Monthly Archives: January 2024

February 1, 2024 talk about ‘CULTUS’: a scifi, queer art installation at the University of British Columbia’s Belkin Gallery in Vancouver, Canada

Spanning religiosity, science fiction, contemporary perspectives on artificial intelligence, and the techno-industrial complex, artist Zach Blas and writer/editor Jayne Wilkinson will be discussing CULTUS, an art installation currently being shown as part of the Belkin Gallery’s January 12 – April 14, 2024 exhibition, Aporia (Notes to a Medium),

Zach Blas, CULTUS , 2023, from the 2024 exhibition at Arebyte Gallery, London, UK. Courtesy of the artist. Photo: Max Colson

Here’s what the folks at the Belkin Art Gallery (Morris and Helen Belkin Art Gallery) had to say in their January 30, 2024 announcement (received via email),

Artist Talk with Zach Blas and Jayne Wilkinson

Thursday, February 1 at 5 pm 

Please join us for a lecture by interdisciplinary artist Zach Blas, with a dialogue to follow with writer/editor Jayne Wilkinson. Blas will discuss his most recent work, CULTUS, the second in a trilogy of queer science-fiction installations addressing the beliefs, fantasies and histories that are influential to the contemporary tech industry. CULTUS (the Latin word for “worship”) considers the God-like status often afforded to artificial intelligence (AI) and examines how this religiosity is marshalled to serve beliefs about judgement and transcendence, extraction and immortality, pleasure and punishment, individual freedom and cult devotion. The conversation to follow will address some of the pressing intersecting political and ethical questions raised by both using and critiquing contemporary image technologies like AI.

This conversation will be audio-recorded; email us at belkin.gallery@ubc.ca if you are interested in listening to the recording following the event.

This talk is presented in conjunction with the Belkin’s exhibition Aporia (Notes to a Medium) and Critical Image Forum, a collaboration between the Belkin and the Department of Art History, Visual Art and Theory at UBC.

For anyone (like me) who’s never heard of either Blas or Wilkinson, there’s more on the Belkin’s event page,

Zach Blas is an artist, filmmaker and writer whose practice draws out the philosophies and imaginaries residing in computational technologies and their industries. Working across moving image, computation, installation, theory and performance, Blas has exhibited, lectured and held screenings at venues including the 12th Berlin Biennale for Contemporary Art, Whitney Museum of American Art, Tate Modern, 12th Gwangju Biennale and e-flux. His 2021 artist monograph Unknown Ideals is published by Sternberg Press. Blas is currently Assistant Professor of Visual Studies at the University of Toronto.

Jayne Wilkinson is a Toronto-based art writer and editor.

Should you be interested in attending the talk and/or the exhibition, here are some directions, from the Belkin Gallery’s Visit webpage,

Directions

The Morris and Helen Belkin Art Gallery is located at the University of British Columbia Vancouver campus, 1825 Main Mall, Vancouver BC, V6T 1Z2

Open in Maps

By Public Transit

TransLink offers many routes to UBC, including several express services (44, 84, R4, 99). The UBC Bus Loop is the last stop for each of these buses, and is located in the central area of campus near the AMS Nest. To get to the gallery, walk west on University Boulevard. (about 1 block) until you reach Main Mall. Turn right onto Main Mall and continue for about 3 blocks until you reach Crescent Road. We are located on your left at the corner of Main Mall and Crescent Road, near the Flagpole Plaza.

By Car

From downtown Vancouver, proceed west on West 4th Avenue, which becomes Chancellor Blvd and then merges with NW Marine Drive. Continue west on NW Marine Drive, to the Rose Garden Parkade (on your left).

From the airport, proceed to SW Marine Drive. Stay on SW Marine Drive, which eventually merges with NW Marine Drive. Continue just past the Museum of Anthropology (on your left) to the Rose Garden Parkade (on your right).

Accessibility

Entrance

The Belkin is wheelchair accessible. The main entrance is located on the east side of the building next to Main Mall. For people requiring wheelchair or easier accessibility, use the ramp from Crescent Road to access the main gallery doors.  This entrance is level and accessible and has both a revolving door and a powered wheelchair-accessible door.

Washrooms

Washrooms are all-gender and include two multi-stall washrooms with wheelchair-accessible stalls and one stand-alone washroom that is wheelchair accessible.

Seating

Portable gallery stools are available for use.

Large Print Materials

Large print materials are available.

ASL Interpretation

ASL interpreters are available upon request for Belkin programs and events. To request interpretation for an event or tour, please contact us in advance.

Service Animals

Service dogs are welcome to accompany visitors.

Scent

The Belkin’s office is scent free. Occasionally, there are works or projects that are scent-focused.

Please ask our staff if you require any assistance or have any questions.

Admission to the gallery is free.

Hilma af Klint, VR (virtual reality), and atoms

I’m primarily interested in the VR and the ‘atoms’ of Swedish artist Hilma af Klint but first there are the NFT (non-fungible tokens). From an October 28, 2022 article by Louis Jebb for The Art Newspaper,

More than a century after she completed her chef d’oeuvre—193 abstract canvases known collectively as Paintings for the Temple (1906-15)—Hilma af Klint has emerged this year as a multimedia power player. Her work—graphic, colourful and deeply idiosyncratic—has demonstrated a Van Gogh-like power to generate footfall and has given rise to projects across multiple formats, from books and films to experiences in virtual and augmented reality (VR/AR).

Now, from 14 November [2022], digital versions of all 193 of her Paintings for the Temple, created by Acute Art, will be offered as NFTs in one edition, for sale on Goda (Gallery of Digital Assets), the platform launched earlier this year by the multi-Grammy award-winning philanthropist and recording artist Pharrell Williams. A second edition of the NFTs will remain with Bokförlaget Stolpe, the publishers of the Af Klint catalogue raisonée. The originals belong to the not-for-profit Hilma af Klint Foundation in Sweden.

“Hilma af Klint was an incredible pioneer!” says Pharrell Williams. “It took us a century to fully understand. Now that we do, we need to rewrite art history! Beautiful and meaningful art truly transcends time, and Hilma af Klint’s work is a perfect example of that. We’re honoured to show her work on this platform and to truly celebrate a remarkable woman.” For KAWS, who acts as an art adviser on the Goda platform, Af Klint was a visionary. “I find it great that she finally gets the attention she deserves,” KAWS says. “During her lifetime the audience wasn’t ready but today we are. She painted for the future. She painted for us!”

VR

Hilma af Klint dreamt of a spiral shaped building to house her most important work, but the idea never materialised. More than a century later, af Klint’s vision has been translated into a VR experience where some of her most important paintings come alive. Hilma af Klint – The Temple is produced in collaboration with [Bokförlaget Stolpe and] Acute Art and premiered at Koko Camden during the Frieze Art Fair 2022. The virtual reality work Hilma af Klint – The Temple is a 12-minute VR experience which includes 193 of Hilma af Klint’s paintings in a format that transcends time and space and makes a significant portion of her artistic output available to the public.

Hilma af Klint – The Temple VR was on tour since it first debuted in 2022 and Elissaveta M. Brandon wrote up her experience in New York City in a October 25, 2023 article for Fast Company, Note: Links have been removed,

It is noon on a Tuesday, and I am sitting in a cocktail bar. But instead of a Negroni on my table, there is a VR headset.

