up in a Canadian mine!) [emphasis mine] to detect neutrinos, fundamental and very elusive particles of our  cosmos. You can read a summary of Pietro Giampa’s lecture as well as his short professional biography below.

We look forward to seeing everyone there.

The evening agenda is as follows:

  • 6:30 pm – Doors Open for Registration
  • 7:00 pm – Start of the evening event with introductions & lecture by Dr. Pietro Giampa
  • ~8:15 pm – Q & A Period
  • to follow – Mingling & Refreshments until about 9:30 pm

If you have not already done so, please register for the event by visiting the EventBrite link or RSVPing to info@arpico.ca.

Further details are also available at arpico.ca and Eventbrite.

More details from the email announcement,

The Mysterious Dark-Side of the Universe: From Quarks to the Big Bang with Dark Matter

Understanding the true nature of our universe is one of the most fundamental quests of our society. The path of knowledge acquisition in that quest has led us to the hypothesis of “dark matter”, that is, a large proportion of the mass of the universe which appears invisible. In this lecture, with minimal technical language we will journey through the structure and evolution of the universe, from subatomic particles to the big bang, which gave rise to our universe, in an ultimate research to describe the dark side of the universe called dark matter. We will review what we have learnt thus far about dark matter, and get an in-depth look at how scientists are searching for something that can not be seen.

Dr. Pietro Giampa originally completed his undergraduate in physics at Royal Holloway University of London in the UK, where he wrote a thesis on SuperSymmetry Searches with the ATLAS Detector (so LHC related). Following his undergraduate, he completed a Master Degree in particle physics at the same institute where he developed a novel technique for directional detection of neutrons. It was after his master that he moved to Canada to complete his Ph.D at Queen’s University in Particle Astrophysics, working on the DEAP-3600 Experiment with Nobel laureate Prof. Arthur McDonald. In the summer of 2017 he moved to TRIUMF, where he is currently the Otto Hausser Fellow. At TRIUMF he continues his research for new forms of physics, by studying Dark Matter and Ultra-Cold Neutrons.

 


WHEN: Tuesday, November 13th, 2018 at 7:00pm (doors open at 6:30pm)

WHERE: Roundhouse Community Centre, Room B – 181 Roundhouse Mews, Vancouver, BC, V6Z 2W3

RSVP: Please RSVP at EventBrite (https://mysteryofdarkmatter.eventbrite.ca/) or email info@arpico.ca


Tickets are Needed

  • Tickets are FREE, but all individuals are requested to obtain “free-admission” tickets on EventBrite site due to limited seating at the venue. Organizers need accurate registration numbers to manage wait lists and prepare name tags.
  • All ARPICO events are 100% staffed by volunteer organizers and helpers, however, room rental, stationery, and guest refreshments are costs incurred and underwritten by members of ARPICO. Therefore to be fair, all audience participants are asked to donate to the best of their ability at the door or via EventBrite to “help” defray costs of the event.

FAQs

  • Where can I contact the organizer with any questions? info@arpico.ca
  • Do I have to bring my printed ticket to the event? No, you do not. Your name will be on our Registration List at the Check-in Desk.
  • Is my registration/ticket transferrable? If you are unable to attend, another person may use your ticket. Please send us an email at info@arpico.ca of this substitution to correct our audience Registration List and to prepare guest name tags.
  • Can I update my registration information? Yes. If you have any questions, contact us at info@arpico.ca
  • I am having trouble using EventBrite and cannot reserve my ticket(s). Can someone at ARPICO help me with my ticket reservation? Of course, simply send your ticket request to us at info@arpico.ca so we help you.

What are my transport/parking options?

  • Bus/Train: The Canada Line Yaletown Skytrain station is a 1 minute walk from the Roundhouse Community Centre.
  • Parking: Pay Parking is underground at the community centre.  Access is available via Drake Street.

With regard to the Canadian mine and neutrino experiments, I hunted down a little more information (from an October 6, 2015 article by Kate Allen for thestar.com), Note: A link has been removed,

Canadian physicist Arthur B. McDonald has won the Nobel Prize for discoveries about the behaviour of a mysterious solar particle, teased from an experiment buried two kilometres below Sudbury [Ontario].

The Queen’s University professor emeritus was honoured for co-discovering that elusive particles known as neutrinos can change their identity — or “oscillate” — as they travel from the sun. It proved that neutrinos must have mass, a finding that upset the Standard Model of particle physics and opened new avenues for research into the fundamental properties of the universe.

McDonald, 72, shares the prize with Takaaki Kajita, whose Japanese collaboration made the same discovery with slightly different methods.

To measure solar neutrinos, McDonald and a 130-person international team built a massive detector in an operational copper mine southwest of Sudbury. …

To solve this problem, McDonald and his colleagues dreamt up SNO. Deep in an INCO mine (now owned by Vale), protected from cosmic radiation constantly bombarding the earth’s surface, the scientists installed a 12-metre-wide acrylic vessel filled with 1,000 tonnes of ultra-pure heavy water. The vessel was surrounded by a geodesic sphere equipped with 9,456 light sensors. The whole thing was sunk in a 34-metre-high cavity filled with regular water.

When neutrinos hit the heavy water, an event that occurred about 10 times a day, they emitted a flash of light, which researchers could analyze to measure the particles’ properties.

Allen’s article has more details for anyone who might want to read up on neutrinos. Regardless, I’m sure Dr.Giampa is fully prepared to guide the uninitiated into the mysteries of the universe as they pertain to dark matter, neutrinos, and ultra-cold neutrons.

Surprise! Surprise! 50th anniversary for TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics) and HR MacMillan Space Centre in Vancouver, Canada

I guess they wanted to keep it a secret? In any event, TRIUMF’s 2018 year of celebrating their 50th anniversary is almost over. Their celebratory website, TRIUMF50 lists two events (scroll down to see them) for October 2018 and nothing after that. One event is in Ottawa (which is titled ‘#DiscoverTHIS: TRIUMF, Science, and Society’ on the TRIUMF50 website) and the other in Vancouver (Canada). Then, there’s the the other 50th sciencish anniversary in Vancouver, this being celebrated by the HR MacMillan Space Centre.

TRIUMF’s two events

Weirdly, I found out about TRIUMF’s 50th anniversary after reading an October 1, 2018 Ingenium (formerly Canada Science and Technology Museums Corporation) news release (received via email) and digging further. First, the announcement about the Ottawa event,

#DISCOVERTHIS: […] THE MOTHER OF INVENTION […] CANADA SCIENCE AND TECHNOLOGY MUSEUM
October 3, 2018
Time: 7:30 p.m. – 9 p.m. (Doors open at 7 p.m.)
FEE: FREE (REGISTRATION REQUIRED)
LANGUAGE: ENGLISH ONLY
On October 3, join a team of experts from TRIUMF […], Canada’s particle accelerator centre, for an illuminating discussion. The event will take place at the museum, and will also include a screening of a short documentary that explores the possibility for TRIUMF to take up the reins as the world’s largest producer of actinium-225 (Ac-225), a radioisotope with promising potential as an anti-cancer therapy.

They have a more engaging and informative description on their event registration page,

#discoverTHIS: The Mother of Invention

Free

Actions and Detail Panel

Event Information

Description

Doors open 7:00pm

Programming begins in the Auditorium 7:30pm

Q+A to follow

If the adage is true that necessity is the mother of invention, then curiosity-driven research is the grandmother of the whole shebang. The internet, the cellphone, the PET scanner – or even further back – radio, penicillin, electricity: all these inventions and their impacts on our lives were made possible because of innovative people looking at scientific discoveries and asking, “What problem can I solve with this?”

How exactly does a scientist’s eureka moment turn into the internet, the satellite, the next generation of cancer therapy? Join a team of experts from TRIUMF, Canada’s particle accelerator centre, for an illuminating discussion that sheds light on the journey from our research to you.

The event will include a screening of “The Rarest Drug on Earth,” a short documentary that explores the possibility for TRIUMF to take up the reins as the world’s largest producer of actinium-225 (Ac-225), a radioisotope with promising potential as an anti-cancer therapy.

Hosted by science journalist Tim Lougheed, and featuring:

  • Kathryn Hayashi: President & CEO, TRIUMF Innovations
  • Morgan Dehnel: Founder and Chief Science & Innovation Officer, D-Pace
  • Beatrice Franke: TRIUMF Research Scientist – Physical Sciences
  • Andrew Robertson: PhD Student – Life Sciences

#discoverTHIS: La mère de l’invention

On dit que la nécessité est mère de l’invention. Si ce dicton est vrai, alors la curiosité qui alimente la recherche serait, elle, grand-mère de tout le processus. L’internet, le téléphone cellulaire, la tomographie par émission de positrons ou, si on remonte encore plus loin, la radio, la pénicilline et l’électricité, toutes ces inventions, qui ont changé nos vies, auraient été impossibles sans ces personnes innovatrices qui se sont intéressées aux découvertes scientifiques et qui se sont demandé quels problèmes elles pouvaient résoudre grâce à celles-ci. Mais comment l’éclair de génie d’un chercheur donne-t-il naissance à l’internet, au satellite ou à la nouvelle génération de traitement contre le cancer?

