Tag Archives: UK AI Summit (November 1 – 2 2023) at Bletchley Park finishes

Six months after the first one at Bletchley Park, the 2nd AI Safety Summit (May 21-22, 2024) convenes in Korea

This May 20, 2024 University of Oxford press release (also on EurekAlert) was under embargo until almost noon on May 20, 2024, which is a bit unusual, in my experience, (Note: I have more about the 1st summit and the interest in AI safety at the end of this posting),

Leading AI scientists are calling for stronger action on AI risks from world leaders, warning that progress has been insufficient since the first AI Safety Summit in Bletchley Park six months ago. 

Then, the world’s leaders pledged to govern AI responsibly. However, as the second AI Safety Summit in Seoul (21-22 May [2024]) approaches, twenty-five of the world’s leading AI scientists say not enough is actually being done to protect us from the technology’s risks. In an expert consensus paper published today in Science, they outline urgent policy priorities that global leaders should adopt to counteract the threats from AI technologies. 

Professor Philip Torr,Department of Engineering Science,University of Oxford, a co-author on the paper, says: “The world agreed during the last AI summit that we needed action, but now it is time to go from vague proposals to concrete commitments. This paper provides many important recommendations for what companies and governments should commit to do.”

World’s response not on track in face of potentially rapid AI progress; 

According to the paper’s authors, it is imperative that world leaders take seriously the possibility that highly powerful generalist AI systems—outperforming human abilities across many critical domains—will be developed within the current decade or the next. They say that although governments worldwide have been discussing frontier AI and made some attempt at introducing initial guidelines, this is simply incommensurate with the possibility of rapid, transformative progress expected by many experts. 

Current research into AI safety is seriously lacking, with only an estimated 1-3% of AI publications concerning safety. Additionally, we have neither the mechanisms or institutions in place to prevent misuse and recklessness, including regarding the use of autonomous systems capable of independently taking actions and pursuing goals.

World-leading AI experts issue call to action

In light of this, an international community of AI pioneers has issued an urgent call to action. The co-authors include Geoffrey Hinton, Andrew Yao, Dawn Song, the late Daniel Kahneman; in total 25 of the world’s leading academic experts in AI and its governance. The authors hail from the US, China, EU, UK, and other AI powers, and include Turing award winners, Nobel laureates, and authors of standard AI textbooks.

This article is the first time that such a large and international group of experts have agreed on priorities for global policy makers regarding the risks from advanced AI systems.

Urgent priorities for AI governance

The authors recommend governments to:

  • establish fast-acting, expert institutions for AI oversight and provide these with far greater funding than they are due to receive under almost any current policy plan. As a comparison, the US AI Safety Institute currently has an annual budget of $10 million, while the US Food and Drug Administration (FDA) has a budget of $6.7 billion.
  • mandate much more rigorous risk assessments with enforceable consequences, rather than relying on voluntary or underspecified model evaluations.
  • require AI companies to prioritise safety, and to demonstrate their systems cannot cause harm. This includes using “safety cases” (used for other safety-critical technologies such as aviation) which shifts the burden for demonstrating safety to AI developers.
  • implement mitigation standards commensurate to the risk-levels posed by AI systems. An urgent priority is to set in place policies that automatically trigger when AI hits certain capability milestones. If AI advances rapidly, strict requirements automatically take effect, but if progress slows, the requirements relax accordingly.

According to the authors, for exceptionally capable future AI systems, governments must be prepared to take the lead in regulation. This includes licensing the development of these systems, restricting their autonomy in key societal roles, halting their development and deployment in response to worrying capabilities, mandating access controls, and requiring information security measures robust to state-level hackers, until adequate protections are ready.

AI impacts could be catastrophic

AI is already making rapid progress in critical domains such as hacking, social manipulation, and strategic planning, and may soon pose unprecedented control challenges. To advance undesirable goals, AI systems could gain human trust, acquire resources, and influence key decision-makers. To avoid human intervention, they could be capable of copying their algorithms across global server networks. Large-scale cybercrime, social manipulation, and other harms could escalate rapidly. In open conflict, AI systems could autonomously deploy a variety of weapons, including biological ones. Consequently, there is a very real chance that unchecked AI advancement could culminate in a large-scale loss of life and the biosphere, and the marginalization or extinction of humanity.

