Tag Archives: CERC

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report): 3 of 3

This is the final commentary on the report titled,(INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research). Part 1 of my commentary having provided some introductory material and first thoughts about the report, Part 2 offering more detailed thoughts; this part singles out ‘special cases’, sums up* my thoughts (circling back to ideas introduced in the first part), and offers link to other commentaries.

Special cases

Not all of the science funding in Canada is funneled through the four agencies designed for that purpose, (The Natural Sciences and Engineering Research Council (NSERC), Social Sciences and Humanities Research Council (SSHRC), Canadian Institutes of Health Research (CIHR) are known collectively as the tri-council funding agencies and are focused on disbursement of research funds received from the federal government. The fourth ‘pillar’ agency, the Canada Foundation for Innovation (CFI) is focused on funding for infrastructure and, technically speaking, is a 3rd party organization along with MITACS, CANARIE, the Perimeter Institute, and others.

In any event, there are also major research facilities and science initiatives which may receive direct funding from the federal government bypassing the funding agencies and, it would seem, peer review. For example, I featured this in my April 28, 2015 posting about the 2015 federal budget,

The $45 million announced for TRIUMF will support the laboratory’s role in accelerating science in Canada, an important investment in discovery research.

While the news about the CFI seems to have delighted a number of observers, it should be noted (as per Woodgett’s piece) that the $1.3B is to be paid out over six years ($220M per year, more or less) and the money won’t be disbursed until the 2017/18 fiscal year. As for the $45M designated for TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics), this is exciting news for the lab which seems to have bypassed the usual channels, as it has before, to receive its funding directly from the federal government. [emphases mine]

The Naylor report made this recommendation for Canada’s major research facilities, (MRF)

We heard from many who recommended that the federal government should manage its investments in “Big Science” in a more coordinated manner, with a cradle-to-grave perspective. The Panel agrees. Consistent with NACRI’s overall mandate, it should work closely with the CSA [Chief Science Advisor] in establishing a Standing Committee on Major Research Facilities (MRFs).

CFI defines a national research facility in the following way:

We define a national research facility as one that addresses the needs of a community of Canadian researchers representing a critical mass of users distributed across the country. This is done by providing shared access to substantial and advanced specialized equipment, services, resources, and scientific and technical personnel. The facility supports leading-edge research and technology development, and promotes the mobilization of knowledge and transfer of technology to society. A national research facility requires resource commitments well beyond the capacity of any one institution. A national research facility, whether single-sited, distributed or virtual, is specifically identified or recognized as serving pan-Canadian needs and its governance and management structures reflect this mandate.8

We accept this definition as appropriate for national research facilities to be considered by the Standing Committee on MRFs, but add that the committee should:

• define a capital investment or operating cost level above which such facilities are considered “major” and thus require oversight by this committee (e.g., defined so as to include the national MRFs proposed in Section 6.3: Compute Canada, Canadian Light Source, Canada’s National Design Network, Canadian Research Icebreaker Amundsen, International Vaccine Centre, Ocean Networks Canada, Ocean Tracking Network, and SNOLAB plus the TRIUMF facility); and

• consider international MRFs in which Canada has a significant role, such as astronomical telescopes of global significance.

The structure and function of this Special Standing Committee would closely track the proposal made in 2006 by former NSA [National Science Advisor] Dr Arthur Carty. We return to this topic in Chapter 6. For now, we observe that this approach would involve:

• a peer-reviewed decision on beginning an investment;

• a funded plan for the construction and operation of the facility, with continuing oversight by a peer specialist/agency review group for the specific facility;

• a plan for decommissioning; and

• a regular review scheduled to consider whether the facility still serves current needs.

We suggest that the committee have 10 members, with an eminent scientist as Chair. The members should include the CSA, two representatives from NACRI for liaison, and seven others. The other members should include Canadian and international scientists from a broad range of disciplines and experts on the construction, operation, and administration of MRFs. Consideration should be given to inviting the presidents of NRC [National Research Council of Canada] and CFI to serve as ex-officio members. The committee should be convened by the CSA, have access to the Secretariat associated with the CSA and NACRI, and report regularly to NACRI. (pp. 66-7 print; pp. 100-1 PDF)

I have the impression there’s been some ill feeling over the years regarding some of the major chunks of money given for ‘big science’. At a guess, direct appeals to a federal government that has no official mechanism for assessing the proposed ‘big science’ whether that means a major research facility (e.g., TRIUMF) or major science initiative (e.g., Pan Canadian Artificial Intelligence Strategy [keep reading to find out how I got the concept of a major science initiative wrong]) or 3rd party (MITACS) has seemed unfair to those who have to submit funding applications and go through vetting processes. This recommendation would seem to be an attempt to redress some of the issues.

Moving onto the third-party delivery and matching programs,

Three bodies in particular are the largest of these third-party organizations and illustrate the challenges of evaluating contribution agreements: Genome Canada, Mitacs, and Brain Canada. Genome Canada was created in 2000 at a time when many national genomics initiatives were being developed in the wake of the Human Genome Project. It emerged from a “bottom-up” design process driven by genomic scientists to complement existing programs by focusing on large-scale projects and technology platforms. Its funding model emphasized partnerships and matching funds to leverage federal commitments with the objective of rapidly ramping up genomics research in Canada.

This approach has been successful: Genome Canada has received $1.1 billion from the Government of Canada since its creation in 2000, and has raised over $1.6 billion through co-funding commitments, for a total investment in excess of $2.7 billion.34 The scale of Genome Canada’s funding programs allows it to support large-scale genomics research that the granting councils might otherwise not be able to fund. Genome Canada also supports a network of genomics technology and innovation centres with an emphasis on knowledge translation and has built domestic and international strategic partnerships. While its primary focus has been human health, it has also invested extensively in agriculture, forestry, fisheries, environment, and, more recently, oil and gas and mining— all with a view to the application and commercialization of genomic biotechnology.