Joignez-vous à un groupe d’experts de TRIUMF, le Centre canadien d’accélération des particules, pour une discussion éclairante qui fera la lumière sur les étapes du processus, des chercheurs jusqu’à vous.

L’événement comprendra la projection du court documentaire The Rarest Drug on Earth, qui explore la possibilité que TRIUMF devienne le plus grand producteur mondial d’actinium-225 (AC-225), un radio-isotope prometteur dans le traitement contre le cancer.

La discussion, animée par le journaliste scientifique Tim Lougheed, mettra en vedette :

  • Kathryn Hayashi : présidente et directrice générale, TRIUMF Innovations
  • Morgan Dehnel : fondateur et agent en chef de la science et de l’innovation, D-Pace
  • Beatrice Franke : chercheuse scientifique chez TRIUMF – sciences physiques
  • Andrew Robertson : doctorant – sciences de la vie

Date and Time

Wed, 3 October 2018

7:30 PM – 9:00 PM EDT

Add to Calendar

Location

Canada Science and Technology Museum

1867 Saint Laurent Boulevard

Ottawa, ON K1G 5A3

View Map

Register here.

As for the Vancouver event, it’s titled ‘Catching Ghosts: Using Neutrinos to Unveil the Universe‘ and will be held at Science World at Telus World of Science (everyone calls it Science World) on October 23, 2018,

Catching Ghosts: Using Neutrinos to Unveil the Universe

On a clear night, away from the bright lights of Vancouver, you can see the incredible expanse of the universe before you. To study these far-away celestial bodies, scientists use a “radiation toolkit” to observe our universe and understand how the galaxies we see today came to be. Some types of radiation, such as infrared radiation, can sense stars in their infancy, not yet hot enough to shine visible light. Others, like x-rays and gamma rays, can reveal matter being sucked into a black hole.

When it comes to studying the nuclear processes in the heart of stars, scientists must turn to neutrinos: subatomic particles that are currently flying unbeknownst through your body by the billions, right this second. These elusive little particles are an excellent probe into the core of the sun and distant supernovae, but they are notoriously difficult to detect. Difficult, but not impossible.

On Tuesday, October 23, join Dr. Stanley Yen, TRIUMF Research Scientist, for his talk, Detecting the Ghost Particles of the Universe.

Date: October 23, 2018
Doors open at 6:30pm
Lecture begins at 7:00pm

Register

This lecture is presented in partnership by TRIUMF and Science World as part of the TRIUMF 50th Anniversary Unveiling the Universe Lecture Series.

Some may have noticed that I’m still referring to TRIUMF as Canada’s National Laboratory for Particle and Nuclear Physics. I know it has changed but I prefer it to the latest one, TRIUMF (Canada’s particle accelerator centre).

HR MacMillan Space Centre’s 50th anniversary

The centre has two upcoming celebratory events, here’s more from the ‘Life in the Universe’ event page,

Life in the Universe
An evening of music and astronomy

Join the H.R. MacMillan Space Centre in celebrating their 50th anniversary with a very special evening of music under the cosmic visuals of the Planetarium Star Theatre. Composer Thomas Beckman will be premiering an original work “Life in the Universe” inspired by the unique character of the planets in our solar system and the wonders of our Universe. The suite will be performed by Thomas Beckman and the Borealis String Quartet.

Thomas Beckman, CMC  [Canadian Music Centre] associate composer, has written for a wide range of ensembles that include the Borealis String Quartet, the Vancouver Symphony orchestra, the Prince George Symphony orchestra, the Postmodern Camerata and the Vancouver Youth Choir. For the past several years he has served as Festival Composer for the Artists for Conservation organization, as the in-house-composer for the Canadian Aboriginal AIDS Network and as a freelance film composer for several award-winning independent documentaries. With an MMus in western classical performance from the University of British Columbia, Thomas also serves as principal violist of the Vancouver Pops Symphony and the Prince George Symphony orchestra, and performs solo with his looping project for a number of events held by the H.R. MacMillan Space Centre, Semperviva Yoga studios, and the Vancouver Maritime Museum. Thomas’ latest project has been to create the Jean Coulthard Music Video series in collaboration with the Canadian Music Centre as a means to empower local composers in BC.

The Borealis Quartet was founded in Vancouver, British Columbia in the fall of 2000 and rapidly establishing a stellar reputation. The Borealis has toured extensively in North America, Europe and Asia and performed to enthusiastic sold-out audiences in major cities, including New York, Washington, DC, Los Angeles, San Francisco, Rome, Mainz, Shanghai, Taipei, Beijing, Toronto, Montreal, Ottawa and, of course, in their home town of Vancouver. http://www.borealisstringquartet.com/ 

TICKETS: $35 early bird tickets until October 5th, $40 after.
Tickets available online through Eventbrite until 12:00pm on October 19th.

Tickets available for 7:30pm and 9:00pm shows.

Beer and wine will be available for purchase.

This is a 19+ event. All attendees will be required to provide photo ID upon entry.

Get tickets here.

Their second event is more family-oriented (from the 50th Anniversary Celebration Weekend event page),

We’re turning 50 – help us celebrate! Bring the entire family out and enjoy our programming and special activities on Saturday and Sunday. Discover more about our past 50 years of science and space education as we pull some gems from our archives and explore how producing shows in the planetarium has changed over the decades. Share your memories of the Space Centre on our memory wall and create a card for Canadian astronaut David Saint-Jacques as he prepares for his mission to the International Space Station in December. We’ll be testing your knowledge with trivia questions before each show in the Planetarium Star Theatre and we’ll have a birthday treat for all to eat.

$5 for general admission and children under 5 are free.

We will be open from 10:00am – 5:00pm on Saturday and Sunday for the celebration with activities running from 10:30am – 4:30pm.

Event Details

October 20, 2018 – 10:00am to October 21, 2018 – 5:00pm

1968 seems to have been quite the sciencish year in Vancouver.

One last anniversary and this is a national one, the Royal Astronomical Society of Canada (RASC) is celebrating its sesquicentennial (150th) in 2018 just one year after the country’s sesquicentennial in 2017. First mentioned here in a July 2, 2018 posting about celebratory events in Toronto, There don’t seem to be any more events planned for this year but RASC’s 150th Anniversary webpage lists resources such as podcasts and more for you delectation.

What is happening with Alberta’s (Canada) Ingenuity Lab?

Alberta’s Ingenuity Lab (first mentioned here in a November 19, 2013 posting) seems to have been launched sometime in 2012 (or maybe 2013). It;s a province of Alberta initiative and at the time of I first heard of it I questioned the necessity for another nanotechnology institution in Alberta (or anywhere else in Canada for that matter).

Amuse bouche: a roundup of the Canadian nanotechnology scene

Since 2012/3 a great many things have changed. The National Institute of Nanotechnology (NINT) seems to have become almost completely dormant; the same can be said for Canada’s NanoPortal and nanoAlberta.

Adding to this brief roundup of the nanotechnology scene in Canada, the province of Alberta lists their various facilities on their Nanotechnology and microsystems webpage. As that page was last updated on 2012 you may find the information no longer viable.

A quick search for NanoQuébec yielded Prima Québec; Pôle recherche innovation matériaux avancés (that’s research for innovation and advanced materials; I think). Finally, there is still a Nano Ontario.

Should anyone know of a Canadian ‘nano’ institution that should be included, please do let me know in the ‘comments’.

Ingenuity Lab: Basics

The University of Alberta’s Faculty of Engineering’s Engineering Research webpage (copyright 2002-2018) describes the Ingenuity Lab this way,

ingenuity Lab (the Nanotechnology Accelerator) is a large scale ($100M), 10-year, multidisciplinary research and development initiative co-located at the Faculty of Engineering,  the University of Alberta and the National Institute for Nanotechnology. Led by chemical engineering professor and Canada Research Chair holder Carlo Montemagno, iNgenuity is focused on groundbreaking bionanotechnology advances and innovative business practices that will enable Alberta to become a world-leading centre for nanotechnology innovation. (www.ingenuitylab.ca)

That’s a very large enterprise by Canadian standards.

After a great deal of initial promotion for both the lab and its director, Dr. Carlo Montemagno, the lab settled into a pattern of making bold announcements, many of which I covered here,

The blog search engine here privileges titles containing the search term (in this case, Ingenuity Lab) first and then restarts, in date order, all of the other ‘nontitle’ mentions. (I stopped with the titles.)

Last year (2017), there was a major change at the Ingenuity Lab, the director, Dr. Carlo Montemagno, moved to Illinois to become the Chancellor for Southern Illinois University (SIU). Unfortunately, I did not receive any response from Dr. Montemagno to the interview questions I sent him, twice, via email. I also emailed, once, SIU’s chief marketing and communications, Rae Goldsmith. For the curious, here are the questions,

(1) What differences did you experience as a researcher between the Canadian approach to nanotechnology (the National Institute of Nanotechnology is one of the Canada National Research Council’s institute’s) and the US approach (National Nanotechnology Initiative, a central funding hub and research focus for the US government)?