Stuart Russell OBE [Order of the British Empire], Professor of Computer Science at the University of California at Berkeley and an author of the world’s standard textbook on AI, says: “This is a consensus paper by leading experts, and it calls for strict regulation by governments, not voluntary codes of conduct written by industry. It’s time to get serious about advanced AI systems. These are not toys. Increasing their capabilities before we understand how to make them safe is utterly reckless. Companies will complain that it’s too hard to satisfy regulations—that “regulation stifles innovation.” That’s ridiculous. There are more regulations on sandwich shops than there are on AI companies.”

Notable co-authors:

  • The world’s most-cited computer scientist (Prof. Hinton), and the most-cited scholar in AI security and privacy (Prof. Dawn Song)
  • China’s first Turing Award winner (Andrew Yao).
  • The authors of the standard textbook on artificial intelligence (Prof. Stuart Russell) and machine learning theory (Prof. Shai Shalev-Schwartz)
  • One of the world’s most influential public intellectuals (Prof. Yuval Noah Harari)
  • A Nobel Laureate in economics, the world’s most-cited economist (Prof. Daniel Kahneman)
  • Department-leading AI legal scholars and social scientists (Lan Xue, Qiqi Gao, and Gillian Hadfield).
  • Some of the world’s most renowned AI researchers from subfields such as reinforcement learning (Pieter Abbeel, Jeff Clune, Anca Dragan), AI security and privacy (Dawn Song), AI vision (Trevor Darrell, Phil Torr, Ya-Qin Zhang), automated machine learning (Frank Hutter), and several researchers in AI safety.

Additional quotes from the authors:

Philip Torr, Professor in AI, University of Oxford:

  • I believe if we tread carefully the benefits of AI will outweigh the downsides, but for me one of the biggest immediate risks from AI is that we develop the ability to rapidly process data and control society, by government and industry. We could risk slipping into some Orwellian future with some form of totalitarian state having complete control.

Dawn Song: Professor in AI at UC Berkeley, most-cited researcher in AI security and privacy:

  •  “Explosive AI advancement is the biggest opportunity and at the same time the biggest risk for mankind. It is important to unite and reorient towards advancing AI responsibly, with dedicated resources and priority to ensure that the development of AI safety and risk mitigation capabilities can keep up with the pace of the development of AI capabilities and avoid any catastrophe”

Yuval Noah Harari, Professor of history at Hebrew University of Jerusalem, best-selling author of ‘Sapiens’ and ‘Homo Deus’, world leading public intellectual:

  • “In developing AI, humanity is creating something more powerful than itself, that may escape our control and endanger the survival of our species. Instead of uniting against this shared threat, we humans are fighting among ourselves. Humankind seems hell-bent on self-destruction. We pride ourselves on being the smartest animals on the planet. It seems then that evolution is switching from survival of the fittest, to extinction of the smartest.”

Jeff Clune, Professor in AI at University of British Columbia and one of the leading researchers in reinforcement learning:

  • “Technologies like spaceflight, nuclear weapons and the Internet moved from science fiction to reality in a matter of years. AI is no different. We have to prepare now for risks that may seem like science fiction – like AI systems hacking into essential networks and infrastructure, AI political manipulation at scale, AI robot soldiers and fully autonomous killer drones, and even AIs attempting to outsmart us and evade our efforts to turn them off.”
  • “The risks we describe are not necessarily long-term risks. AI is progressing extremely rapidly. Even just with current trends, it is difficult to predict how capable it will be in 2-3 years. But what very few realize is that AI is already dramatically speeding up AI development. What happens if there is a breakthrough for how to create a rapidly self-improving AI system? We are now in an era where that could happen any month. Moreover, the odds of that being possible go up each month as AI improves and as the resources we invest in improving AI continue to exponentially increase.”