Mitacs attracts, trains, and retains HQP [highly qualified personnel] in the Canadian research enterprise. Founded in 1999 as an NCE [Network Centre for Excellence], it was developed at a time when enrolments in graduate programs had flat-lined, and links between mathematics and industry were rare. Independent since 2011, Mitacs has focused on providing industrial research internships and postdoctoral fellowships, branching out beyond mathematics to all disciplines. It has leveraged funding effectively from the federal and provincial governments, industry, and not-for-profit organizations. It has also expanded internationally, providing two-way research mobility. Budget 2015 made Mitacs the single mechanism of federal support for postsecondary research internships with a total federal investment of $135.4 million over the next five years. This led to the wind-down of NSERC’s Industrial Postgraduate Scholarships Program. With matching from multiple other sources, Mitacs’ average annual budget is now $75 to $80 million. The organization aims to more than double the number of internships it funds to 10,000 per year by 2020.35

Finally, Brain Canada was created in 1998 (originally called NeuroScience Canada) to increase the scale of brain research funding in Canada and widen its scope with a view to encouraging interdisciplinary collaboration. In 2011 the federal government established the Canada Brain Research Fund to expand Brain Canada’s work, committing $100 million in new public investment for brain research to be matched 1:1 through contributions raised by Brain Canada. According to the STIC ‘State of the Nation’ 2014 report, Canada’s investment in neuroscience research is only about 40 per cent of that in the U.S. after adjusting for the size of the U.S. economy.36 Brain Canada may be filling a void left by declining success rates and flat funding at CIHR.

Recommendation and Elaboration

The Panel noted that, in general, third-party organizations for delivering research funding are particularly effective in leveraging funding from external partners. They fill important gaps in research funding and complement the work of the granting councils and CFI. At the same time, we questioned the overall efficiency of directing federal research funding through third-party organizations, noting that our consultations solicited mixed reactions. Some respondents favoured more overall funding concentrated in the agencies rather than diverting the funding to third-party entities. Others strongly supported the business models of these organizations.

We have indicated elsewhere that a system-wide review panel such as ours is not well-suited to examine these and other organizations subject to third-party agreements. We recommended instead in Chapter 4 that a new oversight body, NACRI, be created to provide expert advice and guidance on when a new entity might reasonably be supported by such an agreement. Here we make the case for enlisting NACRI in determining not just the desirability of initiating a new entity, but also whether contribution agreements should continue and, if so, on what terms.

The preceding sketches of three diverse organizations subject to contribution agreements help illustrate the rationale for this proposal. To underscore the challenges of adjudication, we elaborate briefly. Submissions highlighted that funding from Genome Canada has enabled fundamental discoveries to be made and important knowledge to be disseminated to the Canadian and international research communities. However, other experts suggested a bifurcation with CIHR or NSERC funding research-intensive development of novel technologies, while Genome Canada would focus on application (e.g., large-scale whole genome studies) and commercialization of existing technologies. From the Panel’s standpoint, these observations underscore the subtleties of determining where and how Genome Canada’s mandate overlaps and departs from that of CIHR and NSERC as well as CFI. Added to the complexity of any assessment is Genome Canada’s meaningful role in providing large-scale infrastructure grants and its commercialization program. Mitacs, even more than Genome Canada, bridges beyond academe to the private and non-profit sectors, again highlighting the advantage of having any review overseen by a body with representatives from both spheres. Finally, as did the other two entities, Brain Canada won plaudits, but some interchanges saw discussants ask when and whether it might be more efficient to flow this type of funding on a programmatic basis through CIHR.

We emphasize that the Panel’s intent here is neither to signal agreement nor disagreement with any of these submissions or discussions. We simply wish to highlight that decisions about ongoing funding will involve expert judgments informed by deep expertise in the relevant research areas and, in two of these examples, an ability to bridge from research to innovation and from extramural independent research to the private and non-profit sectors. Under current arrangements, management consulting firms and public servants drive the review and decision-making processes. Our position is that oversight by NACRI and stronger reliance on advice from content experts would be prudent given the sums involved and the nature of the issues. (pp. 102-4 print; pp. 136-8 PDF)

I wasn’t able to find anything other than this about major science initiatives (MSIs),

Big Science facilities, such as MSIs, have had particular challenges in securing ongoing stable operating support. Such facilities often have national or international missions. We termed them “major research facilities” (MRFs) xi in Chapter 4, and proposed an improved oversight mechanism that would provide lifecycle stewardship of these national science resources, starting with the decision to build them in the first instance. (p. 132 print; p. 166 PDF)

So, an MSI is an MRF? (head shaking) Why two terms for the same thing? And, how does the newly announced Pan Canadian Artificial Intelligence Strategy fit into the grand scheme of things?

The last ‘special case’ I’m featuring is the ‘Programme for Research Chairs for Excellent Scholars and Scientists’. Here’s what the report had to say about the state of affairs,

The major sources of federal funding for researcher salary support are the CRC [Canada Research Chair]and CERC [Canada Excellence Reseach Chair] programs. While some salary support is provided through council-specific programs, these investments have been declining over time. The Panel supports program simplification but, as noted in Chapter 5, we are concerned about the gaps created by the elimination of these personnel awards. While we focus here on the CRC and CERC programs because of their size, profile, and impact, our recommendations will reflect these concerns.