(2) Will your experience in Canada affect how you approach your work at SIU? Assuming, there is some influence, how will that experience affect your work at SIU?

(3) What are you most proud of achieving while leading Alberta’s Ingenuity Lab?

(4) Could you reflect on the trends you see with regard to nanotechnology not just in Canada and/or the US but internationally too?

(5) Is there anything else you’d like to add?

My questions were pretty much puffballs. In the meantime, it seems Dr. Montemagno attracted some serious journalistic interest, from a February 21, 2018 article by Dawn Rhodes for the Chicago Tribune,

When Chancellor Carlo Montemagno took the helm at Southern Illinois University Carbondale in July [2017], he set to work on a plan to dismantle and rebuild academics at the struggling campus, which has hemorrhaged enrollment over the past several years. His idea was a bold one, rarely if ever attempted at a large public university: eliminate academic departments.

The plan drew ire as well as praise, opening some bitter fissures among faculty, students and staff. That discord seems to have grown in recent weeks, particularly as the chancellor has become embroiled in controversies that have intensified scrutiny of his leadership.

In January [2018], SIU student paper The Daily Egyptian revealed the university hired Montemagno’s daughter and son-in-law shortly after he assumed the chancellor post. The investigation showed that the couple’s work history traces the same path as Montemagno’s, with the pair having held jobs at the same institutions he worked at for the past decade.

There have also been complaints that Montemagno is too directly influencing other hiring at the university — which he denies.

Both issues are the subjects of separate ethics investigations, SIU system President Randy Dunn said.

Then on Thursday [February 15, 2018?], the chancellor said he used part of his relocation allotment from the university to help cover the costs of moving his daughter’s family to southern Illinois, as well, adding up to $16,076.45. Montemagno said “there was a misunderstanding about what could be covered in the move” so he picked up the tab for part of the added costs and reimbursed SIU for the remaining expense of moving his daughter’s household.

The revelation that the new chancellor’s family members received jobs at Southern Illinois, which cut dozens of positions just weeks before his arrival and in the midst of the two-year state budget impasse, irked many at the university. It also drew sharp retorts from a member of the Illinois Board of Higher Education.

In an interview Monday [February 19, 2018?], Montemagno said he recognized the optics of using part of his moving allowance for his daughter’s benefit and decided to pay back the university. But he said he never hid the fact that his family members were hired by SIU and he shrugged off criticism he has received in recent weeks. Although it caught some by surprise, SIU leaders had, in fact, approved the family hires as part of the chancellor’s hiring negotiations.

Rhodes’ article provides fascinating insight into the political struggles currently taking place at SIU. I encourage you to read the piece in its entirety if you have the time.

Ingenuity Lab: We are family

The appearance of Melissa Germain (Montemagno’s daughter) and her husband, Jeffrey Germain (Montemagno’s son-in-law), in the article was a bit of a surprise. Both were involved with the Ingenuity Lab. (I contacted Melissa Germain years ago to get on the lab’s media list to receive all their news releases. She agreed to put me on the list but I never received anything from them. Whether that was by accident or by design, I’ll never know. Jeff Germain was, for a time, the Ingenuity Lab’s interim director.)

Logically, this means that the University of Alberta hired not only Dr. Montemagno but also his daughter and son-in-law. As Rhodes’ article notes, it’s not unusual for faculty members to insist their spouses also be given jobs. The surprise here is that Montemagno’s daughter and her spouse were part of the deal, informal (SIU?) or otherwise (Alberta?).

In trying to find more information about the Ingenuity Lab’s budgets and financials (unsuccessful), I stumbled across the glassdoor.ca site (accessed March 5, 2018), which features some comments about the working environment at Alberta’s Ingenuity lab,

11 Jul, 2017

Helpful (1)

“Family Run Lab with Public Funding at the University of Alberta”
Current Employee – Anonymous Employee in Edmonton, AB
Doesn’t Recommend
Negative Outlook

I have been working at Ingenuity Lab full-time (More than a year)

Pros

-You will learn how to handle uncomfortable environment very well.
-There are some good researchers and staffs in the group.

Cons

– It is a public funded lab that controls by family members. This is not the issue for a private company, but it makes it really unacceptable for a public funded research group.
– The family members without required credentials can override any decision easily.
– The management team (the family members) spend lots of public funding for publicity
-Some of the group members bend easily with wind to stay … Show More

Advice to Management

-Presenting FALSE FACTS has expiry date! It is important to leave good name behind.
-Bringing family members without any credentials on board is not being wise.
– Just investing on gaining publicity is not enough. Nowadays, having output has the final say.

Share on Facebook
Share on Twitter
Share via Email
Copy Link

Other Employee Reviews for Ingenuity Lab

21 Mar, 2017

Helpful (3)
Ingenuity Lab Logo
“A family run business”

Former Employee – Anonymous in Edmonton, AB
Doesn’t Recommend
Negative Outlook

I worked at Ingenuity Lab full-time (More than a year)

Pros

Well funded lab with all the facilities located in the National Institute of Nanotechnology. The labs are at a great location and easy access to Tim Hortons.

Cons

All the administrative posts are filled with family members. No good communication between researchers and the director is surrounded by his trust worthy group of highly qualified politicians. The projects are all hypothetical and there is a lack of passion for hardcore fundamental research. They run as in commercial companies and does not belong in the NINT. They should relocate in the industrial areas of South Edmonton.

Advice to Management

Start publishing papers in peer reviewed journals rather than cheap publicity in local and national newspapers.

Share on Facebook
Share on Twitter
Share via Email
Copy Link

8 Feb, 2016

Helpful (2)
Ingenuity Lab Logo
“Clouded vision of ingenuity”
Former Employee – Anonymous Employee

I worked at Ingenuity Lab full-time (Less than a year)

Pros

Plenty of funding, this place will be in business for at least the next three years. Most of the people are a pleasure to be around.

Cons

There is noticeable friction between different team leads. Lack of information between groups has led to a few costly mistakes. It is run much more like a company than research group, results that can make money or be patent-able are the only goals.

Advice to Management

Ditch the yes-men family members that you have installed, and hire industrial trained scientists if you want the results you are looking for.

It’s hard to know if there is one disgruntled person waging a campaign or if there are three very unhappy people from a lab team of about 100 scientists. But the complaints are made several months apart, which suggests three people and generally where there’s one complain there are more, unvoiced complaints. Interestingly, all three complaints focus on the Ingenuity Lab as a ‘family-run’ enterprise. It seems that Montemagno, like a certain US president, prefers to work with his family.

According to this article in The New Economy, Montemagno came to Alberta because it offered an opportunity to conduct research in a progressive fashion,,

In 2012, Dr Montemagno was lured back to the world of research when the opportunity to lead a large-scale nanotechnology accelerator initiative in Alberta materialised. His background traversing agricultural and bioengineering, petroleum engineering, and nanotechnology made him an ideal choice to lead the exciting new programme. The opportunity was significant and he viewed Alberta as a land of opportunity with an entrepreneurial spirit; he decided to make the move to Canada. The vision of advancing technologies to solve grand challenges recaptured his imagination. The initiative is now branded as Ingenuity Lab. [emphases mine]

Located within the University of Alberta, Canada, Ingenuity Lab is an assembly of multi-disciplinary experts who work closely to develop technological advancements in ways that are not otherwise possible. Not only is Ingenuity Lab different to other initiatives in the way it operates its goal-orientated and holistic approach, but also in the progressive way it conducts research. In this model, limitations on creativity that surround the traditional university faculty model (which rewards individual success and internal competition) are overcome.[emphases mine]

Three (at least) employees seem to suggest otherwise. Still, there are situations where trusted colleagues, familial or not, migrate together from one employer to another. For example, Nigel Lockyer was the Director for TRIUMF (Canada’s particle accelerator centre; formerly, Canada’s National Laboratory for Particle and Nuclear Physics). He brought on board with him, Timothy Meyer someone with whom (I believe) he had a previous working/professional relationship. Lockyer is now the Director of the Fermilab (University of Chicago, Illinois, US) and guess who also works at the Fermilab? Lockyer and Meyer were quite successful at TRIUMF and they appear to be revitalizing the Fermi Lab, which until their tenure seemed moribund. (See: University of Chicago Sept. 27, 2017 news release: Nigel Lockyer appointed to second term as director of Fermilab; and Timothy Meyer’s profile page on the Fermilab website to confirm the biographical details for yourself.)

These days, the Ingenuity Lab (accessed March 5, 2017) lists Murray Gray, PhD, as their interim director. He is a professor emeritus from the University of Alberta. There is still an Ingenuity Lab website, Facebook account, and Twitter account. The Twitter account has been inactive since August 2017, their website is curiously empty, while the Facebook account boasts a relatively recent posting of a research paper.