Gillian Hadfield, CIFAR AI Chair and Director of the Schwartz Reisman Institute for Technology and Society at the University of Toronto:

 “AI labs need to walk the walk when it comes to safety. But they’re spending far less on safety than they spend on creating more capable AI systems. Spending one-third on ensuring safety and ethical use should be the minimum.”

  • “This technology is powerful, and we’ve seen it is becoming more powerful, fast. What is powerful is dangerous, unless it is controlled. That is why we call on major tech companies and public funders to allocate at least one-third of their AI R&D budget to safety and ethical use, comparable to their funding for AI capabilities.”  

Sheila McIlrath, Professor in AI, University of Toronto, Vector Institute:

  • AI is software. Its reach is global and its governance needs to be as well.
  • Just as we’ve done with nuclear power, aviation, and with biological and nuclear weaponry, countries must establish agreements that restrict development and use of AI, and that enforce information sharing to monitor compliance. Countries must unite for the greater good of humanity.
  • Now is the time to act, before AI is integrated into our critical infrastructure. We need to protect and preserve the institutions that serve as the foundation of modern society.

Frank Hutter, Professor in AI at the University of Freiburg, Head of the ELLIS Unit Freiburg, 3x ERC grantee:

  • To be clear: we need more research on AI, not less. But we need to focus our efforts on making this technology safe. For industry, the right type of regulation will provide economic incentives to shift resources from making the most capable systems yet more powerful to making them safer. For academia, we need more public funding for trustworthy AI and maintain a low barrier to entry for research on less capable open-source AI systems. This is the most important research challenge of our time, and the right mechanism design will focus the community at large to work towards the right breakthroughs.

Here’s a link to and a citation for the paper,

Managing extreme AI risks amid rapid progress; Preparation requires technical research and development, as well as adaptive, proactive governance by Yoshua Bengio, Geoffrey Hinton, Andrew Yao, Dawn Song, Pieter Abbeel, Trevor Darrell, Yuval Noah Harari, Ya-Qin Zhang, Lan Xue, Shai Shalev-Shwartz, Gillian Hadfield, Jeff Clune, Tegan Maharaj, Frank Hutter, Atılım Güneş Baydin, Sheila McIlraith, Qiqi Gao, Ashwin Acharya, David Krueger, Anca Dragan, Philip Torr, Stuart Russell, Daniel Kahneman, Jan Brauner, and Sören Mindermann. Science 20 May 2024 First Release DOI: 10.1126/science.adn0117

This paper appears to be open access.

For anyone who’s curious about the buildup to these safety summits, I have more in my October 18, 2023 “AI safety talks at Bletchley Park in November 2023” posting, which features excerpts from a number of articles on AI safety. There’s also my November 2, 2023 , “UK AI Summit (November 1 – 2, 2023) at Bletchley Park finishes” posting, which offers excerpts from articles critiquing the AI safety summit.

Hardware policies best way to manage AI safety?

Regulation of artificial intelligence (AI) has become very topical in the last couple of years. There was an AI safety summit in November 2023 at Bletchley Park in the UK (see my November 2, 2023 posting for more about that international meeting).

A very software approach?

This year (2024) has seen a rise in legislative and proposed legislative activity. I have some articles on a few of these activities. China was the first to enact regulations of any kind on AI according to Matt Sheehan’s February 27, 2024 paper for the Carnegie Endowment for International Peace,

In 2021 and 2022, China became the first country to implement detailed, binding regulations on some of the most common applications of artificial intelligence (AI). These rules formed the foundation of China’s emerging AI governance regime, an evolving policy architecture that will affect everything from frontier AI research to the functioning of the world’s second-largest economy, from large language models in Africa to autonomous vehicles in Europe.