The CRC program was launched in 2000 and remains the Government of Canada’s flagship initiative to keep Canada among the world’s leading countries in higher education R&D. The program has created 2,000 research professorships across Canada with the stated aim “to attract and retain some of the world’s most accomplished and promising minds”5 as part of an effort to curtail the potential academic brain drain to the U.S. and elsewhere. The program is a tri-council initiative with most Chairs allocated to eligible institutions based on the national proportion of total research grant funding they receive from the three granting councils. The vast majority of Chairs are distributed based on area of research, of which 45 per cent align with NSERC, 35 per cent with CIHR, and 20 per cent with SSHRC; an additional special allocation of 120 Chairs can be used in the area of research chosen by the universities receiving the Chairs. There are two types of Chairs: Tier 1 Chairs are intended for outstanding researchers who are recognized as world leaders in their fields and are renewable; Tier 2 Chairs are targeted at exceptional emerging researchers with the potential to become leaders in their field and can be renewed once. Awards are paid directly to the universities and are valued at $200,000 annually for seven years (Tier 1) or $100,000 annually for five years (Tier 2). The program notes that Tier 2 Chairs are not meant to be a feeder group for Tier 1 Chairs; rather, universities are expected to develop a succession plan for their Tier 2 Chairs.

The CERC program was established in 2008 with the expressed aim of “support[ing] Canadian universities in their efforts to build on Canada’s growing reputation as a global leader in research and innovation.”6 The program aims to award world-renowned researchers and their teams with up to $10 million over seven years to establish ambitious research programs at Canadian universities, making these awards among the most prestigious and generous available internationally. There are currently 27 CERCs with funding available to support up to 30 Chairs, which are awarded in the priority areas established by the federal government. The awards, which are not renewable, require 1:1 matching funds from the host institution, and all degree-granting institutions that receive tri-council funding are eligible to compete. Both the CERC and CRC programs are open to Canadians and foreign citizens. However, until the most recent round, the CERCs have been constrained to the government’s STEM-related priorities; this has limited their availability to scholars and scientists from SSHRC-related disciplines. As well, even though Canadian-based researchers are eligible for CERC awards, the practice has clearly been to use them for international recruitment with every award to date going to researchers from abroad.

Similar to research training support, the funding for salary support to researchers and scholars is a significant proportion of total federal research investments, but relatively small with respect to the research ecosystem as a whole. There are more than 45,000 professors and teaching staff at Canada’s universities7 and a very small fraction hold these awards. Nevertheless, the programs can support research excellence by repatriating top Canadian talent from abroad and by recruiting and retaining top international talent in Canada.

The programs can also lead by example in promoting equity and diversity in the research enterprise. Unfortunately, both the CRC and CERC programs suffer from serious challenges regarding equity and diversity, as described in Chapter 5. Both programs have been criticized in particular for under-recruitment of women.

While the CERC program has recruited exclusively from outside Canada, the CRC program has shown declining performance in that regard. A 2016 evaluation of the CRC program8  observed that a rising number of chairholders were held by nominees who originated from within the host institution (57.5 per cent), and another 14.4 per cent had been recruited from other Canadian institutions. The Panel acknowledges that some of these awards may be important to retaining Canadian talent. However, we were also advised in our consultations that CRCs are being used with some frequency to offset salaries as part of regular faculty complement planning.

The evaluation further found that 28.1 per cent of current chairholders had been recruited from abroad, a decline from 32 per cent in the 2010 evaluation. That decline appears set to continue. The evaluation reported that “foreign nominees accounted, on average, for 13 per cent and 15 per cent respectively of new Tier 1 and Tier 2 nominees over the five-year period 2010 to 2014”, terming it a “large decrease” from 2005 to 2009 when the averages respectively were 32 per cent and 31 per cent. As well, between 2010-11 and 2014-15, the attrition rate for chairholders recruited from abroad was 75 per cent higher than for Canadian chairholders, indicating that the program is also falling short in its ability to retain international talent.9

One important factor here appears to be the value of the CRC awards. While they were generous in 2000, their value has remained unchanged for some 17 years, making it increasingly difficult to offer the level of support that world-leading research professors require. The diminishing real value of the awards also means that Chair positions are becoming less distinguishable from regular faculty positions, threatening the program’s relevance and effectiveness. To rejuvenate this program and make it relevant for recruitment and retention of top talent, it seems logical to take two steps:

• ask the granting councils and the Chairs Secretariat to work with universities in developing a plan to restore the effectiveness of these awards; and

• once that plan is approved, increase the award values by 35 per cent, thereby restoring the awards to their original value and making them internationally competitive once again.

In addition, the Panel observes that the original goal was for the program to fund 2,000 Chairs. Due to turnover and delays in filling Chair positions, approximately 10 to 15 per cent of them are unoccupied at any one time.i As a result, the program budget was reduced by $35 million in 2012. However, the occupancy rate has continued to decline since then, with an all-time low of only 1,612 Chair positions (80.6 per cent) filled as of December 2016. The Panel is dismayed by this inefficiency, especially at a time when Tier 2 Chairs remain one of the only external sources of salary support for ECRs [early career researchers]—a group that represents the future of Canadian research and scholarship. (pp. 142-4 print; pp. 176-8 PDF)

I think what you can see as a partial subtext in this report and which I’m attempting to highlight here in ‘special cases’ is a balancing act between supporting a broad range of research inquiries and focusing or pouring huge sums of money into ‘important’ research inquiries for high impact outcomes.

Final comments

There are many things to commend this report including the writing style. The notion that more coordination is needed amongst the various granting agencies, that greater recognition (i.e,, encouragement and funding opportunities) should be given to boundary-crossing research, and that we need to do more interprovincial collaboration is welcome. And yes, they want more money too. (That request is perfectly predictable. When was the last time a report suggested less funding?) Perhaps more tellingly, the request for money is buttressed with a plea to make it partisan-proof. In short, that funding doesn’t keep changing with the political tides.

One area that was not specifically mentioned, except when discussing prizes, was mathematics. I found that a bit surprising given how important the field of mathematics is to  to virtually all the ‘sciences’. A 2013 report, Spotlight on Science, suggests there’s a problem(as noted my Oct. 9, 2013 posting about that report,  (I also mention Canada’s PISA scores [Programme for International Student Assessment] by the OECD [Organization for Economic Cooperation and Development], which consistently show Canadian students at the age of 15 [grade 10] do well) ,

… it appears that we have high drop out rates in the sciences and maths, from an Oct. 8, 2013 news item on the CBC (Canadian Broadcasting Corporation) website,

… Canadians are paying a heavy price for the fact that less than 50 per cent of Canadian high school students graduate with senior courses in science, technology, engineering and math (STEM) at a time when 70 per cent of Canada’s top jobs require an education in those fields, said report released by the science education advocacy group Let’s Talk Science and the pharmaceutical company Amgen Canada.