Final thoughts

With all the money for science funding flying around, it seems like it might be time to start assessing the ROI (return on investment) for these projects and, perhaps, giving a closer eye to how it’s spent (oversight) in the first place. In Canada.

Other than an occasional provincial or federal audit that might or might not occur, is anyone providing consistent oversight for these multimillion dollar science investments? For example, the Canadian federal government recently announced $950M investment in five superclusters (see Feb. 15, 2018 Innovation, Science and Economic Development Canada news release). One of the superclusters has to do with supply chains and AI (artificial intelligence. Here’s what Paul Wells in a Feb. 15, 2018 article for Maclean’s observed,

The AI supply-chain group from, essentially, Montreal (wait! I guess I’m just guessing about that) is comically gnomic. I could find no name of any actual person or company anywhere on the website. Only a series of Zen riddles. “Over 120 industrial and enabling institutions, from very large firms to start-ups, have joined forces in this journey,” the website says helpfully, “and we have strong momentum.”

You can see it for yourself here. Who will be providing oversight? At what intervals? And, how?

In searching for further information about funding and budgets, I found this (in addition to the feedback from disgruntled Ingenuity Lab employees), Dr. Carlo Montemagno received $556,295.06 in compensation and $40,215.81 for ‘other’ in 2016 and $538,345.35 in compensation and $37,815.98 for ‘other’ in 2015 (accessed March 5, 2018).

The information about Dr. Montemagno’s salary and benefits can be found on the University of Alberta’s Human Resource Services public Sector Compensation Disclosure page. Presumably, the 2017 figures have not yet been released, as well, Montegmagno’s 2017 salary .may not be disclosed for the same reason neither Melissa Germain’s nor Jeffrey Germain’s salaries are disclosed,

The Alberta government’s Public Sector Compensation Transparency Act (2015) requires that the University of Alberta disclose the name, position, compensation, non-monetary benefits and severance for all employees whose total compensation plus severance exceeds an annual threshold [emphasis mine]. Remuneration paid to members of the Board of Governors will also be disclosed. Disclosure must be published annually on or before June 30th for compensation paid in the previous calendar year. Employees who terminated between January 1 and June 30 that received pay in lieu of notice, pay during a period of notice and/or severance pay and the total of those amounts exceeds the threshold will be included on the disclosure list each December. The disclosure list will identify the name and the amount of severance. Any other compensation will be reported on the next June’s disclosure.

The Public Sector Compensation Transparency Act applies to more than 150 agencies, boards, and commissions, to independent offices of the Alberta Legislature, and to employees of Convenant Health.

For questions or concerns, please contact Wayne Patterson, Executive Director, Human Resource Services.

There may have been a good reason for Montemagno’s compensation of over 1/2 million dollars per year, for 2015 and 2016 at least. Researchers are expected to bring in money through research grants. I found one funding announcement for $1.7M from Natural Resources* Canada on the Ingenuity Lab’s news release page (accessed March 5, 2018).

Oddly, Dr. Montemagno was appointed chancellor at SIU on July 13, 2017 and his start date was August 15, 2017 (July 13, 2017 SIU news release). That’s unusually fast for an academic institution for a position at that level. Not to mention Montemagno’s position in Alberta.

SIU is not the only place to inspire Montemagno to dream (eliminate academic departments from their university as per Rhodes’ article). He dreamt big for Alberta too. From an Oct. 30,2015 article by Gary Lamphier for the Edmonton Journal,

Faced with so many serious challenges, it’s no surprise Alberta’s oilpatch and its once-envied economy are sputtering, prompting gleeful outbreaks of schadenfreude from Vancouver to Toronto.

But what if Alberta could upend the basic economic paradigm [emphasis mine] in which it operates? Suppose Alberta could curb its carbon emissions, thus shedding its nasty environmental reputation and giving it the social licence needed to build new oil pipelines, while diversifying the economy at the same time?

Sound impossible? Don’t be so sure. That’s Carlo Montemagno’s dream, and the world-renowned director of Alberta’s Ingenuity Lab, who heads a team of about 100 scientists, has a bold plan to do it. It’s called the carbon transformation project, and he hopes to pull it off by the end of this decade. [emphases mine]

If it works, the scheme would capture the carbon dioxide (CO2) emitted at any one of dozens of Alberta industrial sites, from power plants to petrochemical facilities, without requiring any massive retrofits or the kind of multibillion-dollar investments associated with carbon sequestration.

Through a process employing artificial light, water and electricity, it would harness industrial CO2 emissions to create more than 70 commercially valuable carbon-containing chemicals, Montemagno says. Such chemicals could form the essential building blocks for dozens of consumer and industrial products, ranging from auto antifreeze and polyester fibres to food additives.

The plan is brilliant in its simplicity. Montemagno’s team aims to turn a bad thing — CO2 — into a good thing, one that creates value, wealth, and new jobs. And he hopes to do it without trashing Alberta’s existing oil-fired economy.

Instead, his concept involves simply tacking one more process onto the province’s industrial sites, thus creating valuable new feedstock for existing or new industries.

“If it all works, it means you can produce products you need to satisfy local economic needs, create more value from emissions, generate more revenue and more products,” says Montemagno, who has science degrees from Cornell University, Penn State, and a PhD in civil engineering and geological sciences from University of Notre Dame.

“The big argument today is, you burn fossil fuels and release CO2 into the atmosphere, and end up causing global warming,” he says.

“But the problem isn’t that you’re burning fossil fuels. The problem is you’re releasing CO2 into the atmosphere. So is there an opportunity to not release CO2 and instead capture and use it in other products? It’s really about stating the problem in the appropriate language.”

With funding from Alberta’s Climate Change and Emissions Management Corp., Ingenuity Lab is hard at work developing a $1.3-million demonstration project to prove the concept. Montemagno hopes to have an industrial-scale pilot project running in three to four years. [emphasis mine]

Montemagno certainly had an exciting plan. And, 2018 would be around the time someone might expect to see the “industrial-scale pilot project for carbon transformation” mentioned (2015 + three to four years) in Lamphier’s article. Where is it? When is it starting?

And now, Montemagno has some exciting plans for SIU?

 

With regard to hiring family members, the Chicago Sun-Time Editorial Board (Feb. 5, 2018 editorial) does not approve,

Here’s a pro tip for you chancellors at hard-up public universities who are thinking about hiring your own daughters:

Don’t do it.

Don’t hire your sons-in-law, either.

EDITORIAL

It looks bad, and nobody afterward will feel quite so confident that you are serious about getting your university’s finances in order and protecting important academic programs.

They might look at you, fairly or not, like you’re an old-time Chicago ward boss.

Carlo Montemagno was hired last year as chancellor at Southern Illinois University Carbondale. He makes $340,000 a year.

That’s a lot of money, but top university talent doesn’t come cheap, not even at a state university that has been forced to cut millions of dollars from its budget in recent years and has considered cutting seven degree programs.

Then, on Sept. 1, 2017, three months after Montemagno came on board, his daughter, Melissa Germain, was hired as assistant director of university communications, with an annual salary of $52,000. One month later, his son-in-law, Jeffrey Germain, was hired as “extra help” in the office of the vice chancellor for research, at $45 an hour.

Allow us to pause here to wonder why Montemagno, no stranger to the back-biting culture of university campuses, failed to foresee that this would become a minor flap. …

It didn’t seem to occur to the members of the Editorial Board that Montemagno had successfully pulled off this feat in Alberta before arriving at SIU. Also, they seem unaware he took a pay cut of over $100,000 ($340,000 USD = $437,996.28 CAD as of March 2, 2018). That’s an awfully big pay cut even if it is in Canadian dollars.

In any event, I wish the folks at SIU all the best and I hope Dr. Montemagno proves to be a successful and effective chancellor. (It doesn’t look good when you hire your family but it doesn’t necessarily mean it’s wrong and, as for output from the Ingenuity Lab, everyone has a least one mistake and one failure in their working careers. For good measure, sometimes something that looks like a failure turns out to be a success. However, I think some questions need to be asked.

I offer my thanks to the student reporters at SIU’s The Daily Egyptian , Dawn Rhodes, and the Chicago-Tribune Editorial Board whose investigative reporting and commentary supplied me with enough information to go back and reappraise what I ‘knew’ about the Ingenuity Lab.

As for the Ingenuity Lab, perhaps we’ll hear more about their Carbon transformation programme later this year (2018). Unfortunately, the current webpage does not have substantive updates. There are some videos but they seem more like wistful thinking than real life projects.

To answer my own question, What is happening with Alberta’s (Canada) Ingenuity Lab? The answer would seem to be, not much.

If they are cleaning up a mess and this looks like it might be the case, I hope they’re successful and can move forward with their projects. I would like to hear more about the Ingenuity Lab in the future.

*’Natural Resource Canada’ corrected to ‘Natural Resources Canada’ on April 25, 2018.

Canadian science policy news and doings (also: some US science envoy news)

I have a couple of notices from the Canadian Science Policy Centre (CSPC), a twitter feed, and an article in online magazine to thank for this bumper crop of news.