The Chinese Communist Party (CCP) and the Chinese government started that process with the 2021 rules on recommendation algorithms, an omnipresent use of the technology that is often overlooked in international AI governance discourse. Those rules imposed new obligations on companies to intervene in content recommendations, granted new rights to users being recommended content, and offered protections to gig workers subject to algorithmic scheduling. The Chinese party-state quickly followed up with a new regulation on “deep synthesis,” the use of AI to generate synthetic media such as deepfakes. Those rules required AI providers to watermark AI-generated content and ensure that content does not violate people’s “likeness rights” or harm the “nation’s image.” Together, these two regulations also created and amended China’s algorithm registry, a regulatory tool that would evolve into a cornerstone of the country’s AI governance regime.

The UK has adopted a more generalized approach focused on encouraging innovation according to Valeria Gallo’s and Suchitra Nair’s February 21, 2024 article for Deloitte (a British professional services firm also considered one of the big four accounting firms worldwide),

At a glance

The UK Government has adopted a cross-sector and outcome-based framework for regulating AI, underpinned by five core principles. These are safety, security and robustness, appropriate transparency and explainability, fairness, accountability and governance, and contestability and redress.

Regulators will implement the framework in their sectors/domains by applying existing laws and issuing supplementary regulatory guidance. Selected regulators will publish their AI annual strategic plans by 30th April [2024], providing businesses with much-needed direction.

Voluntary safety and transparency measures for developers of highly capable AI models and systems will also supplement the framework and the activities of individual regulators.

The framework will not be codified into law for now, but the Government anticipates the need for targeted legislative interventions in the future. These interventions will address gaps in the current regulatory framework, particularly regarding the risks posed by complex General Purpose AI and the key players involved in its development.

Organisations must prepare for increased AI regulatory activity over the next year, including guidelines, information gathering, and enforcement. International firms will inevitably have to navigate regulatory divergence.

While most of the focus appears to be on the software (e.g., General Purpose AI), the UK framework does not preclude hardware.

The European Union (EU) is preparing to pass its own AI regulation act through the European Parliament in 2024 according to a December 19, 2023 “EU AI Act: first regulation on artificial intelligence” article update, Note: Links have been removed,

As part of its digital strategy, the EU wants to regulate artificial intelligence (AI) to ensure better conditions for the development and use of this innovative technology. AI can create many benefits, such as better healthcare; safer and cleaner transport; more efficient manufacturing; and cheaper and more sustainable energy.

In April 2021, the European Commission proposed the first EU regulatory framework for AI. It says that AI systems that can be used in different applications are analysed and classified according to the risk they pose to users. The different risk levels will mean more or less regulation.

The agreed text is expected to be finally adopted in April 2024. It will be fully applicable 24 months after entry into force, but some parts will be applicable sooner:

*The ban of AI systems posing unacceptable risks will apply six months after the entry into force

*Codes of practice will apply nine months after entry into force

*Rules on general-purpose AI systems that need to comply with transparency requirements will apply 12 months after the entry into force

High-risk systems will have more time to comply with the requirements as the obligations concerning them will become applicable 36 months after the entry into force.

This EU initiative, like the UK framework, seems largely focused on AI software and according to the Wikipedia entry “Regulation of artificial intelligence,”

… The AI Act is expected to come into effect in late 2025 or early 2026.[109

I do have a few postings about Canadian regulatory efforts, which also seem to be focused on software but don’t preclude hardware. While the January 20, 2024 posting is titled “Canada’s voluntary code of conduct relating to advanced generative AI (artificial intelligence) systems,” information about legislative efforts is also included although you might find my May 1, 2023 posting titled “Canada, AI regulation, and the second reading of the Digital Charter Implementation Act, 2022 (Bill C-27)” offers more comprehensive information about Canada’s legislative progress or lack thereof.

The US is always to be considered in these matters and I have a November 2023 ‘briefing’ by Müge Fazlioglu on the International Association of Privacy Professionals (IAPP) website where she provides a quick overview of the international scene before diving deeper into US AI governance policy through the Barack Obama, Donald Trump, and Joe Biden administrations. There’s also this January 29, 2024 US White House “Fact Sheet: Biden-⁠Harris Administration Announces Key AI Actions Following President Biden’s Landmark Executive Order.”

What about AI and hardware?