Spotlight on Science Learning 2013 compiles publicly available information about individual and societal costs of students dropping out STEM courses early.

Even though most provinces only require math and science courses until Grade 10, the report [Spotlight on Science published by Let’s Talk Science and pharmaceutical company Amgen Canada) found students without Grade 12 math could expect to be excluded from 40 to 75 per cent of programs at Canadian universities, and students without Grade 11 could expect to be excluded from half of community college programs. [emphasis mine]

While I realize that education wasn’t the panel’s mandate they do reference the topic  elsewhere and while secondary education is a provincial responsibility there is a direct relationship between it and postsecondary education.

On the lack of imagination front, there was some mention of our aging population but not much planning or discussion about integrating older researchers into the grand scheme of things. It’s all very well to talk about the aging population but shouldn’t we start introducing these ideas into more of our discussions on such topics as research rather than only those discussions focused on aging?

Continuing on with the lack of  imagination and lack of forethought, I was not able to find any mention of independent scholars. The assumption, as always, is that one is affiliated with an institution. Given the ways in which our work world is changing with fewer jobs at the institutional level, it seems the panel was not focused on important and fra reaching trends. Also, there was no mention of technologies, such as artificial intelligence, that could affect basic research. One other thing from my wish list, which didn’t get mentioned, art/science or SciArt. Although that really would have been reaching.

Weirdly, one of the topics the panel did note, the pitiifull lack of interprovincial scientific collaboration, was completely ignored when it came time for recommendations.

Should you spot any errors in this commentary, please do drop me a comment.

Other responses to the report:

Nassif Ghoussoub (Piece of Mind blog; he’s a professor mathematics at the University of British Columbia; he attended one of the roundtable discussions held by the panel). As you might expect, he focuses on the money end of things in his May 1, 2017 posting.

You can find a series of essays about the report here under the title Response to Naylor Panel Report ** on the Canadian Science Policy Centre website.

There’s also this May 31, 2017 opinion piece by Jamie Cassels for The Vancouver Sun exhorting us to go forth collaborate internationally, presumably with added funding for the University of Victoria of which Cassels is the president and vice-chancellor. He seems not to have noticed that Canadian do much more poorly with interprovincial collaboration.

*ETA June 21, 2017: I’ve just stumbled across Ivan Semeniuk’s April 10, 2017 analysis (Globe and Mail newspaper) of the report. It’s substantive and well worth checking out.*

Again, here’s a link to the other parts:

INVESTING IN CANADA’S FUTURE; Strengthening the Foundations of Canadian Research (Review of fundamental research final report) Commentaries

Part 1

Part 2

*’up’ added on June 8, 2017 at 15:10 hours PDT.

**’Science Funding Review Panel Repor’t was changed to ‘Responses to Naylor Panel Report’ on June 22, 2017.

University of Calgary (Alberta, Canada) welcomes ‘oil sands’ researcher with two news releases

I gather the boffins at the University of Calgary are beside themselves with joy as they welcome Steven Bryant from Texas, a nanoscience researcher with long ties to oil industry research. From an Oct. 17, 2014 University of Calgary news release by Stéphane Massinon,

The greatest energy challenge of the 21st century is to meet energy demand from available fuels while drastically reducing society’s environmental footprint.

The challenge is massive. The solution, according to Steven Bryant, may be miniscule.

Bryant will lead and co-ordinate nanotechnology and materials science research at the University of Calgary, and the integrated team of researchers from across campus who will aim to drastically change how the oilsands are developed.

Bryant says Alberta’s oilsands are a key resource for meeting the world’s energy demands and the status quo is not acceptable.

“There is a huge desire to extract this energy resource with less environmental impact and, we think, conceivably even zero-impact, because of some of the cool things that are becoming possible with nanotechnology,” says Bryant.

“That’s kind of blue-sky but that’s one of the things we will be trying to sow the seeds for — alternative ways to get the energy out of this resource altogether. It’s a chance to do things better than we are currently doing them because of rapid advances in mesoscience.”

The mention of mesoscience called to mind the mesocosm project featured in an Aug. 15, 2011 posting (Mesocosms and nanoparticles at Duke University) although it seems that mesoscience is a somewhat different beast according to Massinon’s news release,

Mesoscience — technology developed at smaller than 100 nanometres — offers many tantalizing options to increase the efficiency of in-situ oilsands development, or Steam-Assisted Gravity drainage (SAGD). SAGD is the extraction process in which producers drill horizontal wells beneath the surface to pump steam into the underground oilsands reservoirs to loosen the oil and pump it to the surface.

SAGD is the method currently used to pump nearly one million barrels per day in Alberta and the output is forecast to double by 2022. SAGD uses considerable volumes of water and requires energy to heat the water to produce the steam that softens the underground oil that is caked in sand.

By using nanotechnology, Bryant and his team are working on reducing the amount of energy needed to heat water to create steam while also making the underground heat source more efficient at gathering more oil.

“The holy grail for the last 30 years has been trying to get CO2 to be less viscous. If you can do that, then you can get it to contact a lot more of the oil and for the same amount of CO2, you get a lot more oil produced. That turned out to be hard to do because there aren’t many chemical ways to make CO2 more viscous,” says Bryant.

By employing innovative approaches now, industry, environment and consumers can benefit greatly in the not-too-distant future.

“These alternative ways to get the energy out are at least 10 years away. So it’s not going to happen tomorrow, but it’s worth thinking about now to try to see what might be possible,” says Bryant.