 Canadian Science Policy Centre: the conference

The 2017 Canadian Science Policy Conference to be held Nov. 1 – 3, 2017 in Ottawa, Ontario for the third year in a row has a super saver rate available until Sept. 3, 2017 according to an August 14, 2017 announcement (received via email).

Time is running out, you have until September 3rd until prices go up from the SuperSaver rate.

Savings off the regular price with the SuperSaver rate:
Up to 26% for General admission
Up to 29% for Academic/Non-Profit Organizations
Up to 40% for Students and Post-Docs

Before giving you the link to the registration page and assuming that you might want to check out what is on offer at the conference, here’s a link to the programme. They don’t seem to have any events celebrating Canada’s 150th anniversary although they do have a session titled, ‘The Next 150 years of Science in Canada: Embedding Equity, Delivering Diversity/Les 150 prochaine années de sciences au Canada:  Intégrer l’équité, promouvoir la diversité‘,

Enhancing equity, diversity, and inclusivity (EDI) in science, technology, engineering and math (STEM) has been described as being a human rights issue and an economic development issue by various individuals and organizations (e.g. OECD). Recent federal policy initiatives in Canada have focused on increasing participation of women (a designated under-represented group) in science through increased reporting, program changes, and institutional accountability. However, the Employment Equity Act requires employers to act to ensure the full representation of the three other designated groups: Aboriginal peoples, persons with disabilities and members of visible minorities. Significant structural and systemic barriers to full participation and employment in STEM for members of these groups still exist in Canadian institutions. Since data support the positive role of diversity in promoting innovation and economic development, failure to capture the full intellectual capacity of a diverse population limits provincial and national potential and progress in many areas. A diverse international panel of experts from designated groups will speak to the issue of accessibility and inclusion in STEM. In addition, the discussion will focus on evidence-based recommendations for policy initiatives that will promote full EDI in science in Canada to ensure local and national prosperity and progress for Canada over the next 150 years.

There’s also this list of speakers . Curiously, I don’t see Kirsty Duncan, Canada’s Minister of Science on the list, nor do I see any other politicians in the banner for their conference website  This divergence from the CSPC’s usual approach to promoting the conference is interesting.

Moving onto the conference, the organizers have added two panels to the programme (from the announcement received via email),

Friday, November 3, 2017
10:30AM-12:00PM
Open Science and Innovation
Organizer: Tiberius Brastaviceanu
Organization: ACES-CAKE

10:30AM- 12:00PM
The Scientific and Economic Benefits of Open Science
Organizer: Arij Al Chawaf
Organization: Structural Genomics

I think this is the first time there’s been a ‘Tiberius’ on this blog and teamed with the organization’s name, well, I just had to include it.

Finally, here’s the link to the registration page and a page that details travel deals.

Canadian Science Policy Conference: a compendium of documents and articles on Canada’s Chief Science Advisor and Ontario’s Chief Scientist and the pre-2018 budget submissions

The deadline for applications for the Chief Science Advisor position was extended to Feb. 2017 and so far, there’s no word as to whom it might be. Perhaps Minister of Science Kirsty Duncan wants to make a splash with a surprise announcement at the CSPC’s 2017 conference? As for Ontario’s Chief Scientist, this move will make province the third (?) to have a chief scientist, after Québec and Alberta. There is apparently one in Alberta but there doesn’t seem to be a government webpage and his LinkedIn profile doesn’t include this title. In any event, Dr. Fred Wrona is mentioned as the Alberta’s Chief Scientist in a May 31, 2017 Alberta government announcement. *ETA Aug. 25, 2017: I missed the Yukon, which has a Senior Science Advisor. The position is currently held by Dr. Aynslie Ogden.*

Getting back to the compendium, here’s the CSPC’s A Comprehensive Collection of Publications Regarding Canada’s Federal Chief Science Advisor and Ontario’s Chief Scientist webpage. Here’s a little background provided on the page,

On June 2nd, 2017, the House of Commons Standing Committee on Finance commenced the pre-budget consultation process for the 2018 Canadian Budget. These consultations provide Canadians the opportunity to communicate their priorities with a focus on Canadian productivity in the workplace and community in addition to entrepreneurial competitiveness. Organizations from across the country submitted their priorities on August 4th, 2017 to be selected as witness for the pre-budget hearings before the Committee in September 2017. The process will result in a report to be presented to the House of Commons in December 2017 and considered by the Minister of Finance in the 2018 Federal Budget.

NEWS & ANNOUNCEMENT

House of Commons- PRE-BUDGET CONSULTATIONS IN ADVANCE OF THE 2018 BUDGET

https://www.ourcommons.ca/Committees/en/FINA/StudyActivity?studyActivityId=9571255

CANADIANS ARE INVITED TO SHARE THEIR PRIORITIES FOR THE 2018 FEDERAL BUDGET

https://www.ourcommons.ca/DocumentViewer/en/42-1/FINA/news-release/9002784

The deadline for pre-2018 budget submissions was Aug. 4, 2017 and they haven’t yet scheduled any meetings although they are to be held in September. (People can meet with the Standing Committee on Finance in various locations across Canada to discuss their submissions.) I’m not sure where the CSPC got their list of ‘science’ submissions but it’s definitely worth checking as there are some odd omissions such as TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics)), Genome Canada, the Pan-Canadian Artificial Intelligence Strategy, CIFAR (Canadian Institute for Advanced Research), the Perimeter Institute, Canadian Light Source, etc.

Twitter and the Naylor Report under a microscope

This news came from University of British Columbia President Santa Ono’s twitter feed,

 I will join Jon [sic] Borrows and Janet Rossant on Sept 19 in Ottawa at a Mindshare event to discuss the importance of the Naylor Report

The Mindshare event Ono is referring to is being organized by Universities Canada (formerly the Association of Universities and Colleges of Canada) and the Institute for Research on Public Policy. It is titled, ‘The Naylor report under the microscope’. Here’s more from the event webpage,

Join Universities Canada and Policy Options for a lively discussion moderated by editor-in-chief Jennifer Ditchburn on the report from the Fundamental Science Review Panel and why research matters to Canadians.

Moderator

Jennifer Ditchburn, editor, Policy Options.

Jennifer Ditchburn

Editor-in-chief, Policy Options

Jennifer Ditchburn is the editor-in-chief of Policy Options, the online policy forum of the Institute for Research on Public Policy.  An award-winning parliamentary correspondent, Jennifer began her journalism career at the Canadian Press in Montreal as a reporter-editor during the lead-up to the 1995 referendum.  From 2001 and 2006 she was a national reporter with CBC TV on Parliament Hill, and in 2006 she returned to the Canadian Press.  She is a three-time winner of a National Newspaper Award:  twice in the politics category, and once in the breaking news category. In 2015 she was awarded the prestigious Charles Lynch Award for outstanding coverage of national issues. Jennifer has been a frequent contributor to television and radio public affairs programs, including CBC’s Power and Politics, the “At Issue” panel, and The Current. She holds a bachelor of arts from Concordia University, and a master of journalism from Carleton University.

@jenditchburn

Tuesday, September 19, 2017

 12-2 pm

Fairmont Château Laurier,  Laurier  Room
 1 Rideau Street, Ottawa

 rsvp@univcan.ca

I can’t tell if they’re offering lunch or if there is a cost associated with this event so you may want to contact the organizers.

As for the Naylor report, I posted a three-part series on June 8, 2017, which features my comments and the other comments I was able to find on the report:

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 1 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 2 of 3

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 3 of 3

One piece not mentioned in my three-part series is Paul Wells’ provocatively titled June 29, 2017 article for MacLean’s magazine, Why Canadian scientists aren’t happy (Note: Links have been removed),

Much hubbub this morning over two interviews Kirsty Duncan, the science minister, has given the papers. The subject is Canada’s Fundamental Science Review, commonly called the Naylor Report after David Naylor, the former University of Toronto president who was its main author.

Other authors include BlackBerry founder Mike Lazaridis, who has bankrolled much of the Waterloo renaissance, and Canadian Nobel physicist Arthur McDonald. It’s as blue-chip as a blue-chip panel could be.

Duncan appointed the panel a year ago. It’s her panel, delivered by her experts. Why does it not seem to be… getting anywhere? Why does it seem to have no champion in government? Therein lies a tale.

Note, first, that Duncan’s interviews—her first substantive comment on the report’s recommendations!—come nearly three months after its April release, which in turn came four months after Duncan asked Naylor to deliver his report, last December. (By March I had started to make fun of the Trudeau government in print for dragging its heels on the report’s release. That column was not widely appreciated in the government, I’m told.)

Anyway, the report was released, at an event attended by no representative of the Canadian government. Here’s the gist of what I wrote at the time:

 

Naylor’s “single most important recommendation” is a “rapid increase” in federal spending on “independent investigator-led research” instead of the “priority-driven targeted research” that two successive federal governments, Trudeau’s and Stephen Harper’s, have preferred in the last 8 or 10 federal budgets.