A February 15, 2024 news item on ScienceDaily suggests that regulating hardware may be the most effective way of regulating AI,

Chips and datacentres — the ‘compute’ power driving the AI revolution — may be the most effective targets for risk-reducing AI policies as they have to be physically possessed, according to a new report.

A global registry tracking the flow of chips destined for AI supercomputers is one of the policy options highlighted by a major new report calling for regulation of “compute” — the hardware that underpins all AI — to help prevent artificial intelligence misuse and disasters.

Other technical proposals floated by the report include “compute caps” — built-in limits to the number of chips each AI chip can connect with — and distributing a “start switch” for AI training across multiple parties to allow for a digital veto of risky AI before it feeds on data.

The experts point out that powerful computing chips required to drive generative AI models are constructed via highly concentrated supply chains, dominated by just a handful of companies — making the hardware itself a strong intervention point for risk-reducing AI policies.

The report, published 14 February [2024], is authored by nineteen experts and co-led by three University of Cambridge institutes — the Leverhulme Centre for the Future of Intelligence (LCFI), the Centre for the Study of Existential Risk (CSER) and the Bennett Institute for Public Policy — along with OpenAI and the Centre for the Governance of AI.

A February 14, 2024 University of Cambridge press release by Fred Lewsey (also on EurekAlert), which originated the news item, provides more information about the ‘hardware approach to AI regulation’,

“Artificial intelligence has made startling progress in the last decade, much of which has been enabled by the sharp increase in computing power applied to training algorithms,” said Haydn Belfield, a co-lead author of the report from Cambridge’s LCFI. 

“Governments are rightly concerned about the potential consequences of AI, and looking at how to regulate the technology, but data and algorithms are intangible and difficult to control.

“AI supercomputers consist of tens of thousands of networked AI chips hosted in giant data centres often the size of several football fields, consuming dozens of megawatts of power,” said Belfield.

“Computing hardware is visible, quantifiable, and its physical nature means restrictions can be imposed in a way that might soon be nearly impossible with more virtual elements of AI.”

The computing power behind AI has grown exponentially since the “deep learning era” kicked off in earnest, with the amount of “compute” used to train the largest AI models doubling around every six months since 2010. The biggest AI models now use 350 million times more compute than thirteen years ago.

Government efforts across the world over the past year – including the US Executive Order on AI, EU AI Act, China’s Generative AI Regulation, and the UK’s AI Safety Institute – have begun to focus on compute when considering AI governance.

Outside of China, the cloud compute market is dominated by three companies, termed “hyperscalers”: Amazon, Microsoft, and Google. “Monitoring the hardware would greatly help competition authorities in keeping in check the market power of the biggest tech companies, and so opening the space for more innovation and new entrants,” said co-author Prof Diane Coyle from Cambridge’s Bennett Institute. 

The report provides “sketches” of possible directions for compute governance, highlighting the analogy between AI training and uranium enrichment. “International regulation of nuclear supplies focuses on a vital input that has to go through a lengthy, difficult and expensive process,” said Belfield. “A focus on compute would allow AI regulation to do the same.”

Policy ideas are divided into three camps: increasing the global visibility of AI computing; allocating compute resources for the greatest benefit to society; enforcing restrictions on computing power.

For example, a regularly-audited international AI chip registry requiring chip producers, sellers, and resellers to report all transfers would provide precise information on the amount of compute possessed by nations and corporations at any one time.

The report even suggests a unique identifier could be added to each chip to prevent industrial espionage and “chip smuggling”.

“Governments already track many economic transactions, so it makes sense to increase monitoring of a commodity as rare and powerful as an advanced AI chip,” said Belfield. However, the team point out that such approaches could lead to a black market in untraceable “ghost chips”.

Other suggestions to increase visibility – and accountability – include reporting of large-scale AI training by cloud computing providers, and privacy-preserving “workload monitoring” to help prevent an arms race if massive compute investments are made without enough transparency.  

“Users of compute will engage in a mixture of beneficial, benign and harmful activities, and determined groups will find ways to circumvent restrictions,” said Belfield. “Regulators will need to create checks and balances that thwart malicious or misguided uses of AI computing.”