Apparently, Bryant (no mention of family members) is terribly excited about moving to Calgary, from the news release,

Bryant is looking forward to working in Canada’s energy hub and says he will also work with industry to tackle oil production issues.

Industry wants to be more efficient at extracting oil because it saves them money. Efficiency also means reducing the environmental footprint. He believes oil companies will welcome the research produced from the university and said Calgary is the ideal place to be world leaders in energy production and energy research.

“The university is close to where the action is. All the major operators are in town and there’s a chance to take things from the lab to the field. The University of Calgary is very well situated in that regard.”

Bryant is joining the Department of Chemical and Petroleum Engineering in the Schulich School of Engineering. Before accepting this position, he was at the University of Texas at Austin, as Bank of America Centennial Professor in the Department of Petroleum and Geosystems Engineering, and directed the Geological CO2 Storage Joint Industry Project and the Nanoparticles for Subsurface Engineering Industrial Affiliates Program.

Bryant pioneered the fields of digital petrophysics and nanoparticles for engineering applications, and has made some of the most significant advances in the past 20 years in porous media modeling, reactive transport theory and CO2 sequestration. Bryant has been published more than 280 times in books, book chapters, peer-reviewed journals and conference proceedings on applications in production engineering, reservoir engineering and formation evaluation. Over his career, Bryant has led major research initiatives involving industry partnerships and trained over 90 graduate students and postdoctoral fellows who found positions in several of the largest energy companies and national laboratories.

He looks forward to what happens next.

“There’s still a lot of cool, basic science to be done, but we’ll be doing it with an eye to making a difference in terms of how you get energy out of the oilsands. This won’t be business as usual.”

Meanwhile, there’s an Oct. 17, 2014 news item on Azonano that focuses on the University of Calgary’s response to receiving its first Canada Excellence Research Chair (a programme where the federal Canadian government throws a lot of money for salaries and research at universities which then try to recruit ‘world class’ researchers),

A world-leading nanotechnology researcher has come to Canada’s energy capital to become the first Canada Excellence Research Chair (CERC) at the University of Calgary.

Minister of State (Western Economic Diversification) Michelle Rempel announced today $10 million in federal funding to the university over seven years to create the CERC for Materials Engineering for Unconventional Oil Reservoirs. These funds will be matched by the University of Calgary.

The CERC has been awarded to renowned researcher Steven Bryant, who has joined the Schulich School of Engineering and will integrate a team of researchers from several departments of the Schulich School of Engineering and Faculty of Science.

An Oct. 17, 2014 University of Calgary news release (no byline is given but this is presumably from the university’s ‘corporate’ communications team), which originated the news item on Azonano,

Rempel said the federal government is focused on developing, attracting, and retaining world-leading researchers through record investment in science, technology and innovation. She added that Bryant’s application of new nanomaterials and technology will seek to develop new efficiencies within the oilsands industry while training the next generation of highly talented Canadian researchers.

“Our government is committed to ensuring advancement in sustainable energy resource technology. Dr. Bryant’s arrival at the University of Calgary will help consolidate Canada’s position as a global leader in this area. The research being conducted at the university is good for Calgary, good for the economy and good for Canada,” said Rempel.

President Elizabeth Cannon thanked the federal government for its financial support and said Bryant’s arrival vaults the university’s existing energy research to the next level.

“The University of Calgary is thrilled to have Dr. Steven Bryant join our energy research team, where he will play a key role exploring new and sustainable ways of developing unconventional resources,” said Cannon.

“We are confident that Dr. Bryant and his colleagues, working here at Canada’s energy university, will offer innovative solutions to the pressing challenges faced by our society: meeting ever-growing energy demands and drastically reducing our environmental footprint.”

In addition to the matching funds, the University of Calgary is planning additional support for major infrastructure and equipment for the CERC.

In 2008, the federal government launched the CERC program to encourage some of the most accomplished researchers around the world to work at Canadian universities.

The Canada Excellence Research Chair plays a significant role in the university’s energy strategy, which aims to make the University of Calgary a global leader in energy research. It is also critical to our Eyes High goal to becoming a top five Canadian research university.

Attracting world-class researchers to campus helps attract more students and post-docs to the university and exposes students and faculty to some of the world’s cutting-edge research.

Oddly, there’s no message of congratulations or recognition of this addition to Alberta’s nanotechnology community from Canada’s National Institute for Nanotechnology (NINT) located at the University of Alberta in Edmonton.

Science, women and gender in Canada (part 1 of 2)

Titled Strengthening Canada’s Research Capacity: The Gender Dimension; The Expert Panel on Women in University Research, the Council of Canadian Academies (CCA) released their assessment on Nov. 21, 2012, approximately 20 months after the incident which tangentially occasioned it (from the Strengthening … webpage) Note: I have added a reference and link to a report on CERC (Canada Excellence Research Chairs) gender issues in the following excerpt,

After the notable absence of female candidates in the Canada Excellence Research Chairs (CERC) program, the Minister of Industry, in March 2010, struck an ad-hoc panel to examine the program’s selection process. The ad-hoc panel found that the lack of female representation was not due to active choices made during the CERC selection process. [Dowdeswell, E., Fortier, S., & Samarasekera, I. (2010). Report to the Minister of Industry of the Ad Hoc Panel on CERC Gender Issues. Ottawa (ON):Industry Canada.] As a result, the Council of Canadian Academies received a request to undertake an assessment of the factors that influence university research careers of women, both in Canada and internationally.

To conduct the assessment, the Council convened an expert panel of 15 Canadian and international experts from diverse fields, which was chaired by Dr. Lorna Marsden, President emeritus and Professor, York University.

For anyone unfamiliar with the CERC programme,

The Canada Excellence Research Chairs (CERC) Program awards world-class researchers up to $10 million over seven years to establish ambitious research programs at Canadian universities.