The reason for this anomaly dates back to 1915, when the Swedish artist Hilma af Klint completed a series of paintings titled, Paintings for the Temple. The artist died in 1944, but from the 124 notebooks she left behind, we know that she dreamed of housing these paintings in a spiral-shaped building known as the Temple.

That building never materialized in real life, but it has now—in virtual reality.

Af Klint, which The Art Newspaper has described as “the mystic Swedish mother of early-modern abstraction,” is having a bit of a moment. A museum dedicated solely to her work remains to be built, but over the past few years, the artist has been the subject of a sprawling exhibition at the Guggenheim, a biopic, a new biography, a catalogue raisonné (a comprehensive, annotated list of all known works by the artist), an augmented reality “art walk” in London’s Regent’s Park, and now, a virtual reality temple.

The VR experience—I lack the words to describe it in any other way—is titled, Hilma af Klint: The Temple and lasts 12 minutes. It was conceived by the London-based extended-reality studio Acute Art in collaboration with [Bokförlaget] Stolpe Publishing. After various stints at the Tate Modern in London, the Institut Suédois in Paris, and Bozar in Brussels, it has now arrived at the Fotografiska Museum in New York City, where it is on view until November 19 [2023], inside a cocktail bar, which is tucked away behind a door in the museum’s lobby, and fittingly called Chapel Bar.

The artist left behind a large body of abstract work inspired by her spiritual encounters. Her series, Paintings for the Temple, was, in fact, born out of a séance, during which she was asked to take on a more extensive project than her previous work. Paintings for the Temple took 9 years to complete; it took me 12 minutes to explore.  

Atoms

While the focus is usually on af Klint’s spirituality and her absence from art history, there’s also her interest in science, from Brandon’s October 25, 2023 article,

…, I wonder how af Klint would have felt about her paintings being presented in virtual reality. According to Birnbaum [Daniel Birnbaum, current director and curator of Acute Art], who is the former director of Moderna Museet, Sweden’s museum of modern art in Stockholm, af Klint had a scientific mind. “One wonders what she would have thought of computation and recent inventions, like the blockchain,” he says. Stolpe also points me to the artist’s Atom Series—the atom being a major theme during her lifetime.

Image: courtesy Acute Art/Stolpe Publishing [downloaded from https://www.fastcompany.com/90971644/take-a-trip-inside-the-secretive-mind-of-visionary-painter-hilma-af-klint?]

The Guggenheim Museum in New York still has material from its 2018 blockbuster Hilma af Klint show available online, including this October 24, 2018 combined audio/transcript article, which includes these tidbits in the transcript,

The Atom Series (1917) by Hilma af Klint

Tracey Bashkoff [Director of Collections and Senior Curator at the Guggenheim]: Hilma af Klint is working at a time where the most recent scientific discoveries show that there is a world beyond our observable world, and that things like atoms and sound waves and x-rays and particles exist, that we don’t observe with the naked eye. And so, the question of opening up an invisible world from our physical world, being able to make observations of another dimension of reality, becomes an issue of exploration for af Klint and for many of the thinkers of her time.

Narrator: These works are from The Atom Series, which was executed in 1917. The atom was a major theme in science and society at large during the artist’s lifetime. In the last five years of the 19th century, the accepted understanding of atoms was overturned by the discovery of subatomic particles. At the same time, scientists were making numerous discoveries about electromagnetism, x-rays, radioactive decay, and other phenomena.

The audio file is about 2 mins. long and it’s a short transcript.

Follow up

Sadly, the VR show in New York City does not seem to have been extended and I can’t find any information about future ‘tour’ stops but I have found websites for Acute Art, Bokförlaget Stolpe Publishing, and Fotografiska New York.

Nature’s missing evolutionary law added in new paper by leading scientists and philosophers

An October 22, 2023 commentary by Rae Hodge for Salon.com introduces the new work with a beautiful lede/lead and more,

A recently published scientific article proposes a sweeping new law of nature, approaching the matter with dry, clinical efficiency that still reads like poetry.

“A pervasive wonder of the natural world is the evolution of varied systems, including stars, minerals, atmospheres, and life,” the scientists write in the Proceedings of the National Academy of Sciences. “Evolving systems are asymmetrical with respect to time; they display temporal increases in diversity, distribution, and/or patterned behavior,” they continue, mounting their case from the shoulders of Charles Darwin, extending it toward all things living and not.

To join the known physics laws of thermodynamics, electromagnetism and Newton’s laws of motion and gravity, the nine scientists and philosophers behind the paper propose their “law of increasing functional information.”

In short, a complex and evolving system — whether that’s a flock of gold finches or a nebula or the English language — will produce ever more diverse and intricately detailed states and configurations of itself.

And here, any writer should find their breath caught in their throat. Any writer would have to pause and marvel.

It’s a rare thing to hear the voice of science singing toward its twin in the humanities. The scientists seem to be searching in their paper for the right words to describe the way the nested trills of a flautist rise through a vaulted cathedral to coalesce into notes themselves not played by human breath. And how, in the very same way, the oil-slick sheen of a June Bug wing may reveal its unseen spectra only against the brief-blooming dogwood in just the right season of sun.

Both intricate configurations of art and matter arise and fade according to their shared characteristic, long-known by students of the humanities: each have been graced with enough time to attend to the necessary affairs of their most enduring pleasures.

If you have the time, do read this October 22, 2023 commentary as Hodge waxes eloquent.

An October 16, 2023 news item on phys.org announces the work in a more prosaic fashion,

A paper published in the Proceedings of the National Academy of Sciences describes “a missing law of nature,” recognizing for the first time an important norm within the natural world’s workings.

In essence, the new law states that complex natural systems evolve to states of greater patterning, diversity, and complexity. In other words, evolution is not limited to life on Earth, it also occurs in other massively complex systems, from planets and stars to atoms, minerals, and more.

It was authored by a nine-member team— scientists from the Carnegie Institution for Science, the California Institute of Technology (Caltech) and Cornell University, and philosophers from the University of Colorado.

An October 16, 2023 Carnegie Science Earth and Planets Laboratory news release on EurekAlert (there is also a somewhat shorter October 16, 2023 version on the Carnegie Science [Carnegie Institution of Science] website), which originated the news item, provides a lot more detail,

“Macroscopic” laws of nature describe and explain phenomena experienced daily in the natural world. Natural laws related to forces and motion, gravity, electromagnetism, and energy, for example, were described more than 150 years ago. 

The new work presents a modern addition — a macroscopic law recognizing evolution as a common feature of the natural world’s complex systems, which are characterised as follows:

  • They are formed from many different components, such as atoms, molecules, or cells, that can be arranged and rearranged repeatedly
  • Are subject to natural processes that cause countless different arrangements to be formed
  • Only a small fraction of all these configurations survive in a process called “selection for function.”   

Regardless of whether the system is living or nonliving, when a novel configuration works well and function improves, evolution occurs. 

The authors’ “Law of Increasing Functional Information” states that the system will evolve “if many different configurations of the system undergo selection for one or more functions.”

“An important component of this proposed natural law is the idea of ‘selection for function,’” says Carnegie astrobiologist Dr. Michael L. Wong, first author of the study.

In the case of biology, Darwin equated function primarily with survival—the ability to live long enough to produce fertile offspring. 

The new study expands that perspective, noting that at least three kinds of function occur in nature. 