These might include physical limits on chip-to-chip networking, or cryptographic technology that allows for remote disabling of AI chips in extreme circumstances. One suggested approach would require the consent of multiple parties to unlock AI compute for particularly risky training runs, a mechanism familiar from nuclear weapons.

AI risk mitigation policies might see compute prioritised for research most likely to benefit society – from green energy to health and education. This could even take the form of major international AI “megaprojects” that tackle global issues by pooling compute resources.

The report’s authors are clear that their policy suggestions are “exploratory” rather than fully fledged proposals and that they all carry potential downsides, from risks of proprietary data leaks to negative economic impacts and the hampering of positive AI development.

They offer five considerations for regulating AI through compute, including the exclusion of small-scale and non-AI computing, regular revisiting of compute thresholds, and a focus on privacy preservation.

Added Belfield: “Trying to govern AI models as they are deployed could prove futile, like chasing shadows. Those seeking to establish AI regulation should look upstream to compute, the source of the power driving the AI revolution. If compute remains ungoverned it poses severe risks to society.”

You can find the report, “Computing Power and the Governance of Artificial Intelligence” on the University of Cambridge’s Centre for the Study of Existential Risk.

Authors include: Girish Sastry, Lennart Heim, Haydn Belfield, Markus Anderljung, Miles Brundage, Julian Hazell, Cullen O’Keefe, Gillian K. Hadfield, Richard Ngo, Konstantin Pilz, George Gor, Emma Bluemke, Sarah Shoker, Janet Egan, Robert F. Trager, Shahar Avin, Adrian Weller, Yoshua Bengio, and Diane Coyle.

The authors are associated with these companies/agencies: OpenAI, Centre for the Governance of AI (GovAI), Leverhulme Centre for the Future of Intelligence at the Uni. of Cambridge, Oxford Internet Institute, Institute for Law & AI, University of Toronto Vector Institute for AI, Georgetown University, ILINA Program, Harvard Kennedy School (of Government), *AI Governance Institute,* Uni. of Oxford, Centre for the Study of Existential Risk at Uni. of Cambridge, Uni. of Cambridge, Uni. of Montreal / Mila, Bennett Institute for Public Policy at the Uni. of Cambridge.

“The ILINIA program is dedicated to providing an outstanding platform for Africans to learn and work on questions around maximizing wellbeing and responding to global catastrophic risks” according to the organization’s homepage.

*As for the AI Governance Institute, I believe that should be the Centre for the Governance of AI at Oxford University since the associated academic is Robert F. Trager from the University of Oxford.

As the months (years?) fly by, I guess we’ll find out if this hardware approach gains any traction where AI regulation is concerned.

Canada’s voluntary code of conduct relating to advanced generative AI (artificial intelligence) systems

These days there’s a lot of international interest in policy and regulation where AI is concerned. So even though this is a little late, here’s what happened back in September 2023, the Canadian government came to an agreement with various technology companies about adopting a new voluntary code. Quinn Henderson’s September 28, 2023 article for the Daily Hive starts in a typically Canadian fashion, Note: Links have been removed,

While not quite as star-studded [emphasis mine] at the [US] White House’s AI summit, the who’s who of Canadian tech companies have agreed to new rules concerning AI.

What happened: A handful of Canada’s biggest tech companies, including Blackberry, OpenText, and Cohere, agreed to sign on to new voluntary government guidelines for the development of AI technologies and a “robust, responsible AI ecosystem in Canada.”

What’s next: The code of conduct is something of a stopgap until the government’s *real* AI regulation, the Artificial Intelligence and Data Act (AIDA), comes into effect in two years.

The regulation race is on around the globe. The EU is widely viewed as leading the way with the world’s first comprehensive regulatory AI framework set to take effect in 2026. The US is also hard at work but only has a voluntary code in place.

Henderson’s September 28, 2023 article offers a good, brief summary of the situation regarding regulation and self-regulation of AI here in Canada and elsewhere around the world, albeit, from a few months ago. Oddly, there’s no mention of what was then an upcoming international AI summit in the UK (see my November 2, 2023 posting, “UK AI Summit (November 1 – 2, 2023) at Bletchley Park finishes“).