My commentary is primarily focused on the assessment and not the preceding report from the ad hoc panel, as well, I am not commenting on every single aspect of the report. I focus on those elements of the report that caught my attention.

There is much to appreciate in this assessment/report unfortunately the cover image cannot be included. By choosing a photograph, the designer immediately entered shark-infested waters, metaphorically speaking. From a semiotic perspective, photographs are a rich and much studied means of criticism. Having a photograph of an attractive, middle-aged white woman with blonde hair (a MILF, depending on your tastes)  who’s surrounded by ‘adoring’ students (standing in for her children?) on the cover of this assessment suggests an obliviousness to nuance that is somewhat unexpected. Happily, the image is not reflective of the content.

The report lays out the basis for this assessment,

There are many reasons for concern at the lack of proportional representation of women in senior positions in all facets of our society, including politics, law, medicine, the arts, business, and academia. The underrepresentation of women in any of these areas is a concern considering the fundamental Canadian values of equality, fairness, and justice, as outlined in the Canadian Human Rights Act, the Canadian Charter of Rights and Freedoms, and the Employment Equity Act. This report focuses on women in academia: the 11,064 women with PhDs who are employed full-time in degree-granting institutions. In comparison, there are 22,875 men in this category (see Table 3.1).1 Besides educating millions of students, these researchers and innovators are working to address the major issues Canada faces in the 21st century, including climate change, demographic shifts, healthcare, social inequality, sustainable natural resources management, cultural survival, as well as the role Canada plays as an international actor. These contributions are in addition to the basic, or knowledge discovery, research that is one of the main duties of academic researchers. In the knowledge economy, a talent pool of Canada’s top thinkers, researchers and innovators is needed to help secure and build Canada’s economic edge. The wider the pool is from which to draw, the more perspectives, experiences, and ideas will be brought to the creative process. [emphasis mine] Arguments for fully including women in research careers range from addressing skills shortages and increasing innovation potential by accessing wider talent pools, to greater market development, stronger financial performance, better returns on human resource investments, and developing a better point from which to compete in the intensifying global talent race. (p. 15 PDF; p. xiii print)

I appreciate the reference to fundamental values in Canadian society as it is important but I suspect the portion I’ve highlighted contains the seeds of an argument that is far more persuasive for power brokers. It was a very smart move.

It is possible to skim this report by simply reading the executive summary and reading the Key Messages page included after each chapter heading, save the final chapter. They’ve done a good job of making this report easy to read if you don’t have too much time but prefer to view the complete assessment rather than an abridged version.

The Chapter 1 Key Messages are,

Chapter Key Messages

• While many reports have focused specifically on women in science, technology, engineering, and mathematics careers, this assessment employs comparative analyses to examine the career trajectories of women researchers across a variety of disciplines. The Panel was able to respond to the charge using a combination of research methods, but their analyses were sometimes hindered by a paucity of key data sets.

• In an attempt not to simply repeat numerous studies of the past on women in research careers, the Panel used a life course model to examine the data from a new perspective. This conceptual framework enabled the Panel to consider the multidimensional nature of human lives as well as the effects of external influences on the career trajectories of women researchers.

• Women are now present in all areas of research, including those areas from which they have previously been absent. Over time, institutions have become more inclusive, and Canadian governments have created policies and legislation to encourage more gender equity. Collective bargaining has contributed to this process. Clearly, the advancement of women in research positions relies on the contributions of individuals, institutions and government.

• Since the 1970s, there has been major progress such that women have been obtaining PhDs and entering the academy as students and faculty at increasing rates. However, women remain underrepresented at the highest levels of academia, as demonstrated by their low numbers in the Canada Research Chairs (CRC) program, and their absence from the Canada Excellence Research Chairs (CERC) program. There is considerable room for improvement in women’s representation as faculty.

• Higher education research and development funding has nearly doubled in the past decade. However, the amount of funding allocated to core grants and scholarship programs varies among the tri-council agencies [SSHRC, Social Science and Humantities Research Council; NSERC, Natural Science and Engineering Research Council; and CIHR, Canadian Institutes of Health Research], with the majority of funds available to researchers sponsored by NSERC and CIHR. This pattern is generally replicated in the Canada Research Chairs and the Canada Excellence Research Chairs programs. As noted in the 2003 Human Rights Complaint regarding the Canada Research Chairs program, women are least represented in the areas of research that are the best funded.  (p. 33 PDF; p. 3 print) [emphasis mine]

This panel in response to the issue of women being least represented in the best funded areas of research elected to do this,

The Panel noted that many reports have focused on women in science, technology, and engineering research careers (due in part to the fact that women have been significantly underrepresented in these fields) yet relatively little attention has been paid to women researchers in the humanities, social sciences, and education. This is despite the fact that 58.6 per cent of doctoral students in these disciplines are women (see Chapter 3), and that their research contributions have profoundly affected the study of poverty, violence, the welfare state, popular culture, and literature, to note only a few examples. Considering this, the Panel’s assessment incorporates a comparative, interdisciplinary analysis, with a focus on the broader category of women in university research. In order to identify the areas where women are the most and least represented, Panellists compiled data and research that describe where Canadian female researchers are — and are not — in terms of both discipline and rank. Where possible, this study also analyzes the situation of women researchers outside of academia so as to paint a clearer picture of female researchers’ career trajectories. (pp. 37/8 PDF; pp. 7/8 print) [emphases mine]

Bringing together all kinds of research where women are both over and under represented and including research undertaken outside the academic environment was thoughtful. I also particularly liked this passage,

American research suggests that holding organizational leaders accountable for implementing equity practices is a particularly effective way of enhancing the diversity of employees (Kalev et al., 2006), indicating that reporting and monitoring mechanisms are key to success. [emphasis mine] The Panel observed that meeting these commitments requires the proper implementation of accountability mechanisms, such as reporting and monitoring schemes. (p. 44 PDF; p. 14 print)

Juxtaposing the comment about leaders being held accountable for equity practices and the  comment I emphasized earlier ” … a talent pool of Canada’s top thinkers, researchers and innovators is needed to help secure and build Canada’s economic edge …” could suggest an emergent theme about leadership and the current discourse about innovation.