The most basic function is stability – stable arrangements of atoms or molecules are selected to continue. Also chosen to persist are dynamic systems with ongoing supplies of energy. 

The third and most interesting function is “novelty”—the tendency of evolving systems to explore new configurations that sometimes lead to startling new behaviors or characteristics. 

Life’s evolutionary history is rich with novelties—photosynthesis evolved when single cells learned to harness light energy, multicellular life evolved when cells learned to cooperate, and species evolved thanks to advantageous new behaviors such as swimming, walking, flying, and thinking. 

The same sort of evolution happens in the mineral kingdom. The earliest minerals represent particularly stable arrangements of atoms. Those primordial minerals provided foundations for the next generations of minerals, which participated in life’s origins. The evolution of life and minerals are intertwined, as life uses minerals for shells, teeth, and bones.

Indeed, Earth’s minerals, which began with about 20 at the dawn of our Solar System, now number almost 6,000 known today thanks to ever more complex physical, chemical, and ultimately biological processes over 4.5 billion years. 

In the case of stars, the paper notes that just two major elements – hydrogen and helium – formed the first stars shortly after the big bang. Those earliest stars used hydrogen and helium to make about 20 heavier chemical elements. And the next generation of stars built on that diversity to produce almost 100 more elements.

“Charles Darwin eloquently articulated the way plants and animals evolve by natural selection, with many variations and traits of individuals and many different configurations,” says co-author Robert M. Hazen of Carnegie Science, a leader of the research.

“We contend that Darwinian theory is just a very special, very important case within a far larger natural phenomenon. The notion that selection for function drives evolution applies equally to stars, atoms, minerals, and many other conceptually equivalent situations where many configurations are subjected to selective pressure.”

The co-authors themselves represent a unique multi-disciplinary configuration: three philosophers of science, two astrobiologists, a data scientist, a mineralogist, and a theoretical physicist.

Says Dr. Wong: “In this new paper, we consider evolution in the broadest sense—change over time—which subsumes Darwinian evolution based upon the particulars of ‘descent with modification.’”  

“The universe generates novel combinations of atoms, molecules, cells, etc. Those combinations that are stable and can go on to engender even more novelty will continue to evolve. This is what makes life the most striking example of evolution, but evolution is everywhere.”

Among many implications, the paper offers: 

  1. Understanding into how differing systems possess varying degrees to which they can continue to evolve. “Potential complexity” or “future complexity” have been proposed as metrics of how much more complex an evolving system might become
  2. Insights into how the rate of evolution of some systems can be influenced artificially. The notion of functional information suggests that the rate of evolution in a system might be increased in at least three ways: (1) by increasing the number and/or diversity of interacting agents, (2) by increasing the number of different configurations of the system; and/or 3) by enhancing the selective pressure on the system (for example, in chemical systems by more frequent cycles of heating/cooling or wetting/drying).
  3. A deeper understanding of generative forces behind the creation and existence of complex phenomena in the universe, and the role of information in describing them
  4. An understanding of life in the context of other complex evolving systems. Life shares certain conceptual equivalencies with other complex evolving systems, but the authors point to a future research direction, asking if there is something distinct about how life processes information on functionality (see also https://royalsocietypublishing.org/doi/10.1098/rsif.2022.0810).
  5. Aiding the search for life elsewhere: if there is a demarcation between life and non-life that has to do with selection for function, can we identify the “rules of life” that allow us to discriminate that biotic dividing line in astrobiological investigations? (See also https://conta.cc/3LwLRYS, “Did Life Exist on Mars? Other Planets? With AI’s Help, We May Know Soon”)
  6. At a time when evolving AI systems are an increasing concern, a predictive law of information that characterizes how both natural and symbolic systems evolve is especially welcome

Laws of nature – motion, gravity, electromagnetism, thermodynamics – etc. codify the general behavior of various macroscopic natural systems across space and time. 

The “law of increasing functional information” published today complements the 2nd law of thermodynamics, which states that the entropy (disorder) of an isolated system increases over time (and heat always flows from hotter to colder objects).

* * * * *

Comments

“This is a superb, bold, broad, and transformational article.  …  The authors are approaching the fundamental issue of the increase in complexity of the evolving universe. The purpose is a search for a ‘missing law’ that is consistent with the known laws.

“At this stage of the development of these ideas, rather like the early concepts in the mid-19th century of coming to understand ‘energy’ and ‘entropy,’ open broad discussion is now essential.”

Stuart Kauffman
Institute for Systems Biology, Seattle WA

“The study of Wong et al. is like a breeze of fresh air blowing over the difficult terrain at the trijunction of astrobiology, systems science and evolutionary theory. It follows in the steps of giants such as Erwin Schrödinger, Ilya Prigogine, Freeman Dyson and James Lovelock. In particular, it was Schrödinger who formulated the perennial puzzle: how can complexity increase — and drastically so! — in living systems, while they remain bound by the Second Law of thermodynamics? In the pile of attempts to resolve this conundrum in the course of the last 80 years, Wong et al. offer perhaps the best shot so far.”

“Their central idea, the formulation of the law of increasing functional information, is simple but subtle: a system will manifest an increase in functional information if its various configurations generated in time are selected for one or more functions. This, the authors claim, is the controversial ‘missing law’ of complexity, and they provide a bunch of excellent examples. From my admittedly quite subjective point of view, the most interesting ones pertain to life in radically different habitats like Titan or to evolutionary trajectories characterized by multiple exaptations of traits resulting in a dramatic increase in complexity. Does the correct answer to Schrödinger’s question lie in this direction? Only time will tell, but both my head and my gut are curiously positive on that one. Finally, another great merit of this study is worth pointing out: in this day and age of rabid Counter-Enlightenment on the loose, as well as relentless attacks on the freedom of thought and speech, we certainly need more unabashedly multidisciplinary and multicultural projects like this one.”

Milan Cirkovic 
Astronomical Observatory of Belgrade, Serbia; The Future of Humanity Institute, Oxford University [University of Oxford]

The natural laws we recognize today cannot yet account for one astounding characteristic of our universe—the propensity of natural systems to “evolve.” As the authors of this study attest, the tendency to increase in complexity and function through time is not specific to biology, but is a fundamental property observed throughout the universe. Wong and colleagues have distilled a set of principles which provide a foundation for cross-disciplinary discourse on evolving systems. In so doing, their work will facilitate the study of self-organization and emergent complexity in the natural world.

Corday Selden
Department of Marine and Coastal Sciences, Rutgers University

The paper “On the roles of function and selection in evolving systems” provides an innovative, compelling, and sound theoretical framework for the evolution of complex systems, encompassing both living and non-living systems. Pivotal in this new law is functional information, which quantitatively captures the possibilities a system has to perform a function. As some functions are indeed crucial for the survival of a living organism, this theory addresses the core of evolution and is open to quantitative assessment. I believe this contribution has also the merit of speaking to different scientific communities that might find a common ground for open and fruitful discussions on complexity and evolution.

Andrea Roli
Assistant Professor, Università di Bologna.

Here’s a link to and a citation for the paper,

On the roles of function and selection in evolving systems by Michael L. Wong, Carol E. Cleland, Daniel Arends Jr., Stuart Bartlett, H. James Cleaves, Heather Demarest, Anirudh Prabhu, Jonathan I. Lunine, and Robert M. Hazen. Proceedings of the National Academy of Sciences (PNAS) 120 (43) e2310223120 DOI: https://doi.org/10.1073/pnas.2310223120 Published: October 16, 2023

This paper is open access.