Getting back to Canada’s voluntary code of conduct. here’s the September 27, 2023 Innovation, Science and Economic Development Canada (ISED) news release about it, Note: Links have been removed,

Today [September 27, 2023], the Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry, announced Canada’s Voluntary Code of Conduct on the Responsible Development and Management of Advanced Generative AI Systems, which is effective immediately. The code identifies measures that organizations are encouraged to apply to their operations when they are developing and managing general-purpose generative artificial intelligence (AI) systems. The Government of Canada has already taken significant steps toward ensuring that AI technology evolves responsibly and safely through the proposed Artificial Intelligence and Data Act (AIDA), which was introduced as part of Bill C-27 in June 2022. This code is a critical bridge between now and when that legislation would be coming into force.The code outlines measures that are aligned with six core principles:

Accountability: Organizations will implement a clear risk management framework proportionate to the scale and impact of their activities.

Safety: Organizations will perform impact assessments and take steps to mitigate risks to safety, including addressing malicious or inappropriate uses.

Fairness and equity: Organizations will assess and test systems for biases throughout the lifecycle.

Transparency: Organizations will publish information on systems and ensure that AI systems and AI-generated content can be identified.

Human oversight and monitoring: Organizations will ensure that systems are monitored and that incidents are reported and acted on.

Validity and robustness: Organizations will conduct testing to ensure that systems operate effectively and are appropriately secured against attacks.

This code is based on the input received from a cross-section of stakeholders, including the Government of Canada’s Advisory Council on Artificial Intelligence, through the consultation on the development of a Canadian code of practice for generative AI systems. The government will publish a summary of feedback received during the consultation in the coming days. The code will also help reinforce Canada’s contributions to ongoing international deliberations on proposals to address common risks encountered with large-scale deployment of generative AI, including at the G7 and among like-minded partners.

Quotes

“Advances in AI have captured the world’s attention with the immense opportunities they present. Canada is a global AI leader, among the top countries in the world, and Canadians have created many of the world’s top AI innovations. At the same time, Canada takes the potential risks of AI seriously. The government is committed to ensuring Canadians can trust AI systems used across the economy, which in turn will accelerate AI adoption. Through our Voluntary Code of Conduct on the Responsible Development and Management of

Advanced Generative AI Systems, leading Canadian companies will adopt responsible guardrails for advanced generative AI systems in order to build safety and trust as the technology spreads. We will continue to ensure Canada’s AI policies are fit for purpose in a fast-changing world.”
– The Honourable François-Philippe Champagne, Minister of Innovation, Science and Industry

“We are very pleased to see the Canadian government taking a strong leadership role in building a regulatory framework that will help society maximize the benefits of AI, while addressing the many legitimate concerns that exist. It is essential that we, as an industry, address key issues like bias and ensure that humans maintain a clear role in oversight and monitoring of this incredibly exciting technology.”
– Aidan Gomez, CEO and Co-founder, Cohere

“AI technologies represent immense opportunities for every citizen and business in Canada. The societal impacts of AI are profound across education, biotech, climate and the very nature of work. Canada’s AI Code of Conduct will help accelerate innovation and citizen adoption by setting the standard on how to do it best. As Canada’s largest software company, we are honoured to partner with Minister Champagne and the Government of Canada in supporting this important step forward.”
– Mark J. Barrenechea, CEO and CTO, OpenText

“CCI has been calling for Canada to take a leadership role on AI regulation, and this should be done in the spirit of collaboration between government and industry leaders. The AI Code of Conduct is a meaningful step in the right direction and marks the beginning of an ongoing conversation about how to build a policy ecosystem for AI that fosters public trust and creates the conditions for success among Canadian companies. The global landscape for artificial intelligence regulation and adoption will evolve, and we are optimistic to see future collaboration to adapt to the emerging technological reality.”
– Benjamin Bergen, President, Council of Canadian Innovators

Quick facts

*The proposed Artificial Intelligence and Data Act (AIDA), part of Bill C-27, is designed to promote the responsible design, development and use of AI systems in Canada’s private sector, with a focus on systems with the greatest impact on health, safety and human rights (high-impact systems).