To get a sense of which disciplines and what research areas are rewarded within the Canada Research Chair programme read this from the assessment,

Similarly, while 80 per cent of Canada Research Chairs are distributed among researchers in NSERC and CIHR disciplines, SSHRC Chairs represent only 20 per cent of the total — despite the fact that the majority (60 per cent) of the Canadian professoriate come from SSHRC disciplines (Grant & Drakich, 2010). Box 1.1 describes the gendered implications of this distribution, as well as the history of the program. (p. 45 PDF; p. 15 print)

What I find intriguing here isn’t just the disparity. 60% of the researchers are chasing after 20% of the funds (yes, physical sciences are more expensive but those percentages still seem out of line), but that social sciences and the humanities are not really included in the innovation rubric except here in this assessment. Still, despite the inclusion of the visual and performing arts in the State of Science and Technology in Canada, 2012 report issued by the CCA in Sept. 2013 (part 1 of my commentary on that assessment is in this Dec. 28, 2012 posting; part 2 of my commentary is in this Dec. 28, 2012 posting) there is no mention of them in this assessment/report of gender and science.

I did particularly like how the panel approached data collection and analysis,

Coming from a variety of disciplinary backgrounds, Panellists brought with them a range of methodological expertise and preferences. Through a combination of quantitative and qualitative data, the Panel was able to identify and analyze factors that affect the career trajectories of women researchers in Canada (see Appendix 1 for full details). In addition to an extensive literature review of the national and international research and evidence related to the topic, the Panel collected information in the form of data sets and statistics, heard from expert witnesses, conducted interviews with certain stakeholders from academia and industry, and analyzed interview and survey results from their secondary analysis of Canada Research Chairs data (see Appendix 5 for a full description of methodology and results). Together, these methods contributed to the balanced approach that the Panel used to understand the status of women in Canadian university research careers.

In addition, the Panel took an innovative approach to painting a more vibrant picture of the experience of women professors by incorporating examples from academic “life-writing.” Life-writing is the generic name given to a variety of forms of personal narrative — autobiography, biography, personal essays, letters, diaries, and memoirs. Publishing personal testimony is a vital strategy for marginalized groups to claim their voices and tell their own stories, and academic women’s life-writing adds vital evidence to a study of women in university careers (Robbins et al., 2011). The first study of academic life-writing appeared in the U.S. in 2008 (Goodall, 2008); as yet, none exists for Canada.16 Recognizing the benefits of this approach, which focuses on the importance of women’s voices and stories, the Panel chose to weave personal narrative from women academics throughout the body of the report to illuminate the subject matter. As with the data gleaned from the Panel’s secondary analysis of Canada Research Chairs data, these cases highlight the experience of an articulate and determined minority of women who are prepared and positioned to speak out about structural and personal inequities. More comprehensive surveys are required to establish the precise extent of the problems they so effectively illustrate. (pp. 49/50 PDF; pp. 19/20 print)

Nice to note that they include a very broad range of information as evidence. After all, evidence can take many forms and not all evidence can be contained in a table of data nor is all data necessarily evidence. That said there were some other issues with data and evidence,

Despite the extensive literature on the subject, the Panel identified some data limitations. While these limitations made some analyses difficult, the Panel was able to effectively respond to the charge by using the combination of research methods described above. Data limitations identified by the Panel include:

• relatively little research specific to the Canadian context;

• lack of longitudinal data;

• relatively few studies (both quantitative and qualitative) dealing with fields such as the humanities and social sciences;

• lack of data on diversity in Canadian academia, including intersectional data;

• lack of comprehensive data and evidence from the private and government sectors; and

• difficulty in comparing some international data due to differences in disciplinary classifications. (p. 50 PDF; p. 20 print)

I think this does it for part 1 of my commentary.

Canadian research (and other ‘excellence’) initiatives get some competition from the European Research Council

Canadians have been throwing money at scientists for some years now (my May 20, 2010 posting about the Canada Excellence Research Chairs programme). We’ve attempted to recruit from around the world with our ‘research chairs’ and our ‘excellence research chairs’ and our Network Centres of Excellence (NCE) all serving as enticements.

The European Research Council (ERC) has announced that they will be trying to beat us at our own game at the AAAS 2012 annual meeting in Vancouver (this new ERC programme was launched in Boston, Massachusetts in January 2012). From the Agence France Presse Feb. 20, 2012 news item on physorg.com,

The European Research Council launched an international campaign Sunday to court the world’s top scientists to work in Europe with grants of up to 3.5 million euro (4.6 million dollars) over five years.

The goal of the program is to boost the number of non-European researchers to over 500. Currently, just 100 of its 2,600 grant recipients are from outside Europe, said council secretary general Donald Dingwell.

Dingwell, who after Canada plans to visit South Africa, several Asian countries, Latin America, Russia and Ukraine, the United States and Mexico, said the main condition is that recipients spend half their time in Europe and be affiliated with a European institution.

ERC’s Dec. 2011 newsletter features an article, Going global; Making Europe a prime location for the best brains, where they outline the campaign which actually started in 2007 but this latest initiative (Destination Europe) offers a renewed and more aggressive approach (and similarities to the Canadian efforts) to attracting more scientists to Europe. From the article,

The ERC Secretary General Donald Dingwell has been given a key role in this venture. Originally from Canada and with ample international experience, he will be the ERC’s Ambassador worldwide … The US is undoubtedly a hotspot for talent and thus for the ERC, but also the BRICS countries (Brazil, Russia, India, China, and South Africa) and other top performers in science will be a priority in the years to come.

That’s a nice touch, having an expat Canadian lead your somewhat competitive initiative.