Antimicrobial ‘safe-tea’ with silver nanoparticles and green tea

This work is not about drinking tea with silver nanoparticles in it or ingesting colloidal silver by any means, a dangerous practice as Nicole Karlis’s January 7, 2024 article for Salon highlights, Note: Links have been removed,

The HBO docuseries “Love Has Won: The Cult of Mother God” begins with a jarring image. The corpse of the cult leader, Amy Carlson, laying in a bed, wrapped in blankets and string lights. She is noticeably gaunt and her face is a very blue color. When Carlson died in 2021 at the age of 45, a coroner’s report deemed her cause of death to be “alcohol abuse, anorexia and chronic colloidal silver ingestion.”

Most medical experts advise against ingesting silver — especially in large amounts. That’s because too much of it can build up in a person’s body and lead to argyria, which is the condition that Carlson and Stan Jones both had that turned them a blue. While argyria alone isn’t a serious health condition, it doesn’t go away when a person stops ingesting silver. Plus, too much silver can be fatal. [emphasis mine]

A November 17, 2023 news item on phys.org announced research from the Polish Academy of Sciences into improving antimicrobial activity, Note: A link has been removed,

Researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) have demonstrated that green tea–silver nanoparticles as a powerful tool against pathogens such as bacteria and yeast. Their work is published in Nanoscale Advances.

An undated Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) press release (also published on EurekAlert and dated November 17, 2023), which originated the news item, describes this work, which is intended for medical applications, in more detail,

Once upon a time, people believed to be invincible against bacterial diseases, thanks to the antibiotics. Does this sound like a fairy tale? By all means! Nothing could be further from the truth. Despite widespread access to antibiotic therapy, many lives are lost due to pathogens invisible to the eye. The ability to develop drugs that can combat resistant strains of bacteria has not kept pace with the spread of resistance. So far, innovations to defeat antimicrobial-resistant strains of bacteria are in high demand. Recently, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) demonstrated green tea-silver nanoparticles as a powerful tool against pathogens such as bacteria and yeast. Their goal was to develop an efficient method to combat bacteria that are otherwise unaffected by antimicrobial agents, such as antibiotics.

Following the discovery of antibiotics, there came a change in the curse of mankind by accelerating the development of medicine and extending human life expectancy. Their successful implementation led to the rapid development of pharmacy, providing more and more drugs against many pathogens. Nevertheless, the overuse of antibiotics has led to the emergence of resistance to these compounds, becoming one of the biggest health threats worldwide. As a result, antibiotic resistance has emerged faster than the advancement of antibiotics . The appearance of new drugs on the horizon to combat these pathogens is a short-lasting spark. Even if we seem to be on the losing end, there is still a chance to defeat an invisible enemy.

This hitch was researched by the team of scientists from the IPC PAS under the supervision of Prof. Jan Paczesny, who proposed new nanoformulations for use against widespread and challenging pathogens such as ESKAPE bacteria (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and other problematic yeast pathogens such as Candida auris or Cryptococcus neoformans. These microorganisms, treated with commercially available antibiotics, rapidly develop antibiotic resistance. Researchers chose ESKAPE as the target group since these pathogens lead to serious diseases, from sepsis to even cancer. How? This is where the story begins.

A few months ago, Paczesny’s team decided to try combining silver nanoparticles, which are known for their antimicrobial and antifungal properties, and tea extracts rich in polyphenols additionally possessing antioxidant properties. The concept was built to enhance broad-spectrum efficacy against pathogens using green hybrid silver nanoparticles (AgNPs), which are significantly more effective than all ingredients and even more effective than certain antibiotics. Why are these hybrid particles so special? In their work, three well-known tea varieties: black tea (B-Tea), green tea (G-Tea) and Pu-erh tea (R-Tea) were used as a capping agent, which acts as a stabilizer to protect the synthesized  particles from aggregation. In this way, the particles offer a high active surface area compared to other formulations. Additionally, such synthesis is eco-friendly for the use of natural ingredients during precipitation. The structures produced vary in shape and size from 34 to 65 nm, depending on the type of tea used during synthesis, and show different reactivity towards microorganisms.

Initially, silver nanoparticles produced in the presence of tea extracts (B-TeaNPs, G-TeaNPs and R-TeaNPs) were used to treat Gram-negative (E. coli) and Gram-positive (E. faecium) bacterial strains to test the effect on strains with different cell envelope morphologies. They looked at the interactions between the manufactured nanoparticles and the pathogens to determine efficacy, comparing the results with commercially available antibiotics. The ESKAPE pathogens were then tested according to a protocol for the most effective concentration and composition of the particles, revealing up to a 25% decrease in the number of bacterial cells in E. faecium and a 90% decrease in the case of E. cloacae. Interestingly, the green silver nanoparticles also showed antifungal activity, leading to an 80% decrease in the number of viable cells of C. auris and about a 90% decrease for C. neoformans.

The first author, Sada Raza claims “What is more, the size of nanoparticles is usually related to the cytotoxic effect of nanomaterials, with smaller particles being more cytotoxic. This should favor control AgNPs and R-TeaNPs over G-TeaNPs and B-TeaNPs in our experiments. This was not the case. In most experiments, C-AgNPs and R-TeaNPs showed the lowest antimicrobial efficacy. This is in line with other studies, which demonstrated that size is not a primary factor affecting the antimicrobial activity of AgNPs.

The antibacterial and antifungal properties of silver nanoparticles made with tea extracts are greater than those of silver nanoparticles alone due to their high content of phenolic compounds, isoflavonoids (especially catechins such as epigallocatechin (EGC) and epigallocatechin gallate (EGCG)). These combinations, using biologically active tea extracts and smaller amounts of silver nanoparticles, appear to be a potential way to combat a range of infections and even replace antibiotics in some applications.

“We established that silver nanoparticles synthesized with tea extracts have higher antibacterial properties than silver nanoparticles alone. Therefore, lower dosages of TeaNPs could be used (0.1 mg mL−1). We confirmed that in some cases, the synergistic effect of tea extracts and silver nanoparticles allowed for efficacy higher than that of antibiotics (ampicillin) when tested at the same concentrations (0.1 mg mL−1) and after a relatively short exposure time of three hours.” – remarks Mateusz Wdowiak, co-author of this work.

The researchers found that the antimicrobial hybrid nanoparticles resulted in a significant reduction in bacteria compared to antibiotics or compounds separately. Although not all bacteria were killed, this is a significant improvement that could aid the treatment of superbugs using much lower doses than other commercially available compounds. The amount of hybrid silver nanoparticles needed to overcome bacteria or fungal infections is extremely low, making them cost-effective, so the key to using them well is not only functionality, but also the low cost of application.

It is an approach that can also be adapted to combat other difficult-to-treat bacterial infections. The new nanoparticles developed by researchers at the IPC PAS could bring us one step closer to effectively killing deadly drug-resistant superbugs, providing an alternative to antibiotics against Gram-negative and Gram-positive bacteria. This study also shows how much more work there is to be done in this field. Compounds used separately were much less effective than the green hybrid.