In English: Trudeau has imitated Harper in favouring high-profile, highly targeted research projects, on areas of study selected by political staffers in Ottawa, that are designed to attract star researchers from outside Canada so they can bolster the image of Canada as a research destination.

That’d be great if it wasn’t achieved by pruning budgets for the less spectacular research that most scientists do.

Naylor has numbers. “Between 2007-08 and 2015-16, the inflation-adjusted budgetary envelope for investigator-led research fell by 3 per cent while that for priority-driven research rose by 35 per cent,” he and his colleagues write. “As the number of researchers grew during this period, the real resources available per active researcher to do investigator-led research declined by about 35 per cent.”

And that’s not even taking into account the way two new programs—the $10-million-per-recipient Canada Excellence Research Chairs and the $1.5 billion Canada First Research Excellence Fund—are “further concentrating resources in the hands of smaller numbers of individuals and institutions.”

That’s the context for Duncan’s remarks. In the Globe, she says she agrees with Naylor on “the need for a research system that promotes equity and diversity, provides a better entry for early career researchers and is nimble in response to new scientific opportunities.” But she also “disagreed” with the call for a national advisory council that would give expert advice on the government’s entire science, research and innovation policy.

This is an asinine statement. When taking three months to read a report, it’s a good idea to read it. There is not a single line in Naylor’s overlong report that calls for the new body to make funding decisions. Its proposed name is NACRI, for National Advisory Council on Research and Innovation. A for Advisory. Its responsibilities, listed on Page 19 if you’re reading along at home, are restricted to “advice… evaluation… public reporting… advice… advice.”

Duncan also didn’t promise to meet Naylor’s requested funding levels: $386 million for research in the first year, growing to $1.3 billion in new money in the fourth year. That’s a big concern for researchers, who have been warning for a decade that two successive government’s—Harper’s and Trudeau’s—have been more interested in building new labs than in ensuring there’s money to do research in them.

The minister has talking points. She gave the same answer to both reporters about whether Naylor’s recommendations will be implemented in time for the next federal budget. “It takes time to turn the Queen Mary around,” she said. Twice. I’ll say it does: She’s reacting three days before Canada Day to a report that was written before Christmas. Which makes me worry when she says elected officials should be in charge of being nimble.

Here’s what’s going on.

The Naylor report represents Canadian research scientists’ side of a power struggle. The struggle has been continuing since Jean Chrétien left office. After early cuts, he presided for years over very large increases to the budgets of the main science granting councils. But since 2003, governments have preferred to put new funding dollars to targeted projects in applied sciences. …

Naylor wants that trend reversed, quickly. He is supported in that call by a frankly astonishingly broad coalition of university administrators and working researchers, who until his report were more often at odds. So you have the group representing Canada’s 15 largest research universities and the group representing all universities and a new group representing early-career researchers and, as far as I can tell, every Canadian scientist on Twitter. All backing Naylor. All fundamentally concerned that new money for research is of no particular interest if it does not back the best science as chosen by scientists, through peer review.

The competing model, the one preferred by governments of all stripes, might best be called superclusters. Very large investments into very large projects with loosely defined scientific objectives, whose real goal is to retain decorated veteran scientists and to improve the Canadian high-tech industry. Vast and sprawling labs and tech incubators, cabinet ministers nodding gravely as world leaders in sexy trendy fields sketch the golden path to Jobs of Tomorrow.

You see the imbalance. On one side, ribbons to cut. On the other, nerds experimenting on tapeworms. Kirsty Duncan, a shaky political performer, transparently a junior minister to the supercluster guy, with no deputy minister or department reporting to her, is in a structurally weak position: her title suggests she’s science’s emissary to the government, but she is not equipped to be anything more than government’s emissary to science.

A government that consistently buys into the market for intellectual capital at the very top of the price curve is a factory for producing white elephants. But don’t take my word for it. Ask Geoffrey Hinton [University of Toronto’s Geoffrey Hinton, a Canadian leader in machine learning].

“There is a lot of pressure to make things more applied; I think it’s a big mistake,” he said in 2015. “In the long run, curiosity-driven research just works better… Real breakthroughs come from people focusing on what they’re excited about.”

I keep saying this, like a broken record. If you want the science that changes the world, ask the scientists who’ve changed it how it gets made. This government claims to be interested in what scientists think. We’ll see.

Incisive and acerbic,  you may want to make time to read this article in its entirety.

Getting back to the ‘The Naylor report under the microscope’ event, I wonder if anyone will be as tough and direct as Wells. Going back even further, I wonder if this is why there’s no mention of Duncan as a speaker at the conference. It could go either way: surprise announcement of a Chief Science Advisor, as I first suggested, or avoidance of a potentially angry audience.

For anyone curious about Geoffrey Hinton, there’s more here in my March 31, 2017 post (scroll down about 20% of the way) and for more about the 2017 budget and allocations for targeted science projects there’s my March 24, 2017 post.

US science envoy quits

An Aug. 23, 2017article by Matthew Rosza for salon.com notes the resignation of one of the US science envoys,

President Donald Trump’s infamous response to the Charlottesville riots — namely, saying that both sides were to blame and that there were “very fine people” marching as white supremacists — has prompted yet another high profile resignation from his administration.

Daniel M. Kammen, who served as a science envoy for the State Department and focused on renewable energy development in the Middle East and Northern Africa, submitted a letter of resignation on Wednesday. Notably, he began the first letter of each paragraph with letters that spelled out I-M-P-E-A-C-H. That followed a letter earlier this month by writer Jhumpa Lahiri and actor Kal Penn to similarly spell R-E-S-I-S-T in their joint letter of resignation from the President’s Committee on Arts and Humanities.

Jeremy Berke’s Aug. 23, 2017 article for BusinessInsider.com provides a little more detail (Note: Links have been removed),

A State Department climate science envoy resigned Wednesday in a public letter posted on Twitter over what he says is President Donald Trump’s “attacks on the core values” of the United States with his response to violence in Charlottesville, Virginia.

“My decision to resign is in response to your attacks on the core values of the United States,” wrote Daniel Kammen, a professor of energy at the University of California, Berkeley, who was appointed as one five science envoys in 2016. “Your failure to condemn white supremacists and neo-Nazis has domestic and international ramifications.”

“Your actions to date have, sadly, harmed the quality of life in the United States, our standing abroad, and the sustainability of the planet,” Kammen writes.

Science envoys work with the State Department to establish and develop energy programs in countries around the world. Kammen specifically focused on renewable energy development in the Middle East and North Africa.

That’s it.

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 3 of 3

This is the final commentary on the report titled,(INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research). Part 1 of my commentary having provided some introductory material and first thoughts about the report, Part 2 offering more detailed thoughts; this part singles out ‘special cases’, sums up* my thoughts (circling back to ideas introduced in the first part), and offers link to other commentaries.

Special cases

Not all of the science funding in Canada is funneled through the four agencies designed for that purpose, (The Natural Sciences and Engineering Research Council (NSERC), Social Sciences and Humanities Research Council (SSHRC), Canadian Institutes of Health Research (CIHR) are known collectively as the tri-council funding agencies and are focused on disbursement of research funds received from the federal government. The fourth ‘pillar’ agency, the Canada Foundation for Innovation (CFI) is focused on funding for infrastructure and, technically speaking, is a 3rd party organization along with MITACS, CANARIE, the Perimeter Institute, and others.

In any event, there are also major research facilities and science initiatives which may receive direct funding from the federal government bypassing the funding agencies and, it would seem, peer review. For example, I featured this in my April 28, 2015 posting about the 2015 federal budget,

The $45 million announced for TRIUMF will support the laboratory’s role in accelerating science in Canada, an important investment in discovery research.

While the news about the CFI seems to have delighted a number of observers, it should be noted (as per Woodgett’s piece) that the $1.3B is to be paid out over six years ($220M per year, more or less) and the money won’t be disbursed until the 2017/18 fiscal year. As for the $45M designated for TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics), this is exciting news for the lab which seems to have bypassed the usual channels, as it has before, to receive its funding directly from the federal government. [emphases mine]

The Naylor report made this recommendation for Canada’s major research facilities, (MRF)

We heard from many who recommended that the federal government should manage its investments in “Big Science” in a more coordinated manner, with a cradle-to-grave perspective. The Panel agrees. Consistent with NACRI’s overall mandate, it should work closely with the CSA [Chief Science Advisor] in establishing a Standing Committee on Major Research Facilities (MRFs).

CFI defines a national research facility in the following way:

We define a national research facility as one that addresses the needs of a community of Canadian researchers representing a critical mass of users distributed across the country. This is done by providing shared access to substantial and advanced specialized equipment, services, resources, and scientific and technical personnel. The facility supports leading-edge research and technology development, and promotes the mobilization of knowledge and transfer of technology to society. A national research facility requires resource commitments well beyond the capacity of any one institution. A national research facility, whether single-sited, distributed or virtual, is specifically identified or recognized as serving pan-Canadian needs and its governance and management structures reflect this mandate.8

We accept this definition as appropriate for national research facilities to be considered by the Standing Committee on MRFs, but add that the committee should:

• define a capital investment or operating cost level above which such facilities are considered “major” and thus require oversight by this committee (e.g., defined so as to include the national MRFs proposed in Section 6.3: Compute Canada, Canadian Light Source, Canada’s National Design Network, Canadian Research Icebreaker Amundsen, International Vaccine Centre, Ocean Networks Canada, Ocean Tracking Network, and SNOLAB plus the TRIUMF facility); and

• consider international MRFs in which Canada has a significant role, such as astronomical telescopes of global significance.