Canada goes on a science spending spree (of sorts)

The Canada Excellence Research Chairs (CERC) programme (part of the 2008 Canadian federal budget) has announced 19 new researchers are coming to Canada. According to the CERC FAQs (frequently asked questions) page, each researcher in this programme will receive,

$1.4 million annual award paid to the chairholders for seven years [which] will allow researchers to build the teams and acquire the tools they need to conduct world-class research.

Having your funding guaranteed for seven years is a highly attractive proposition, especially with the current economic situation. (Idle thought: I am curious as to the inside story about why only 19 of 20 grants were awarded.)

I understand we have achieved quite a coup and some extraordinary and accomplished scientists will be setting up shop in this country. Kudos to the government for the establishment of guaranteed funding for these scientific endeavours. Here’s Tony Clement (Minister for Industry Canada) offering an enthusiastic endorsement and back pat for his programme, first from the news release on the Industry website,

“The Government of Canada recognizes the importance of supporting leading-edge research and world-class researchers,” said Minister Clement. “The CERC program confirms Canada’s standing as a global centre of excellence in research and higher learning. [emphasis mine]This program supports our government’s commitment to ensuring Canada’s future economic growth by investing in innovation and research capacity in priority areas.”

then (from the article in Globe and Mail by Elizabeth Church and accessed through the Canadian Science Policy Research Centre),

“Canada has to become more than ever a magnet for talent,” said Industry Minister Tony Clement, in Toronto to name the successful applicants. The announcement, he said, builds on other federal initiatives, such investments in campus building projects as part of its stimulus spending and the Vanier scholarships for graduate students. All are central, he said, to the government’s innovation agenda.

“Talk is cheap. We are actually doing,” Mr. Clement said later in an interview, referring to critics in the science community who say the Harper government has not committed to research in the same way as U.S. President Barack Obama and other foreign leaders.

So let’s review, this programme has attracted 19 stellar scientists. That’s very nice but what about all the other scientists in Canada? Are they going to get guaranteed funding? Then there’s this, Where is the money for this CERC programme coming from? I found an answer of sorts in the UK’s Guardian Newspaper (Fears of brain drain as renowned British scientists move to Canada by Ian Sample),

Britain is to lose several of its foremost scientists next year following a recruitment drive to attract top brains to Canada.

The four researchers will leave their posts at UK universities for better-funded positions in institutions across the country.

The British researchers won four C$20m (£13m) awards created by the Canadian government, the most by any country outside the US, which is to lose nine scientists to the scheme. The C$20m is awarded over seven years and comprises C$10m from the scheme and $C10m from the university. [emphasis mine]

So, 19 x $20M = $180M/year x 7 years = $1.26B with 1/2 from the federal budget and the other 1/2 (or more?) from university budgets (much of it federal money).

ETA (May 21, 2010): Rob Annan (Don’t leave Canada behind) kindly corrected my arithmetic as per this (ps. quick note on the math re. funding. It’s 19 researchers x $1.7M annually ($3.4 accounting for matching funds). The $20M is the total commitment over seven years.) The rest of what Rob had to say is in the Comment section.

In another Globe and Mail article (accessed through the Canadian Science Policy Centre) by Steven Chase and Elizabeth Church,

For Ottawa, it was one of the biggest bets on scientific research in a generation. But for the man at the centre of Canada’s worldwide drive to recruit top scientists, it was a “ballsy” play that at times resembled a bidding war for NHL free agents.

Derek Burney said in some cases foreign universities and employers counter-bid furiously to keep star researchers during the just-completed global talent scout for Canada Excellence Research Chairs. The effort cost Ottawa $190-million in grants and netted 19 renowned scientists who are moving to Canada.

“It [was] almost like a hockey negotiation where you are trying to entice a player from another team. And the other team wants to hang on to them, and so they offer more money,” said Mr. Burney, who heads the selection board of the Canada Excellence Research Chair program set up by the Harper government.

During a global recession when deficit pressures would appear to demand restraint on all fronts, Canada instead travelled the world with a chequebook – looking to bulk up on the scientific innovation it hopes will strengthen economic foundations here at home. [emphases mine]

I’m glad to see that they are keeping tight control of the purse strings (where’s a sarcasm symbol when you need one?). Meanwhile in the UK, Sample goes on to note a possible reason for the British losses,

The moves come after several senior scientists in Britain warned that a brain drain was imminent as the new government prepares to make swingeing cuts in public spending that are likely to have a heavy impact on research funding.

At least one of the other researchers comes to us from California, a US state which is in such dire financial straits that there’s been talk of bankruptcy.

Two observations. First, I notice that none of these recruits are from Canada. I guess there’s an assumption that research excellence exists only outside of the country.

Second, “Talk is cheap” (Clement’s comment) is something that’s said when there has been too much talk and no (or not enough) action. I don’t think it fits a situation where there has been no talk.

In case it got missed, I have mixed feelings about this latest development. I hope it works out well and that the government doesn’t rest on this accomplishment but goes on to address Canada’s need for science policy, science education, science literacy, science communication, public engagement, encouragement for business support of science, and support for the academic science which is practiced in this country.

ETA (May 21, 2010): For another take on the matter, read Sumitra Rajagopalan’s opinion piece in the May 21, 2010 online edition of the Globe and Mail, When science gets political, long-term knowledge is lost. From the article,

Since Canada has lagged behind its Western counterparts in the manufacture and sale of high-tech products, this focus has been welcomed by industry. But this government’s interest isn’t really “applied science” but a more short-sighted “utilitarian science” – technologies that can quickly solve immediate, narrowly defined problems, rather than long-term investments in building knowledge. Worse, we are beginning to see an intertwining of scientific priorities with politics.

These trends are very apparent in some of the CERC choices. The biomedical and computing research chairs are beyond reproach, but some of the other choices reflect a narrow, utilitarian focus.

She goes on to thoughtfully support her point. I would highly recommend reading this, if you are interested in the issue.