In the future, the researchers’ main goal is to use nanoparticles in everyday life, starting with agricultural applications, replacing harmful compounds used in fields to overcome infestations in plants and bring us closer to organic farming. On a larger scale, the proposed material could also be used in biomedical applications, such as an additive for wound dressings to protect against Gram-negative and Gram-positive bacteria. They hope to use nanotechnology to develop more targeted treatments for drug-resistant superbugs.

Their work was published in Nanoscale Advances journal and was financed by the National Science Centre, Poland, within the SONATA BIS grant number 2017/26/E/ST4/00041 and Foundation for Polish Science from the European Regional Development Fund within the project POIR.04.04.00-00-14D6/18-00 ‘Hybrid sensor platforms for integrated photonic systems based on ceramic and polymer materials (HYPHa)’ (TEAM-NET program).

Here’s a link to and a citation for the paper,

Enhancing the antimicrobial activity of silver nanoparticles against ESKAPE bacteria and emerging fungal pathogens by using tea extracts by Sada Raza, Mateusz Wdowiak, Mateusz Grotek, Witold Adamkiewicz, Kostiantyn Nikiforow, Pumza Mente, and Jan Paczesny. Nanoscale Adv., 2023,5, 5786-5798 DOI: https://doi.org/10.1039/D3NA00220A

This paper is licensed under a Creative Commons Attribution 3.0 Unported Licence. “You can use material from this article in other publications without requesting further permissions from the RSC [Royal Society of Chemistry], provided that the correct acknowledgement is given.” Or, consider it an open access paper.

Finally, this is not a recommendation not is it an endorsement for the ingestion of colloidal silver.

Pressure-cooking birch leaves to produce nanoscale carbon particles for organic semiconductors

By pressure cooking birch leaves picked on campus the scientists produced carbon particles that can be used as raw material for the production of organic semiconductors. Image: Mattias Pettersson

A November 28, 2023 news item on phys.org announces work on an organic semiconductor,

Today, petrochemical compounds and rare metals such as platinum and iridium are used to produce semiconductors for optoelectronics, such as organic LEDs for super-thin TV and mobile phone screens. Physicists at Umeå University in collaboration with researchers in Denmark and China, have discovered a more sustainable alternative. By pressure-cooking birch leaves picked on the Umeå University campus, they have produced a nanosized carbon particle with desired optical properties.

A January 28, 2023 Umeå University press release by Anna-Lena Lindskog, which originated the news item, provides more information about the research,

“The essence of our research is to harness nearby renewable resources for producing organic semiconductor materials” says Jia Wang, research fellow at the Department of Physics, Umeå University, and one of the authors of the study that has been published in the Green Chemistry.

Organic semiconductors are one of the most important functional materials in optoelectronic applications. One example is the organic light-emitting diodes, OLEDs, which enable ultra-thin and bright TV and mobile phone screens. Sharply increasing demand for this advanced technology is driving massive production of organic semiconductor materials.

Unfortunately, these semiconductors are currently produced mainly from petrochemical compounds and rare elements, obtained through environmentally harmful mining. Moreover, these materials often contain so-called ‘critical raw materials’ that are in short supply, such as Platinum, Indium and Phosphorus.

From a sustainability point of view, it would be ideal if we can use biomass from plants, animals and waste to produce organic semiconductor materials. These starting materials are renewable and abundantly available. Research fellow Jia Wang and her colleagues at the Department of Physics, together with international partners, have succeeded in producing such a bio-based semiconductor material.

Birch leaves in pressure cooker

The synthesis process is simple: they picked birch leaves on the Umeå campus and cooked them in a pressure cooker. That produced a kind of ‘carbon dots’ about two nanometers in size, which emit a narrow-band, deep red light when dissolved in ethanol. Some of the optical properties of these birch leaf carbon dots are comparable to commercial quantum dots currently used in semiconductor materials, but unlike them, they contain no heavy metals or critical raw materials.

”It is important to note that our method is not limited to birch leaves” explains Jia Wang. “We tested different plant leaves with the same pressure cooking method, and all of them produced similar red-emitting carbon dots. This versatility suggests that the transformation process can be used in different locations.”

Using the carbon dots in a light-emitting electrochemical cell device, the researchers were able to show that the brightness generated was 100 cd/m2, which is comparable to the light intensity from a computer screen.

“It is important to note that our method is not limited to birch leaves.”

”This result shows that it is possible to transition from depleting petroleum compounds to regenerating biomass as a raw material for organic semiconductors” says Jia Wang.

She emphasises the broader potential of carbon dots beyond just light-emitting devices.

“Carbon dots are promising across various applications, from bioimaging and sensing to anti-counterfeiting. We’re open to collaborations and eager to explore more exciting uses for these emissive and sustainable carbon dots” says Jia Wang.

Here’s a link to and a citation for the paper,

Fluorescent carbon dots from birch leaves for sustainable electroluminescent devices by Shi Tang, Yongfeng Liu, Henry Opoku, Märta Gregorsson, Peijuan Zhang, Etienne Auroux, Dongfeng Dang, Anja-Verena Mudring, Thomas Wågberg, Ludvig Edman, and Jia Wang. Green Chem., 2023, 25, 9884-9895 DOI: https://doi.org/10.1039/D3GC03827K First published: 01 Nov 2023

This paper is open access.

Thinking outside the curriculum: ‘Open schooling’ for science

An anecdote kicks off this October 20, 2023 news item on phys.org,

In a part of Sweden northeast of Stockholm, Nina Berglund likes trying out new ways to teach her science students aged 10 to 12.

Berglund recently invited a physics professor named Staffan Yngve to her class in the municipality of Norrtälje. Yngve brought with him a nail mat on which he proceeded to lie down to demonstrate the forces at work, delighting the students. “Even four months after, my pupils still remember it and speak about the visit using scientific terminology,” said Berglund.

She is a proponent of “open schooling,” an idea that science teaching must go beyond the staples of school labs such as test tubes, Bunsen burners and the periodic table to get students interested.

Amid concerns that Europe is attracting too few people—especially women—into scientific fields, the aim is to bring science to life for pupils.

While it has no formal defining characteristics, open schooling tends to feature activities such as on-site visits, off-site trips and remote learning that are generally exceptions in standard schools.

The story about open schooling in Europe comes from an October 19, 2023 article written by Andrew Dunne for Horizon: The EU Research & Innovation Magazine (also on Horizon science blog), Note: A link has been removed,

‘The big idea is to overcome the barriers we see with science education,’ said Maya Halevy, director of the Bloomfield Science Museum in Jerusalem, Israel.

Halevy led a research project that received EU funding to advance the whole concept. Called Make it Open, or MiO, the project ended in September 2023 after three years.

It helped to establish open schooling “hubs” in 10 European countries ranging from Sweden to Greece, bringing together more than 150 schools.

… at a Spanish educational institution called IES de Ortigueira in the northwestern part of the country, 12-year-olds learnt about physics by designing and building model playgrounds. The models were then displayed in the library, where the students explained their work to visitors.

At the primary school of Makrygialos near Greece’s second-biggest city, Thessaloniki, teacher Thanos Batsilas and his students were part of a living lab that taught environmental science through an activity involving mussel farming.

They accompanied farmers on a boat out to sea to observe how the environment is inextricably linked to the wellbeing of area residents and how climate change is advancing. The underlying point was that mussel farming is a viable way to make a living and can help support the local ecosystem.