The structure and function of this Special Standing Committee would closely track the proposal made in 2006 by former NSA [National Science Advisor] Dr Arthur Carty. We return to this topic in Chapter 6. For now, we observe that this approach would involve:

• a peer-reviewed decision on beginning an investment;

• a funded plan for the construction and operation of the facility, with continuing oversight by a peer specialist/agency review group for the specific facility;

• a plan for decommissioning; and

• a regular review scheduled to consider whether the facility still serves current needs.

We suggest that the committee have 10 members, with an eminent scientist as Chair. The members should include the CSA, two representatives from NACRI for liaison, and seven others. The other members should include Canadian and international scientists from a broad range of disciplines and experts on the construction, operation, and administration of MRFs. Consideration should be given to inviting the presidents of NRC [National Research Council of Canada] and CFI to serve as ex-officio members. The committee should be convened by the CSA, have access to the Secretariat associated with the CSA and NACRI, and report regularly to NACRI. (pp. 66-7 print; pp. 100-1 PDF)

I have the impression there’s been some ill feeling over the years regarding some of the major chunks of money given for ‘big science’. At a guess, direct appeals to a federal government that has no official mechanism for assessing the proposed ‘big science’ whether that means a major research facility (e.g., TRIUMF) or major science initiative (e.g., Pan Canadian Artificial Intelligence Strategy [keep reading to find out how I got the concept of a major science initiative wrong]) or 3rd party (MITACS) has seemed unfair to those who have to submit funding applications and go through vetting processes. This recommendation would seem to be an attempt to redress some of the issues.

Moving onto the third-party delivery and matching programs,

Three bodies in particular are the largest of these third-party organizations and illustrate the challenges of evaluating contribution agreements: Genome Canada, Mitacs, and Brain Canada. Genome Canada was created in 2000 at a time when many national genomics initiatives were being developed in the wake of the Human Genome Project. It emerged from a “bottom-up” design process driven by genomic scientists to complement existing programs by focusing on large-scale projects and technology platforms. Its funding model emphasized partnerships and matching funds to leverage federal commitments with the objective of rapidly ramping up genomics research in Canada.

This approach has been successful: Genome Canada has received $1.1 billion from the Government of Canada since its creation in 2000, and has raised over $1.6 billion through co-funding commitments, for a total investment in excess of $2.7 billion.34 The scale of Genome Canada’s funding programs allows it to support large-scale genomics research that the granting councils might otherwise not be able to fund. Genome Canada also supports a network of genomics technology and innovation centres with an emphasis on knowledge translation and has built domestic and international strategic partnerships. While its primary focus has been human health, it has also invested extensively in agriculture, forestry, fisheries, environment, and, more recently, oil and gas and mining— all with a view to the application and commercialization of genomic biotechnology.

Mitacs attracts, trains, and retains HQP [highly qualified personnel] in the Canadian research enterprise. Founded in 1999 as an NCE [Network Centre for Excellence], it was developed at a time when enrolments in graduate programs had flat-lined, and links between mathematics and industry were rare. Independent since 2011, Mitacs has focused on providing industrial research internships and postdoctoral fellowships, branching out beyond mathematics to all disciplines. It has leveraged funding effectively from the federal and provincial governments, industry, and not-for-profit organizations. It has also expanded internationally, providing two-way research mobility. Budget 2015 made Mitacs the single mechanism of federal support for postsecondary research internships with a total federal investment of $135.4 million over the next five years. This led to the wind-down of NSERC’s Industrial Postgraduate Scholarships Program. With matching from multiple other sources, Mitacs’ average annual budget is now $75 to $80 million. The organization aims to more than double the number of internships it funds to 10,000 per year by 2020.35

Finally, Brain Canada was created in 1998 (originally called NeuroScience Canada) to increase the scale of brain research funding in Canada and widen its scope with a view to encouraging interdisciplinary collaboration. In 2011 the federal government established the Canada Brain Research Fund to expand Brain Canada’s work, committing $100 million in new public investment for brain research to be matched 1:1 through contributions raised by Brain Canada. According to the STIC ‘State of the Nation’ 2014 report, Canada’s investment in neuroscience research is only about 40 per cent of that in the U.S. after adjusting for the size of the U.S. economy.36 Brain Canada may be filling a void left by declining success rates and flat funding at CIHR.

Recommendation and Elaboration

The Panel noted that, in general, third-party organizations for delivering research funding are particularly effective in leveraging funding from external partners. They fill important gaps in research funding and complement the work of the granting councils and CFI. At the same time, we questioned the overall efficiency of directing federal research funding through third-party organizations, noting that our consultations solicited mixed reactions. Some respondents favoured more overall funding concentrated in the agencies rather than diverting the funding to third-party entities. Others strongly supported the business models of these organizations.

We have indicated elsewhere that a system-wide review panel such as ours is not well-suited to examine these and other organizations subject to third-party agreements. We recommended instead in Chapter 4 that a new oversight body, NACRI, be created to provide expert advice and guidance on when a new entity might reasonably be supported by such an agreement. Here we make the case for enlisting NACRI in determining not just the desirability of initiating a new entity, but also whether contribution agreements should continue and, if so, on what terms.

The preceding sketches of three diverse organizations subject to contribution agreements help illustrate the rationale for this proposal. To underscore the challenges of adjudication, we elaborate briefly. Submissions highlighted that funding from Genome Canada has enabled fundamental discoveries to be made and important knowledge to be disseminated to the Canadian and international research communities. However, other experts suggested a bifurcation with CIHR or NSERC funding research-intensive development of novel technologies, while Genome Canada would focus on application (e.g., large-scale whole genome studies) and commercialization of existing technologies. From the Panel’s standpoint, these observations underscore the subtleties of determining where and how Genome Canada’s mandate overlaps and departs from that of CIHR and NSERC as well as CFI. Added to the complexity of any assessment is Genome Canada’s meaningful role in providing large-scale infrastructure grants and its commercialization program. Mitacs, even more than Genome Canada, bridges beyond academe to the private and non-profit sectors, again highlighting the advantage of having any review overseen by a body with representatives from both spheres. Finally, as did the other two entities, Brain Canada won plaudits, but some interchanges saw discussants ask when and whether it might be more efficient to flow this type of funding on a programmatic basis through CIHR.

We emphasize that the Panel’s intent here is neither to signal agreement nor disagreement with any of these submissions or discussions. We simply wish to highlight that decisions about ongoing funding will involve expert judgments informed by deep expertise in the relevant research areas and, in two of these examples, an ability to bridge from research to innovation and from extramural independent research to the private and non-profit sectors. Under current arrangements, management consulting firms and public servants drive the review and decision-making processes. Our position is that oversight by NACRI and stronger reliance on advice from content experts would be prudent given the sums involved and the nature of the issues. (pp. 102-4 print; pp. 136-8 PDF)

I wasn’t able to find anything other than this about major science initiatives (MSIs),

Big Science facilities, such as MSIs, have had particular challenges in securing ongoing stable operating support. Such facilities often have national or international missions. We termed them “major research facilities” (MRFs) xi in Chapter 4, and proposed an improved oversight mechanism that would provide lifecycle stewardship of these national science resources, starting with the decision to build them in the first instance. (p. 132 print; p. 166 PDF)

So, an MSI is an MRF? (head shaking) Why two terms for the same thing? And, how does the newly announced Pan Canadian Artificial Intelligence Strategy fit into the grand scheme of things?

The last ‘special case’ I’m featuring is the ‘Programme for Research Chairs for Excellent Scholars and Scientists’. Here’s what the report had to say about the state of affairs,

The major sources of federal funding for researcher salary support are the CRC [Canada Research Chair]and CERC [Canada Excellence Reseach Chair] programs. While some salary support is provided through council-specific programs, these investments have been declining over time. The Panel supports program simplification but, as noted in Chapter 5, we are concerned about the gaps created by the elimination of these personnel awards. While we focus here on the CRC and CERC programs because of their size, profile, and impact, our recommendations will reflect these concerns.