*Since the introduction of the bill, the government has engaged extensively with stakeholders on AIDA and will continue to seek the advice of Canadians, experts—including the government’s Advisory Council on AI—and international partners on the novel challenges posed by generative AI, as outlined in the Artificial Intelligence and Data Act (AIDA) – Companion document.

*Bill C-27 was adopted at second reading in the House of Commons in April 2023 and was referred to the House of Commons Standing Committee on Industry and Technology for study.

You can read more about Canada’s regulation efforts (Bill C-27) and some of the critiques in my May 1, 2023 posting, “Canada, AI regulation, and the second reading of the Digital Charter Implementation Act, 2022 (Bill C-27).”

For now, the “Voluntary Code of Conduct on the Responsible Development and Management of Advanced Generative AI Systems” can be found on this ISED September 2023 webpage.

Other Canadian AI policy bits and bobs

Back in 2016, shiny new Prime Minister Justin Trudeau announced the Pan-Canadian Artificial Intelligence Strategy (you can find out more about the strategy (Pillar 1: Commercialization) from this ISED Pan-Canadian Artificial Intelligence Strategy webpage, which was last updated July 20, 2022).

More recently, the Canadian Institute for Advanced Research (CIFAR), a prominent player in the Pan-Canadian AI strategy, published a report about regulating AI, from a November 21, 2023 CIFAR news release by Kathleen Sandusky, Note: Links have been removed,

New report from the CIFAR AI Insights Policy Briefs series cautions that current efforts to regulate AI are doomed to fail if they ignore a crucial aspect: the transformative impact of AI on regulatory processes themselves.

As rapid advances in artificial intelligence (AI) continue to reshape our world, global legislators and policy experts are working full-tilt to regulate this transformative technology. A new report, part of the CIFAR AI Insights Policy Briefs series, provides novel tools and strategies for a new way of thinking about regulation.

“Regulatory Transformation in the Age of AI” was authored by members of the Schwartz Reisman Institute for Technology and Society at the University of Toronto: Director and Chair Gillian Hadfield, who is also a Canada CIFAR AI Chair at the Vector Institute; Policy Researcher Jamie Amarat Sandhu; and Graduate Affiliate Noam Kolt.

The report challenges the current regulatory focus, arguing that the standard “harms paradigm” of regulating AI is necessary but incomplete. For example, current car safety regulations were not developed to address the advent of autonomous vehicles. In this way, the introduction of AI into vehicles has made some existing car safety regulations inefficient or irrelevant.

Through three Canadian case studies—in healthcare, financial services, and nuclear energy—the report illustrates some of the ways in which the targets and tools of regulation could be reconsidered for a world increasingly shaped by AI.

The brief proposes a novel concept—Regulatory Impacts Analysis (RIA)—as a means to evaluate the impact of AI on regulatory regimes. RIA aims to assess the likely impact of AI on regulatory targets and tools, helping policymakers adapt governance institutions to the changing conditions brought about by AI. The authors provide a real-world adaptable tool—a sample questionnaire—for policymakers to identify potential gaps in their domain as AI becomes more prevalent.

This report also highlights the need for a comprehensive regulatory approach that goes beyond mitigating immediate harms, recognizing AI as a “general-purpose technology” with far-reaching implications, including on the very act of regulation itself.

As AI is expected to play a pivotal role in the global economy, the authors emphasize the need for regulators to go beyond traditional approaches. The evolving landscape requires a more flexible and adaptive playbook, with tools like RIA helping to shape strategies to harness the benefits of AI, address associated risks, and prepare for the technology’s transformative impact.

You can find CIFAR’s November 2023 report, “Regulatory Transformation in the Age of AI” (PDF) here.

I have two more AI bits and these concern provincial AI policies, one from Ontario and the other from British Columbia (BC),

Stay tuned, there will be more about AI policy throughout 2024.