Children loved the living-lab activities because they love anything that is out of the box,’ Batsilas said. ‘They embrace it.’

Koulouris [Pavlos Koulouris, faculty member at a school called Ellinogermaniki Agogi] said open schooling has the potential to turn traditional notions of academic achievement on their head.

You can find the Make it Open website here.

Adaptive neural connectivity with an event-based architecture using photonic processors

On first glance it looked like a set of matches. If there were more dimension, this could also have been a set pencils but no,

Caption: The chip contains almost 8,400 functioning artificial neurons from waveguide-coupled phase-change material. The researchers trained this neural network to distinguish between German and English texts on the basis of vowel frequency. Credit: Jonas Schütte / Pernice Group Courtesy: University of Münster

An October 23, 2023 news item on Nanowerk introduces research into a new approach to optical neural networks

A team of researchers headed by physicists Prof. Wolfram Pernice and Prof. Martin Salinga and computer specialist Prof. Benjamin Risse, all from the University of Münster, has developed a so-called event-based architecture, using photonic processors. In a similar way to the brain, this makes possible the continuous adaptation of the connections within the neural network.

Key Takeaways

Researchers have created a new computing architecture that mimics biological neural networks, using photonic processors for data transportation and processing.

The new system enables continuous adaptation of connections within the neural network, crucial for learning processes. This is known as both synaptic and structural plasticity.

Unlike traditional studies, the connections or synapses in this photonic neural network are not hardware-based but are coded based on optical pulse properties, allowing for a single chip to hold several thousand neurons.

Light-based processors in this system offer a much higher bandwidth and lower energy consumption compared to traditional electronic processors.

The researchers successfully tested the system using an evolutionary algorithm to differentiate between German and English texts based on vowel count, highlighting its potential for rapid and energy-efficient AI applications.

The Research

Modern computer models – for example for complex, potent AI applications – push traditional digital computer processes to their limits.

The person who edited the original press release, which is included in the news item in the above, is not credited.

Here’s the unedited original October 23, 2023 University of Münster press release (also on EurekAlert)

Modern computer models – for example for complex, potent AI applications – push traditional digital computer processes to their limits. New types of computing architecture, which emulate the working principles of biological neural networks, hold the promise of faster, more energy-efficient data processing. A team of researchers has now developed a so-called event-based architecture, using photonic processors with which data are transported and processed by means of light. In a similar way to the brain, this makes possible the continuous adaptation of the connections within the neural network. This changeable connections are the basis for learning processes. For the purposes of the study, a team working at Collaborative Research Centre 1459 (“Intelligent Matter”) – headed by physicists Prof. Wolfram Pernice and Prof. Martin Salinga and computer specialist Prof. Benjamin Risse, all from the University of Münster – joined forces with researchers from the Universities of Exeter and Oxford in the UK. The study has been published in the journal “Science Advances”.

What is needed for a neural network in machine learning are artificial neurons which are activated by external excitatory signals, and which have connections to other neurons. The connections between these artificial neurons are called synapses – just like the biological original. For their study, the team of researchers in Münster used a network consisting of almost 8,400 optical neurons made of waveguide-coupled phase-change material, and the team showed that the connection between two each of these neurons can indeed become stronger or weaker (synaptic plasticity), and that new connections can be formed, or existing ones eliminated (structural plasticity). In contrast to other similar studies, the synapses were not hardware elements but were coded as a result of the properties of the optical pulses – in other words, as a result of the respective wavelength and of the intensity of the optical pulse. This made it possible to integrate several thousand neurons on one single chip and connect them optically.

In comparison with traditional electronic processors, light-based processors offer a significantly higher bandwidth, making it possible to carry out complex computing tasks, and with lower energy consumption. This new approach consists of basic research. “Our aim is to develop an optical computing architecture which in the long term will make it possible to compute AI applications in a rapid and energy-efficient way,” says Frank Brückerhoff-Plückelmann, one of the lead authors.

Methodology: The non-volatile phase-change material can be switched between an amorphous structure and a crystalline structure with a highly ordered atomic lattice. This feature allows permanent data storage even without an energy supply. The researchers tested the performance of the neural network by using an evolutionary algorithm to train it to distinguish between German and English texts. The recognition parameter they used was the number of vowels in the text.

The researchers received financial support from the German Research Association, the European Commission and “UK Research and Innovation”.

Here’s a link to and a citation for the paper,

Event-driven adaptive optical neural network by Frank Brückerhoff-Plückelmann, Ivonne Bente, Marlon Becker, Niklas Vollmar, Nikolaos Farmakidis, Emma Lomonte, Francesco Lenzini, C. David Wright, Harish Bhaskaran, Martin Salinga, Benjamin Risse, and Wolfram H. P. Pernice. Science Advances 20 Oct 2023 Vol 9, Issue 42 DOI: 10.1126/sciadv.adi9127

This paper is open access.

Chandra Sonifications (extraplanetary music and data sonification)

I’m not sure why the astronomy community is so taken with creating music out of data but it seems to be the most active of the science communities in the field. This October 15. 2023 article by Elizabeth Hlavinka for Salon.com provides a little context before describing some of the latest work, Note: Links have been removed,

Christine Malec, who has been blind since birth, has always been a big astronomy buff, fascinated by major questions about the universe like what happens when a limit reaches infinity and whether things like space travel could one day become a reality. However, throughout her childhood, most astronomical information was only accessible to her via space documentaries or science fiction books.

Nearly a decade ago, Malec discovered a completely new way to experience astronomy when she saw astronomer and musician Matt Russo, Ph.D., give a presentation at a local planetarium in Toronto. Using a process called astronomical sonification, Russo had translated information collected from the TRAPPIST-1 solar system, which has seven planets locked in an orbital resonance, into something people who are blind or have low vision could experience: music. 

Russo’s song sent a wave of goosebumps through Malec’s body. Something she had previously understood intellectually but never had turned into a sensory experience was suddenly, profoundly felt.

“It was unforgettable,” Malec told Salon in a phone interview. “I compare it to what it might be like for a sighted person to look up at the night sky and get a sensory intuition of the size and nature of the cosmos. As a blind person, that’s an experience I hadn’t had.”

Through astronomical sonification, scientists map complex astronomical structures like black holes or exploded stars through the similarly expansive and multidimensional world of sound. Translating data from outer space into music not only expands access to astronomy for people who are blind or have low vision, but it also has the potential to help all scientists better understand the universe by leading to novel discoveries. Like images from the James Webb telescope that contextualize our tiny place in the universe, astronomical sonification similarly holds the power to connect listeners to the cosmos.

“It really does bring a connection that you don’t necessarily get when you’re just looking at a cluster of galaxies that’s billions of light years away from you that stretches across many hundreds of millions of light years,” said Kimberly Kowal Arcand, Ph.D., a data visualizer for NASA’s Chandra X-ray Observatory. “Having sound as a way of experiencing that type of phenomenon, that type of object, whatever it is, is a very valid way of experiencing the world around you and of making meaning.”

Malec serves as a consultant for Chandra Sonifications, which translates complex data from astronomical objects into sound. One of their most popular productions, which has been listened to millions of times, sonified a black hole in the Perseus cluster galaxy about 240 million light-years away. When presenting this sonification at this year’s [2023] SXSW festival in March, Russo, who works with Chandra through an organization he founded called SYSTEM Sounds, said this eerie sound used to depict the black hole had been likened to “millions of damned souls being sucked into the pits of hell.” 