The CRC program was launched in 2000 and remains the Government of Canada’s flagship initiative to keep Canada among the world’s leading countries in higher education R&D. The program has created 2,000 research professorships across Canada with the stated aim “to attract and retain some of the world’s most accomplished and promising minds”5 as part of an effort to curtail the potential academic brain drain to the U.S. and elsewhere. The program is a tri-council initiative with most Chairs allocated to eligible institutions based on the national proportion of total research grant funding they receive from the three granting councils. The vast majority of Chairs are distributed based on area of research, of which 45 per cent align with NSERC, 35 per cent with CIHR, and 20 per cent with SSHRC; an additional special allocation of 120 Chairs can be used in the area of research chosen by the universities receiving the Chairs. There are two types of Chairs: Tier 1 Chairs are intended for outstanding researchers who are recognized as world leaders in their fields and are renewable; Tier 2 Chairs are targeted at exceptional emerging researchers with the potential to become leaders in their field and can be renewed once. Awards are paid directly to the universities and are valued at $200,000 annually for seven years (Tier 1) or $100,000 annually for five years (Tier 2). The program notes that Tier 2 Chairs are not meant to be a feeder group for Tier 1 Chairs; rather, universities are expected to develop a succession plan for their Tier 2 Chairs.

The CERC program was established in 2008 with the expressed aim of “support[ing] Canadian universities in their efforts to build on Canada’s growing reputation as a global leader in research and innovation.”6 The program aims to award world-renowned researchers and their teams with up to $10 million over seven years to establish ambitious research programs at Canadian universities, making these awards among the most prestigious and generous available internationally. There are currently 27 CERCs with funding available to support up to 30 Chairs, which are awarded in the priority areas established by the federal government. The awards, which are not renewable, require 1:1 matching funds from the host institution, and all degree-granting institutions that receive tri-council funding are eligible to compete. Both the CERC and CRC programs are open to Canadians and foreign citizens. However, until the most recent round, the CERCs have been constrained to the government’s STEM-related priorities; this has limited their availability to scholars and scientists from SSHRC-related disciplines. As well, even though Canadian-based researchers are eligible for CERC awards, the practice has clearly been to use them for international recruitment with every award to date going to researchers from abroad.

Similar to research training support, the funding for salary support to researchers and scholars is a significant proportion of total federal research investments, but relatively small with respect to the research ecosystem as a whole. There are more than 45,000 professors and teaching staff at Canada’s universities7 and a very small fraction hold these awards. Nevertheless, the programs can support research excellence by repatriating top Canadian talent from abroad and by recruiting and retaining top international talent in Canada.

The programs can also lead by example in promoting equity and diversity in the research enterprise. Unfortunately, both the CRC and CERC programs suffer from serious challenges regarding equity and diversity, as described in Chapter 5. Both programs have been criticized in particular for under-recruitment of women.

While the CERC program has recruited exclusively from outside Canada, the CRC program has shown declining performance in that regard. A 2016 evaluation of the CRC program8  observed that a rising number of chairholders were held by nominees who originated from within the host institution (57.5 per cent), and another 14.4 per cent had been recruited from other Canadian institutions. The Panel acknowledges that some of these awards may be important to retaining Canadian talent. However, we were also advised in our consultations that CRCs are being used with some frequency to offset salaries as part of regular faculty complement planning.

The evaluation further found that 28.1 per cent of current chairholders had been recruited from abroad, a decline from 32 per cent in the 2010 evaluation. That decline appears set to continue. The evaluation reported that “foreign nominees accounted, on average, for 13 per cent and 15 per cent respectively of new Tier 1 and Tier 2 nominees over the five-year period 2010 to 2014”, terming it a “large decrease” from 2005 to 2009 when the averages respectively were 32 per cent and 31 per cent. As well, between 2010-11 and 2014-15, the attrition rate for chairholders recruited from abroad was 75 per cent higher than for Canadian chairholders, indicating that the program is also falling short in its ability to retain international talent.9

One important factor here appears to be the value of the CRC awards. While they were generous in 2000, their value has remained unchanged for some 17 years, making it increasingly difficult to offer the level of support that world-leading research professors require. The diminishing real value of the awards also means that Chair positions are becoming less distinguishable from regular faculty positions, threatening the program’s relevance and effectiveness. To rejuvenate this program and make it relevant for recruitment and retention of top talent, it seems logical to take two steps:

• ask the granting councils and the Chairs Secretariat to work with universities in developing a plan to restore the effectiveness of these awards; and

• once that plan is approved, increase the award values by 35 per cent, thereby restoring the awards to their original value and making them internationally competitive once again.

In addition, the Panel observes that the original goal was for the program to fund 2,000 Chairs. Due to turnover and delays in filling Chair positions, approximately 10 to 15 per cent of them are unoccupied at any one time.i As a result, the program budget was reduced by $35 million in 2012. However, the occupancy rate has continued to decline since then, with an all-time low of only 1,612 Chair positions (80.6 per cent) filled as of December 2016. The Panel is dismayed by this inefficiency, especially at a time when Tier 2 Chairs remain one of the only external sources of salary support for ECRs [early career researchers]—a group that represents the future of Canadian research and scholarship. (pp. 142-4 print; pp. 176-8 PDF)

I think what you can see as a partial subtext in this report and which I’m attempting to highlight here in ‘special cases’ is a balancing act between supporting a broad range of research inquiries and focusing or pouring huge sums of money into ‘important’ research inquiries for high impact outcomes.

Final comments

There are many things to commend this report including the writing style. The notion that more coordination is needed amongst the various granting agencies, that greater recognition (i.e,, encouragement and funding opportunities) should be given to boundary-crossing research, and that we need to do more interprovincial collaboration is welcome. And yes, they want more money too. (That request is perfectly predictable. When was the last time a report suggested less funding?) Perhaps more tellingly, the request for money is buttressed with a plea to make it partisan-proof. In short, that funding doesn’t keep changing with the political tides.

One area that was not specifically mentioned, except when discussing prizes, was mathematics. I found that a bit surprising given how important the field of mathematics is to  to virtually all the ‘sciences’. A 2013 report, Spotlight on Science, suggests there’s a problem(as noted my Oct. 9, 2013 posting about that report,  (I also mention Canada’s PISA scores [Programme for International Student Assessment] by the OECD [Organization for Economic Cooperation and Development], which consistently show Canadian students at the age of 15 [grade 10] do well) ,

… it appears that we have high drop out rates in the sciences and maths, from an Oct. 8, 2013 news item on the CBC (Canadian Broadcasting Corporation) website,

… Canadians are paying a heavy price for the fact that less than 50 per cent of Canadian high school students graduate with senior courses in science, technology, engineering and math (STEM) at a time when 70 per cent of Canada’s top jobs require an education in those fields, said report released by the science education advocacy group Let’s Talk Science and the pharmaceutical company Amgen Canada.

Spotlight on Science Learning 2013 compiles publicly available information about individual and societal costs of students dropping out STEM courses early.

Even though most provinces only require math and science courses until Grade 10, the report [Spotlight on Science published by Let’s Talk Science and pharmaceutical company Amgen Canada) found students without Grade 12 math could expect to be excluded from 40 to 75 per cent of programs at Canadian universities, and students without Grade 11 could expect to be excluded from half of community college programs. [emphasis mine]

While I realize that education wasn’t the panel’s mandate they do reference the topic  elsewhere and while secondary education is a provincial responsibility there is a direct relationship between it and postsecondary education.

On the lack of imagination front, there was some mention of our aging population but not much planning or discussion about integrating older researchers into the grand scheme of things. It’s all very well to talk about the aging population but shouldn’t we start introducing these ideas into more of our discussions on such topics as research rather than only those discussions focused on aging?

Continuing on with the lack of  imagination and lack of forethought, I was not able to find any mention of independent scholars. The assumption, as always, is that one is affiliated with an institution. Given the ways in which our work world is changing with fewer jobs at the institutional level, it seems the panel was not focused on important and fra reaching trends. Also, there was no mention of technologies, such as artificial intelligence, that could affect basic research. One other thing from my wish list, which didn’t get mentioned, art/science or SciArt. Although that really would have been reaching.

Weirdly, one of the topics the panel did note, the pitiifull lack of interprovincial scientific collaboration, was completely ignored when it came time for recommendations.

Should you spot any errors in this commentary, please do drop me a comment.

Other responses to the report:

Nassif Ghoussoub (Piece of Mind blog; he’s a professor mathematics at the University of British Columbia; he attended one of the roundtable discussions held by the panel). As you might expect, he focuses on the money end of things in his May 1, 2017 posting.

You can find a series of essays about the report here under the title Response to Naylor Panel Report ** on the Canadian Science Policy Centre website.

There’s also this May 31, 2017 opinion piece by Jamie Cassels for The Vancouver Sun exhorting us to go forth collaborate internationally, presumably with added funding for the University of Victoria of which Cassels is the president and vice-chancellor. He seems not to have noticed that Canadian do much more poorly with interprovincial collaboration.

*ETA June 21, 2017: I’ve just stumbled across Ivan Semeniuk’s April 10, 2017 analysis (Globe and Mail newspaper) of the report. It’s substantive and well worth checking out.*

Again, here’s a link to the other parts:

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report) Commentaries

Part 1

Part 2

*’up’ added on June 8, 2017 at 15:10 hours PDT.

**’Science Funding Review Panel Repor’t was changed to ‘Responses to Naylor Panel Report’ on June 22, 2017.