Here’s some of what the audience at the 2023 SXSW festival heard,

If you have the time , do read Hlavinka’s October 15. 2023 article as she tells a good story with many interesting tidbits such as this (Note: Links have been removed),

William “Bill” Kurth, Ph.D., a space physicist at the University of Iowa, said the origins of astronomical sonification can be traced back to at least the 1970s when the Voyager-1 spacecraft recorded electromagnetic wave signals in space that were sent back down to his team on Earth, where they were processed as audio recordings.

Back in 1979, the team plotted the recordings on a frequency-time spectrogram similar to a voiceprint you see on apps that chart sounds like birds chirping, Kurth explained. The sounds emitted a “whistling” effect created by waves following the magnetic fields of the planet rather than going in straight lines. The data seemed to confirm what they had suspected: lightning was shocking through Jupiter’s atmosphere.

“At that time, the existence of lightning anywhere other than in Earth’s atmosphere was unknown,” Kurth told Salon in a phone interview. “This became the first time that we realized that lightning might exist on another planet.”

And this (Note: Links have been removed),

Beyond astronomy, sonification can be applied to any of the sciences, and health researchers are currently looking at tonifying DNA strands to better understand how proteins fold in multiple dimensions. Chandra is also working on constructing tactile 3-D models of astronomical phenomena, which also expands access for people who are blind or have low vision — those who have historically only been able to experience these sciences through words, Malec said.

Chandra and other sonification projects

I found a brief and somewhat puzzling description of the Chandra sonification project on one of the of US National Aeronautics and Space Administration (NASA) websites. From a September 22, 2021 posting on the Marshall Science Research and Projects Division blog (Note: Links have been removed,)

On 9/16/21, a Chandra sonification image entitled “Jingle, Pluck, and Hum: Sounds from Space” was released to the public.  Since 2020, Chandra’s “sonification” project has transformed astronomical data from some of the world’s most powerful telescopes into sound.  Three new objects — a star-forming region, a supernova remnant, and a black hole at the center of a galaxy — are being released.  Each sonification has its own technique to translate the astronomical data into sound.

For more information visit: Data Sonifications: Westerlund 2 (Multiwavelength), Tycho’s Supernova Remnant, and M87. https://www.nasa.gov/missions_pages/chandra/main/index.html.

A Chandra article entitled “Data Sonification: Sounds from the Milky Way” was also released in the NASA STEM Newsletter.  This newsletter was sent to 54,951 subscribers and shared with the office of STEM engagements social media tools with approximately 1.7M followers. For more information visit: https://myemail.constantcontact.com/NASA-EXPRESS—-Your-STEM-Connection-for-Sept–9–2021.html?soid=1131598650811&aid=iXfzAJk6x_s

I’m a little puzzled by the reference to a Chandra sonification image but I’m assuming that they also produce data visualizations. Anyway, as Hlavinka notes Chandra is a NASA X-ray Observatory and they have a number of different projects/initiatives.

Getting back to data sonification, Chandra offers various audio files on its A Universe of Sound webpage,

Here’s a sampling of three data sonification posts (there are more) here,

Enjoy!

Recruiting for a citizen science project: become a Black Hole Hunter

A January 17, 2024 news item on phys.org announced a citizen science recruitment drive for more Black Hole Hunters,

Could you help scientists uncover the mysterious world of invisible black holes? Become a Black Hole Hunter and you’ll be taking part in scientific research that has the potential to reveal more about one of space’s most intriguing aspects.

All you will need is a smartphone, tablet or other computer, some guidance on how to spot the tell-tale clues, and a bit of time.

By volunteering to take part in this online citizen science project, you’ll be assisting astrophysicists Dr. Matt Middleton and Adam McMaster from the University of Southampton, and Dr. Hugh Dickinson from the Open University, with their research into elusive black holes.

A January 17, 2024 University of Southampton press release (also on EurekAlert), which originated the news item, gives more details about black holes and what citizen scientists will be doing during this new phase of the project,

Dr Middleton said: “Black holes are invisible. Their gravitational pull is so strong that not even light can escape, making them incredibly hard to see, even with specialist equipment.

“But that gravitational pull is also how we can detect them because it’s so strong that it can bend and focus light, acting like a lens that magnifies light from stars. We can detect this magnification and that’s how we know a black hole exists.

“We know our galaxy is teeming with black holes, but we’ve only found a handful. You could help us change that.”

Volunteers will be asked to search through telescope data and indicate anything that could reveal the presence of a black hole.

Adam added: “Anyone of any age can do this, and you don’t need to be an expert to take part. All you really need is an interest in space and as little or as much time as you can give for looking at the graphs and helping us spot the patterns that could reveal a black hole.

“Your work will directly contribute to real scientific research and you’ll be helping to make the invisible become visible.”

Black Hole Hunters previously analysed data from a ground-based telescope but the project is moving on – and up. It’s relaunching with a new set of data to analyse from a space-based telescope, called TESS.

Dr Hugh Dickinson, of The Open University, said: “We’re really excited to see the launch of this new Black Hole Hunter project.

“Using the amazing data from the TESS satellite means that there’s a good chance that one or more citizen scientists will be able to spot one of the elusive gravitational lensing events that we’re looking for.”

To get involved go to: Black Hole Hunters

The researchers are offering a training tutorial and a practice tutorial prior to getting started.

Canada’s voluntary code of conduct relating to advanced generative AI (artificial intelligence) systems

These days there’s a lot of international interest in policy and regulation where AI is concerned. So even though this is a little late, here’s what happened back in September 2023, the Canadian government came to an agreement with various technology companies about adopting a new voluntary code. Quinn Henderson’s September 28, 2023 article for the Daily Hive starts in a typically Canadian fashion, Note: Links have been removed,

While not quite as star-studded [emphasis mine] at the [US] White House’s AI summit, the who’s who of Canadian tech companies have agreed to new rules concerning AI.

What happened: A handful of Canada’s biggest tech companies, including Blackberry, OpenText, and Cohere, agreed to sign on to new voluntary government guidelines for the development of AI technologies and a “robust, responsible AI ecosystem in Canada.”

What’s next: The code of conduct is something of a stopgap until the government’s *real* AI regulation, the Artificial Intelligence and Data Act (AIDA), comes into effect in two years.

The regulation race is on around the globe. The EU is widely viewed as leading the way with the world’s first comprehensive regulatory AI framework set to take effect in 2026. The US is also hard at work but only has a voluntary code in place.

Henderson’s September 28, 2023 article offers a good, brief summary of the situation regarding regulation and self-regulation of AI here in Canada and elsewhere around the world, albeit, from a few months ago. Oddly, there’s no mention of what was then an upcoming international AI summit in the UK (see my November 2, 2023 posting, “UK AI Summit (November 1 – 2, 2023) at Bletchley Park finishes“).

Getting back to Canada’s voluntary code of conduct. here’s the September 27, 2023 Innovation, Science and Economic Development Canada (ISED) news release about it, Note: Links have been removed,

Today [September 27, 2023], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, announced Canada’s Voluntary Code of Conduct on the Responsible Development and Management of Advanced Generative AI Systems, which is effective immediately. The code identifies measures that organizations are encouraged to apply to their operations when they are developing and managing general-purpose generative artificial intelligence (AI) systems. The Government of Canada has already taken significant steps toward ensuring that AI technology evolves responsibly and safely through the proposed Artificial Intelligence and Data Act (AIDA), which was introduced as part of Bill C-27 in June 2022. This code is a critical bridge between now and when that legislation would be coming into force.The code outlines measures that are aligned with six core principles:

Accountability: Organizations will implement a clear risk management framework proportionate to the scale and impact of their activities.

Safety: Organizations will perform impact assessments and take steps to mitigate risks to safety, including addressing malicious or inappropriate uses.

Fairness and equity: Organizations will assess and test systems for biases throughout the lifecycle.

Transparency: Organizations will publish information on systems and ensure that AI systems and AI-generated content can be identified.

Human oversight and monitoring: Organizations will ensure that systems are monitored and that incidents are reported and acted on.

Validity and robustness: Organizations will conduct testing to ensure that systems operate effectively and are appropriately secured against attacks.

This code is based on the input received from a cross-section of stakeholders, including the Government of Canada’s Advisory Council on Artificial Intelligence, through the consultation on the development of a Canadian code of practice for generative AI systems. The government will publish a summary of feedback received during the consultation in the coming days. The code will also help reinforce Canada’s contributions to ongoing international deliberations on proposals to address common risks encountered with large-scale deployment of generative AI, including at the G7 and among like-minded partners.

Quotes

“Advances in AI have captured the world’s attention with the immense opportunities they present. Canada is a global AI leader, among the top countries in the world, and Canadians have created many of the world’s top AI innovations. At the same time, Canada takes the potential risks of AI seriously. The government is committed to ensuring Canadians can trust AI systems used across the economy, which in turn will accelerate AI adoption. Through our Voluntary Code of Conduct on the Responsible Development and Management of

Advanced Generative AI Systems, leading Canadian companies will adopt responsible guardrails for advanced generative AI systems in order to build safety and trust as the technology spreads. We will continue to ensure Canada’s AI policies are fit for purpose in a fast-changing world.”
– The Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry

“We are very pleased to see the Canadian government taking a strong leadership role in building a regulatory framework that will help society maximize the benefits of AI, while addressing the many legitimate concerns that exist. It is essential that we, as an industry, address key issues like bias and ensure that humans maintain a clear role in oversight and monitoring of this incredibly exciting technology.”
– Aidan Gomez, CEO and Co-founder, Cohere

“AI technologies represent immense opportunities for every citizen and business in Canada. The societal impacts of AI are profound across education, biotech, climate and the very nature of work. Canada’s AI Code of Conduct will help accelerate innovation and citizen adoption by setting the standard on how to do it best. As Canada’s largest software company, we are honoured to partner with Minister Champagne and the Government of Canada in supporting this important step forward.”
– Mark J. Barrenechea, CEO and CTO, OpenText

“CCI has been calling for Canada to take a leadership role on AI regulation, and this should be done in the spirit of collaboration between government and industry leaders. The AI Code of Conduct is a meaningful step in the right direction and marks the beginning of an ongoing conversation about how to build a policy ecosystem for AI that fosters public trust and creates the conditions for success among Canadian companies. The global landscape for artificial intelligence regulation and adoption will evolve, and we are optimistic to see future collaboration to adapt to the emerging technological reality.”
– Benjamin Bergen, President, Council of Canadian Innovators

Quick facts

*The proposed Artificial Intelligence and Data Act (AIDA), part of Bill C-27, is designed to promote the responsible design, development and use of AI systems in Canada’s private sector, with a focus on systems with the greatest impact on health, safety and human rights (high-impact systems).

*Since the introduction of the bill, the government has engaged extensively with stakeholders on AIDA and will continue to seek the advice of Canadians, experts—including the government’s Advisory Council on AI—and international partners on the novel challenges posed by generative AI, as outlined in the Artificial Intelligence and Data Act (AIDA) – Companion document.

*Bill C-27 was adopted at second reading in the House of Commons in April 2023 and was referred to the House of Commons Standing Committee on Industry and Technology for study.

You can read more about Canada’s regulation efforts (Bill C-27) and some of the critiques in my May 1, 2023 posting, “Canada, AI regulation, and the second reading of the Digital Charter Implementation Act, 2022 (Bill C-27).”

For now, the “Voluntary Code of Conduct on the Responsible Development and Management of Advanced Generative AI Systems” can be found on this ISED September 2023 webpage.

Other Canadian AI policy bits and bobs

Back in 2016, shiny new Prime Minister Justin Trudeau announced the Pan-Canadian Artificial Intelligence Strategy (you can find out more about the strategy (Pillar 1: Commercialization) from this ISED Pan-Canadian Artificial Intelligence Strategy webpage, which was last updated July 20, 2022).

More recently, the Canadian Institute for Advanced Research (CIFAR), a prominent player in the Pan-Canadian AI strategy, published a report about regulating AI, from a November 21, 2023 CIFAR news release by Kathleen Sandusky, Note: Links have been removed,

New report from the CIFAR AI Insights Policy Briefs series cautions that current efforts to regulate AI are doomed to fail if they ignore a crucial aspect: the transformative impact of AI on regulatory processes themselves.

As rapid advances in artificial intelligence (AI) continue to reshape our world, global legislators and policy experts are working full-tilt to regulate this transformative technology. A new report, part of the CIFAR AI Insights Policy Briefs series, provides novel tools and strategies for a new way of thinking about regulation.

“Regulatory Transformation in the Age of AI” was authored by members of the Schwartz Reisman Institute for Technology and Society at the University of Toronto: Director and Chair Gillian Hadfield, who is also a Canada CIFAR AI Chair at the Vector Institute; Policy Researcher Jamie Amarat Sandhu; and Graduate Affiliate Noam Kolt.

The report challenges the current regulatory focus, arguing that the standard “harms paradigm” of regulating AI is necessary but incomplete. For example, current car safety regulations were not developed to address the advent of autonomous vehicles. In this way, the introduction of AI into vehicles has made some existing car safety regulations inefficient or irrelevant.

Through three Canadian case studies—in healthcare, financial services, and nuclear energy—the report illustrates some of the ways in which the targets and tools of regulation could be reconsidered for a world increasingly shaped by AI.

The brief proposes a novel concept—Regulatory Impacts Analysis (RIA)—as a means to evaluate the impact of AI on regulatory regimes. RIA aims to assess the likely impact of AI on regulatory targets and tools, helping policymakers adapt governance institutions to the changing conditions brought about by AI. The authors provide a real-world adaptable tool—a sample questionnaire—for policymakers to identify potential gaps in their domain as AI becomes more prevalent.

This report also highlights the need for a comprehensive regulatory approach that goes beyond mitigating immediate harms, recognizing AI as a “general-purpose technology” with far-reaching implications, including on the very act of regulation itself.

As AI is expected to play a pivotal role in the global economy, the authors emphasize the need for regulators to go beyond traditional approaches. The evolving landscape requires a more flexible and adaptive playbook, with tools like RIA helping to shape strategies to harness the benefits of AI, address associated risks, and prepare for the technology’s transformative impact.

You can find CIFAR’s November 2023 report, “Regulatory Transformation in the Age of AI” (PDF) here.

I have two more AI bits and these concern provincial AI policies, one from Ontario and the other from British Columbia (BC),

Stay tuned, there will be more about AI policy throughout 2024.